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Quantifying physiological trait
variation with automated
hyperspectral imaging in rice
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Carmela R. Guadagno3, Chris Hoagland2, Yang Yang2

and Diane R. Wang1*

1Agronomy Department, Purdue University, West Lafayette, IN, United States, 2Institute for Plant
Sciences, Purdue University, West Lafayette, IN, United States, 3Botany Department, University of
Wyoming, Laramie, WY, United States
Advancements in hyperspectral imaging (HSI) together with the establishment of

dedicated plant phenotyping facilities worldwide have enabled high-throughput

collection of plant spectral images with the aim of inferring target phenotypes.

Here, we test the utility of HSI-derived canopy data, which were collected as part

of an automated plant phenotyping system, to predict physiological traits in

cultivated Asian rice (Oryza sativa). We evaluated 23 genetically diverse rice

accessions from two subpopulations under two contrasting nitrogen conditions

and measured 14 leaf- and canopy-level parameters to serve as ground-

reference observations. HSI-derived data were used to (1) classify treatment

groups across multiple vegetative stages using support vector machines (≥ 83%

accuracy) and (2) predict leaf-level nitrogen content (N, %, n=88) and carbon to

nitrogen ratio (C:N, n=88) with Partial Least Squares Regression (PLSR) following

RReliefF wavelength selection (validation: R2 = 0.797 and RMSEP = 0.264 for N;

R2 = 0.592 and RMSEP = 1.688 for C:N). Results demonstrated that models

developed using training data from one rice subpopulation were able to predict

N and C:N in the other subpopulation, while models trained on a single treatment

group were not able to predict samples from the other treatment. Finally,

optimization of PLSR-RReliefF hyperparameters showed that 300-400

wavelengths generally yielded the best model performance with a minimum

calibration sample size of 62. Results support the use of canopy-level

hyperspectral imaging data to estimate leaf-level N and C:N across diverse

rice, and this work highlights the importance of considering calibration set

design prior to data collection as well as hyperparameter optimization for

model development in future studies.
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1 Introduction

Variation in plant traits reflect differences in genetics, the

environment, and their interactions integrated over time (Allard

and Bradshaw, 1964). Understanding these relationships could

provide mechanistically-based insights into breeding climate-

resilient crops, however, conventional methods to measure plant

traits can be destructive, may be time-consuming, and often require

specific technical skills that vary across methods. These characteristics

make such approaches challenging to scale across the large, and often

diverse, germplasm panels that are relevant to geneticists and

breeders. Deriving trait data from imaging as a systematic means of

non-destructive, high-throughput phenotyping has therefore

emerged as an important research area for the plant research

community over the past decade (Yang et al., 2014; Mir et al.,

2019; Yang et al., 2020). For example, morphometric traits (e.g.,

plant surface area and plant height) are now routinely extracted from

Red-Green-Blue (RGB) images using established analysis pipelines

(Yang et al., 2014; Gehan et al., 2017; Berry et al., 2018; Kim et al.,

2020). In contrast, analogous pipelines for predicting physiological

responses and/or biochemical traits from image-derived data have

not been well-established (Pasala and Bb, 2020; Yang et al., 2020) and

represents a significant gap for plant research communities.

Out of the various types of imaging technologies available to plant

researchers, those with hyperspectral sensors have shown the greatest

promise for estimating physiological and biochemical traits in plants.

These imaging systems are made up of a light source, objective lenses,

an imaging spectrograph, hyperspectral sensor(s), and a computer.

Results are stored as quantitative electrical signals derived from a vast

number of images, each corresponding to the reflectance value – the

ratio of reflected radiant flux to the incident flux – of wavelengths

ranging between 400 to 2500 nm (Sarić et al., 2022). As early as the

1970s, plant scientists have documented the relationship between leaf

traits (e.g., thickness, water content, presence of wax and hairs, and

age) and hyperspectral reflectance (Gausman and Allen, 1973; Grant,

1987). General signatures observed for reflectance of plant tissue have

also been linked to function and composition. For example, low

reflectance in the visible light region (VIS, 480 – 510 nm and 640 –

670 nm) is due to the absorption of light by photosynthetic pigments,

reflectance in the near infrared region (NIR, 700 – 1100 nm) is

influenced by the arrangement of mesophyll tissues of leaves (Rouse

et al., 1974), and the two troughs observed in the short–wave infrared

region (SWIR, 1000 – 2500 nm) are affected by plant cell water

content (Cotrozzi et al., 2020).

Previous studies have related HSI-derived data to both

quantitative and qualitative crop responses to abiotic factors. From

controlled-environment phenotyping facilities, these include studies

on maize response to different watering regimes (Ge et al., 2016;

Asaari et al., 2019; Mertens et al., 2021), quantification of

macronutrients in both maize and soybean Pandey et al. (2017),

and generation of nitrogen distribution maps at the whole-plant level

in wheat Bruning et al. (2019). Cultivated Asian rice (Oryza sativa),

consumed directly by more than half of the world’s population

(Muthayya et al., 2014), has also been characterized for its spectral

features under field and controlled environment conditions (Arias

et al., 2021). For example, Din et al. (2017) reported that leaf area
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index during the vegetative stage could be estimated from Vegetation

Indices (VIs) derived from hyperspectral data using a single japonica

variety. These experiments were carried out in the field using a

spectroradiometer to collect canopy-level data. Spectral data have also

been used to detect common leaf diseases across four varieties of rice

grown in greenhouse conditions (Feng et al., 2021). For that study,

leaves were first sampled destructively and subsequently placed in a

hyperspectral imaging system. Yu et al. (2020) developed leaf-level

nitrogen content models from spectral data for one japonica variety

and one indica variety under field conditions. Their canopy-level HSI

data were collected with a spectroradiometer, and specific VIs were

used as model input. While results were promising in each of these

rice studies, previous work focused on small numbers of accessions;

the potential scalability and general utility of hyperspectral imaging

data across more diverse germplasm remain to be tested.

To help address this gap, the current study evaluates 23

genetically diverse O. sativa accessions from two divergent

subpopulations grown under two nitrogen levels in a phenotyping

facility equipped with automated hyperspectral imaging. To establish

potential relationships between physiologial traits and HSI-derived

data, the automated imaging is complemented by a suite of ground-

reference observations. While numerous approaches exist that could

be considered for analyzing these high dimensional and multi-

collinear hyperspectral data Mir et al. (2019); Mishra et al. (2020);

Arias et al. (2021), we choose to leverage support vector machines

(SVMs) for classification, as they have been recognized as an effective

image classification algorithm Noble (2006); Gewali et al. (2018), and

Partial Least Squares Regression (PLSR) as a computationally-

tractable method for trait prediction Burnett et al. (2021). In this

study, application of SVM and PLSR follow Principal Components

Analysis (PCA) and the RRefliefF algorithm, respectively, to retain

only the most critical information from the original hyperspectral

data. PCA is a classic example of an unsupervised method to reduce

data dimensionality Gewali et al. (2018); Yu et al. (2020), while the

RRefliefF algorithm is a supervised, ranking-based method that

calculates an importance score of each wavelength by considering

the similarity and dissimilarity between wavelengths Ren et al. (2020).

The overall goal of our study is to test the utility of data derived

from an automated hyperspectral imaging system as surrogates for

physiological traits across genetically diverse rice. Specific objectives

are to (1) assess whether HSI-derived data can classify

subpopulation and treatment groupings across time, (2)

understand which types of plant traits have the most potential to

be predicted, (3) evaluate whether models developed using a single

subpopulation or treatment grouping can be used to predict values

in the other, and (4) quantify the effects of hyperparameter

combinations on predictions by the RReliefF-PLSR framework.
2 Materials and methods

2.1 Plant materials

A set of 23 bio-geographically diverse accessions from two

publicly-available, purified germplasm collections, the Rice

Diversity Panel (RDP) 1 and RDP 2 (McCouch et al., 2016), were
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evaluated for this study. These 23 lines encompassed 15 indica and

eight tropical japonica accessions that originated from 17 countries.

(Figure S1). To limit potential confounding effects of development

on target traits, these accessions were selected out of the tropically-

adapted and phenologically-similar RDP subset screened by Wang

et al. (2016b) (Table S1). Seeds were obtained from the USDA-ARS,

Dale Bumpers National Rice Research Center, Stuttgart, Arkansas,

Genetic Stocks Oryza Collection (https://www.ars.usda.gov/GSOR).
2.2 Growth conditions

The selected diversity panel was raised at the Ag Alumni Seed

Phenotyping Facility (AAPF), a controlled environment high-

throughput plant phenotyping facility at Purdue University (West

Lafayette, Indiana, U.S.A.) for 94 days during the Summer and Fall of

2020 (Figure S2). The facility is made up of a fully automated growth

chamber (Conviron®, Winnipeg, Canada) and weight-based

irrigation system (Bosman Van Zaal, Aalsmeer, The Netherlands).

A virtual tour of the facility may be found at https://ag.purdue.edu/

aapf/virtual-tour.html. Three conveyer belts with 32 positions per belt

were allocated to this study. Of the 96 total positions, two were

designated as “purge pots,” i.e., pots into which the system flushes

solutions in between changing fertigation/irrigation regimes. The

remaining 94 positions were occupied by 22 genotypes x 2

replicates x 2 nutrient levels and one final genotype (cv. Cybonnet)

x 3 replicates x 2 nutrient levels (described below). Having two or

more replicates per genotype allowed us to calculate accession-level

means for exploring data structure, i.e., subpopulation or treatment.

The temperature setpoint in the chamber was 26/22°C day/night,

relative humidity at 60%, and photosynthetically active radiation

(PAR) levels were recorded between 550-600 µmol photons m−2s−1.

The environment was additionally tracked by affixing Lascar EL-

USB-2-LCD Data Loggers to seven randomly selected pots at the

sowing time, which recorded temperature and relative humidity every

10 minutes (Figure S3A). Average temperature and humidity from

the loggers across the experimental period were 29.48 ± 0.22/23.34 ±

0.09°C day/night, relative humidity at 64.62 ± 0.69%. Lighting

conditions followed long day (14 h day/10 h night) scheduling due

to the need to accommodate experiments on other species in the

same facility: lights turned on daily at 0600 h and turned off at 2000 h.

Two seeds were sown per pot (6L in volume) in horticultural

substrate, which was made up of a mixture of Profile Porous

Ceramic Greens Grade and Berger BM6 All Purpose at a one-to-

one ratio by volume. Plants were hand-watered until 10 days after

sowing (DAS), at which point the seedlings were thinned and a

weight-based automated irrigation was initiated. The experiment was

designed with two nutrient treatment levels: high (300 ppm nitrogen,

N1) and low (50 ppm nitrogen, N2). The fertigation solution was

created by mixing Peters Excel 15-5-15 Cal Mag Special in reverse

osmosis (RO) water. Each morning prior to chamber lights turning

on, plants were irrigated to a preset weight with RO water. This target

weight was increased by about 1.15 times during the experiment to

account for the increase in transpirational demand of the growing

plants (Figure S3B). ROwater irrigation occurred every day except on

scheduled days when a fixed volume of fertigation solution (either
Frontiers in Plant Science 03
high or low concentration, depending on the treatment) was applied

instead of RO water. This RO water irrigation and fertigation regime

was designed so that each plant should theoretically receive enough

water to meet individual transpirational demands while also receiving

the fertilizer amount prescribed by their treatment.
2.3 Imaging and image processing

Plants were imaged approximately three times per week

beginning on 20 DAS and continuing until the end of the

experiment using the automated imaging booth in AAPF. This

temporal frequency enabled us to average HSI data within each

week to reduce the influence of noisy spectra. During each imaging

event, one side-view and one top-view images were acquired,

though the current study analyzed side-view data only as top-

view images after 46 DAS were unavailable due to a camera

malfunction. The HSI cameras used a scanning range that

encompassed the VIS to NIR region (VNIR; 400 – 1000 nm,

MSV 500 VNIR Spectral Camera, Middleton, Spectral Vision, WI,

U.S.A.) and the SWIR region (Specim, Oulu, Finland); thus,

generation two hypercubes of data image. White and dark

reference tests were conducted for each hyperspectral cameras

(SVNIR and SWIR) for post-processing images, where the relative

light reflectance was estimated for each wavelength. This step was

based on the work by Zhang et al. (2019). For the white reference,

two panels of known material and spectral signature was scanned

with all lights inside the imaging chamber on. The dark reference

test was conducted with the lens shutter closed and no lights. The

relative light reflectance (%) for each plant was calculated based on

the normalized difference between these tests, as seen in Equation 1.

reflectance ( % ) = 100� Plant − Dark
White − Dark

(1)

where,

Plant – the raw digital number measured for the rice plants

Dark - the raw digital number measured during the dark

reference tests

White - the raw digital number measured during the white

reference tests

For the VNIR hypercube, the rice plants were segmented out of

the background using the typical attenuation between Red Edge

wavelengths reflectance. The SWIR hypercube segmentation was

done using the SURF image registration (Bay et al., 2008) to map

the rice plants from the segmented VNIR hypercube (fixed image)

using the VNIR-segmented rice plant as the fixed image. After the

segmentation, the average light reflectance was calculated and stored

in a spreadsheet. Hyperspectral images were processed by using a

proprietary processing script in MATLAB (MATLAB, 2018).
2.4 Growth and physiological
measurements

Pre-dawn gas exchange measurements were taken in the facility

growth chamber during early vegetative growth between 0430-
frontiersin.org
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0530 h prior to chamber lights turning on using LI-6800 Portable

Photosynthesis System (LI-COR, Lincoln, NE, USA) (Table 1).

Leaf-level net assimilation (A, µmolm−2s−1), stomatal conductance

to water vapor (gsw, molm−2s−1), and nighttime transpiration (E,

molm−2s−1) were extracted from the measurements. Environmental

conditions in the cuvette matched ambient conditions in the growth

chamber: reference CO2, 415 µmolmol−1; vapor pressure deficit,<

1.5kPa (average V PD = 1.09kPa); PAR, 0 µmol photonsm−2s−1; and

leaf temperature was 26.87 ± 0.016 °C (mean ± SE). As rice leaves

are generally too narrow to cover the entire cuvette, leaf width was

first measured with a digital caliper prior to each measurement in

order to adjust gas exchange measurements to the observed leaf

area. A/Ci curves were collected in the facility growth chamber

using both LI-6800 and LI-6400XT Portable Photosynthesis

Systems (LI-COR, Lincoln, NE, USA) during 59-63 DAS and 87-

91 DAS (mid-tillering and late vegetative stages, respectively) with

constant PAR of 1200 µmol photons m−2s−1 and reference CO2

concentrations were set in the following order: 415, 300, 200, 100,

50, 10, 415, 415, 600, 800, 100, 1200, 415 µmolmol−1. Light response

curves were initially conducted on randomly selected plants to

determine the PAR level for running A/Ci curves. A/Ci curves were

collected between 1000 and 1400 h on the youngest fully expanded

leaf as indicated by the emergence of the leaf collar. Leaf

temperatures were between 25 and 27 °C and relative humidity

was maintained between 50-70%. After A/Ci curves were run

during 59-63 DAS, the leaf used for each curve was excised and
Frontiers in Plant Science 04
its area measured using a leaf area meter (LAI-2200C; LI-COR,

Lincoln, NE, USA). Leaves were oven dried for at least five days at

65 °C and their dry weights recorded. They were then finely ground

using a mortar and pestle and subsequently analyzed for carbon (C,

%) and nitrogen (N, %) content using the FlashEA® 1112 Nitrogen

and Carbon Analyzer for Soils, Sediments and Filters (Thermo

Scientific, CE Elantech, Lakewood, NJ) with two replicates per leaf

(30 mg per replicate). The equipment was operated according to the

flash dynamic combustion method, and resultant signals were

translated into the percentage of carbon and nitrogen by the

Eager 300 software. During 67-91 DAS, chlorophyll a

fluorescence was measured at predawn (0430-0530 h) and midday

(1000-1400 h) conditions with a hand-held fluorometer (Fluorpen

FP110, Photon System Instruments, Drasov, Czech Republic) on

the youngest, fully expanded leaf per plant on three different areas

of the leaf blade to minimize possible variation in the efficiency of

PSII due to the spatial response to sudden environmental changes in

monocotyledons (Oberhuber et al., 1993): the basal one-third, the

middle one-third, and the distal one-third. Measurements of Fv/Fm,

the maximum efficiency of PSII in dark acclimated leaves, were

taken according to Murchie and Lawson (2013). The measuring

light of the FluorPen was set at approximately 900 µmol

photons m−2s−1 throughout the experiment. Then, we applied a

saturation pulse at approximately 1500 µmol photons m−2s−1to

obtain Fv/Fm (pQY), whereas those taken at midday were the

maximum efficiency of PSII in light conditions, Fv’/Fm’(mQY)
TABLE 1 Overview of growth and physiology measurements.

Abbreviation Units Description

A µmolm−2s−1 pre-dawn leaf-level net assimilation

C % carbon

C: N (or CN in Figures) – leaf-level carbon to nitrogen ratio

E molm−2s−1 pre-dawn leaf-level transpiration

FB g final biomass

gsw molm−2s−1 pre-dawn leaf-level stomatal conductance to water

Jmax µmolm−2s−1 light-saturated potential rate of electron transport

log(E) – log transformed pre-dawn leaf-level transpiration

log(gsw) – log transformed pre-dawn leaf-level stomatal conductance to water

log(SLN) – log(specific leaf nitrogen)

mQY – midday quantum yield

N % nitrogen

normmQY – normalized midday quantum yield

normpQY – normalized pre-dawn quantum yield

pQY – pre-dawn quantum yield

SLA cm2g−1dw specific leaf area with respect to dry weight

SLAC cm2mg−1C specific leaf area with respect to carbon

SLN mgNcm−2 specific leaf nitrogen

Vcmax µmolm−2s−1 the maximum carboxylation rate limited by Rubisco
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(Henriques, 2009). Total above-ground biomass from all plants

were harvested at the end of the experiment on 94 DAS, oven-dried

at 65 °C for at least five days, and their dry weights recorded. Table

S2 summarizes the relationship between the timing for

physiological trait measurements and the imaging dates and

Figure 1 provides an overview of the experiment.
2.5 Data analysis

Data were formatted and analyzed in R 4.1.1 (R Core Team,

2021) with packages dplyr (Wickham et al., 2023), tidyverse

(Wickham et al., 2019) and reshape2 (Wickham, 2007). Plots

were generated using the package ggplot2 (Wickham, 2016) or in

base R environment. The code for each physiological trait

prediction model can be accessed through GitHub (https://

github.com/To-Chia/rice_imaging_ms).

2.5.1 Physiological trait analysis
From the ground-reference observations, we derived specific

leaf area (SLA, cm2g−1), CN ratio (C: N), specific leaf area with

respect to carbon (SLAC (cm2mg−1(C)) and specific leaf nitrogen

(SLN, mg(N)cm−2). The summary statistics may be found in Table

S3. E and gsw had right-skewed distributions and thus were log-

transformed (denoted as log(E) and log(gsw), respectively), prior to

conducting the correlation tests and a PCA. Pearson’s correlation

coefficient was calculated for all pairwise combinations of the

physiological traits and plotted with package corrplot (Wei and

Simko, 2021) (Figure S4A). Data for SLA, C and N on six rice plants

were unavailable and were mean-imputed before the pairwise

correlation was calculated. The same methods were applied to C:

N, SLAC, and SLN. A/Ci curves were first assessed for quality control

(QC) using the PEcAn.photosynthesis package (https://

pecanproject.github.io/modules/photosynthesis/docs/articles/

ResponseCurves.html). For the 89 curves that passed QC, Vcmax and

Jmax were estimated using the R plantecophys package (Duursma,
Frontiers in Plant Science 05
2015). PCA based on correlation matrix was conducted on

accession-mean data using the prcomp function in base R (R

Core Team, 2021). For unavailable data, their replicates were used

to represent the accessionmean value. Agglomerative hierarchical

clustering was performed on the Euclidean distance matrix from

accession-mean data. Clustering was based on the average linkage

method and plotted with package dendextend (Galili, 2015).

2.5.2 Hyperspectral imaging data
To obtain stable signals for modeling, imaging events that

occurred approximately within the same weeks were averaged

(Table S2; Figure 1). Averaged datasets are hereafter referred to as

Week 6, 9, 10 and 13 HSI data. PCA with variance-covariance

matrix was conducted on weekly accession-mean HSI data. From

the results of PCA, wavelengths that had the top ten loadings of the

PCs that cumulatively accounted for > 90% of total variance were

selected and termed as WSVM.

2.5.3 Signal variation in HSI data through time
SVMs were trained to quantify the prediction accuracy of

treatment groupings from WSVM using the package e1071 (Meyer

et al., 2021). First, the classifier of the training week was built with

WSVM. Then, predictions made on the evaluation week were

achieved by selecting WSVM in the training week dataset from the

evaluation week. We tested two kernels, the radial basis function

(RBF) kernel and the linear kernel. Grid-search of the parameters

for both kernels were conducted with 23-fold cross validation. Both

rough and fine grid-searches were conducted. In the rough grid-

search of RBF kernel, parameters cost and gamma were evaluated

within the range of (2−5, 215), (2−15, 223), respectively, both with an

interval of 22.

The best parameters resulting from the rough grid-search, +/-

20.5, set the range of the subsequent fine-grid search with an interval

of 20.1. When the best parameters from the rough grid-search fell on

the boundary, ranges for the fine grid-search used the best value

plus or minus 2 within the specified ranges. Parameters found in the
FIGURE 1

Overview of experimental data collection. Fourteen physiological traits were collected at different timepoints over the course of plant development.
Hyperspectral imaging was carried out several times per week and imaging events that occurred approximately within the same weeks as
phenotyping campaigns were averaged for analyses. The false-colored images in boxes show the same individual rice plant over the four
measurement weeks.
frontiersin.org

https://github.com/To-Chia/rice_imaging_ms
https://github.com/To-Chia/rice_imaging_ms
https://pecanproject.github.io/modules/photosynthesis/docs/articles/ResponseCurves.html
https://pecanproject.github.io/modules/photosynthesis/docs/articles/ResponseCurves.html
https://pecanproject.github.io/modules/photosynthesis/docs/articles/ResponseCurves.html
https://doi.org/10.3389/fpls.2023.1229161
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ting et al. 10.3389/fpls.2023.1229161
fine grid-search were adopted only if model accuracy was higher in

the fine grid-search than the rough grid-search; in some cases,

accuracies were the same. The parameter, cost, which was the only

parameter in the linear kernel, was determined with the same

method as cost in the RBF kernel.
2.5.4 Prediction of physiological traits with
HSI data

We used the RReliefF algorithm implemented by the

CORElearn package (Robnik-Sikonjǎ and Kononenko, 2003) to

select relevant wavelengths before utilizing partial least squares

regression (PLSR) for predictions (Figure S5). RReliefF algorithms

are derived from Relief, developed by Kira and Rendell (1992). We

chose RReliefF to filter HSI data as it takes conditional

dependencies between variables into account (Robnik-Sikonjǎ and
Kononenko, 2003). Wavelengths selected from RReliefF were

termed as WPLSR. The estimator applied in the current study was

RReliefF expRank, and the number of iterations was determined by

the number of calibration samples multiplied by 100. Note that

calibration in this study refers to model training in the context of

machine learning while model validation is equivalent to model

testing. For PLSR modeling, the R package, pls (Liland et al., 2021),

was used, and the procedure for building the models was adapted

from Burnett et al. (2021). Specifically, models were fit using the

classical orthogonal scores algorithm. Eighty percent of the full

dataset was used for calibration and the remaining was for model

validation. Sampling was carried out with the criterion that each

treatment level contributed equally to the datasets (i.e., the full-data

was grouped by treatments prior to sampling). Calibration datasets

were used to determine the number of components in the final

models by selecting the lowest root mean square error of prediction

(RMSEP, Equation 2) in leave-one-out (LOO) cross-validation. The

coefficient of determination (R2, Equation 3), RMSEP and

normalized root mean square of error in predictions (%RMSEP,

Equation 4) served as model evaluation metrics.

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)2

n

r
(2)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − yi)

2 (3)

%RMSEP =
RMSEP
range(y)

(4)

, where yi is the i
th measured value, ŷ i is the i

th predicted value from

the LOO cross-validation for model calibration or the ith predicted

value for model validation, yi is the mean of the measured values

and n is the sample size in calibration or validation datasets. To

account for model variation, jackknife permutation during model

calibration was carried out. The derived coefficients were used to

compute predicted values in validation datasets. From there, 95%

confidence intervals of the predicted values were derived.

To test whether models trained on HSI data from one rice

subpopulation or one nitrogen treatment level could be used to

predict traits in the other subpopulation or treatment, follow-up
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PLSR models were developed for leaf-level N and C: N. Procedures

for using the RReliefF algorithm and for building PLSR models were

the same as described above (Figure S5). Additional analysis on leaf-

level N was carried out to determine the effect of number of WPLSR

and sample size on prediction metrics. This analysis aimed to sort

out whether the number of wavelengths used as input to PLSR

models described previously was appropriate. WPSLR at ten values

(10, 50, 100, 150, 200, 300, 400, 500, 600 and 700) and sample sizes

at five values (48, 60, 70, 78 and 88) were examined using one

hundred iterations of each combination of these hyperparameters.

We used a grid search method to evaluate this relationship (i.e.,

effects of sample size and wavelength number on prediction results);

grid search was able to be leveraged as PLSR is more

computationally tractable than advanced machine learning

methods. R2, RMSEP and %RMSEP were calculated and their

means and standard errors were derived.
3 Results

3.1 Treatment and subpopulation effects
on multivariate physiological traits

Examining pairwise relationships among the traits, we found

that all traits had significant correlations with at least one other trait

(a = 0.01), except for pre-dawn leaf-level net assimilation (A,

µmolm−2s−1) (Figure S4). As expected, traits that reflected similar

aspects of physiology were more correlated. For example, nitrogen

content (N, %) and leaf-level carbon to nitrogen ratio (C: N) had a

strong negative correlation (-0.96), log transformed pre-dawn leaf-

level transpiration (log(E)) and log transformed pre-dawn leaf-level

stomatal conductance to water (log(gsw)) were perfectly positively

correlated, and pQY (Fv/Fm) and mQY (Fv’/Fm’) had a weak

positive correlation (0.48). We found that overall health status of

the rice plants improved with nitrogen enrichment, as reflected by

higher pQY and mQY in N1 (high nitrogen) than in N2 (low

nitrogen) treatments. N was also found to have moderate and weak

positive correlations with pQY and mQY, respectively (0.53 and

0.41). It is worth noting that specific leaf area with respect to dry

weight (SLA, cm2g−1dw) had correlations with most of these traits; it

had a weak negative correlation with C: N, SLN, and log(E) (-0.46,

-0.34, and -0.27) and a weak positive correlation with N, SLAC,

mQY and pQY (0.49, 0.42, 0.41, and 0.29). On the other hand, final

biomass (FB, g) only had a weak negative correlation with log(E)

and log(gsw) (-0.35 for both), suggesting that dry matter

accumulation of rice in this experiment may have been more

associated with water status than with nutrient status.

Due to the correlated nature of the ground-reference dataset, we

employed two multivariate approaches to evaluate potential effects

of subpopulation and treatment on high-level data structure. PCA

on accessionmean trait data suggested both treatment and

subpopulation effects (Figure 2A), with PC1 and PC2 reflecting

treatment and subpopulation effects, respectively. The traits, N and

C: N, contributed to PC1 (treatment) the most whereas SLAC and

SLN had the most influence on PC2 (subpopulation). In contrast,

hierarchical clustering showed a clear separation by treatment only
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and not subpopulation (Figure 2B). Interestingly, the dendrogram

revealed that N2 indica observations were more closely clustered

with the N1 group (both indica and tropical japonica) than with the

cluster that primarily contained N2 tropical japonica, suggesting

that indica may be less responsive to nitrogen enrichment than

tropical japonica.
3.2 Effects of nitrogen on hyperspectral
reflectance in rice

Weekly accession mean HSI data gave rise to spectra typical of

plants (Figure 3A). Due to the high dimensionality and correlated

nature of these data, PCA was applied on accession-mean HSI

datasets to examine the potential effects of nitrogen treatment and

subpopulation identity. Similar to results of hierarchichal clustering

of the ground-reference data, only the treatment effect was clear

throughout the time period analyzed (Figures 3B–E); separation of

treatment levels was primarily determined by PC2 fromWeeks 6 to

10 and by PC3 on Week 13. However, nitrogen treatment signals

appeared to be lower on Week 13 than on earlier weeks.

Using these PCA results, wavelengths were selected for use in

support vector machines (SVM); these are referred to hereafter as

WSVM (see Materials and Methods for details). WSVM detected in

PC2 from Weeks 6 to 10 were similar to those detected in PC3 on

Week 13 and were all centered around 715 nm (Figure 3A) in the

Red Edge region, indicating that the treatment signals could be

attributed to similar spectral regions across the full experimental

period. A detailed examination showed that wavelengths around

715 and 910 nm accounted for the highest and the second highest

proportions of WSVM, respectively. Wavelengths around 2200 –

2400 nm, a highly variable region, was found to contribute to the set

of WSVM as well. This was observed for all weeks except Week 9.

Lastly, WSVM of Weeks 10 and 13 included wavelengths around

1400 and 1800 nm, a region known to be informative of

water absorption.

We next quantified treatment classification accuracy of

these selected wavelengths by applying SVM. Results showed that
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WSVM were able to classify nitrogen treatments for any one week

using information from any other weeks (Figure 4). Overall,

accuracies ranged from 0.63 to 0.91, with accuracy greatest for

Weeks 6 through 10 and poorest for Week 13. Accuracy of

prediction made by Week 13 dropped as evaluation weeks

became more temporally distant from the training week; the

lowest accuracy using the Week 13 classifier was observed for

Week 6 (0.7 for both kernels) while for Weeks 9 and 10, the

accuracy was about 0.78.
3.3 Use of hyperspectral imaging as
surrogates for physiological traits in rice

Based on promising results of the SVM classification, we next

wanted to test the utility of HSI-derived data to estimate trait values.

The RReliefF algorithm was first used to derive WPLSR, i.e.

wavelengths selected for partial least squares regression (PLSR)

(Materials and Methods). Reflectance data ofWPLSR were then used

directly as the predictors of single-response PLSR models. Model

results are summarized below based on several trait categories:

biomass constituent, growth, photosynthetic capacity, and

water transport.

3.3.1 Biomass constituent traits
Ground-reference observations for biomass constituent traits

(leaf-level carbon (C, %), nitrogen (N, %) and C:N ratio (C: N)) were

collected during Week 9. Distributions of N and C: N were aligned

with nitrogen treatment (Figures 5A, E), and WPLSR for both N and

C: N were composed of 400 wavelengths; these sets were similar to

each other and included wavelengths from the VIS and Red Edge

regions and covered wavelengths around 1500 nm and 2000 nm,

regions sensitive to water inside plant cells (Figures 5B, F). In

calibration models, R2 for C: N and N were 0.808 and 0.786,

respectively (Figures 5C, G, S6). RMSEP were 1.687 and 0.246

(%), respectively, and %RMSEP were 10.01% and 12.50%,

respectively. For model validation, validation of N models

(R2 = 0.797, RMSEP = 0.264 and %RMSEP = 11.24) were better
BA

FIGURE 2

Treatment and subpopulation effects on physiological traits. (A) Principal components analysis biplot of PC1 (x-axis) and PC2 (y-axis). (B)
Agglomerative hierarchical clustering using accessionmean physiological data. Open circles are observations from the low nitrogen treatment (N2);
filled circles indicate the high nitrogen treatment (N1). Blue circles indicate accessions from the tropical japonica subpopulation (TRJ); red circles
show accessions from the indica subpopulation (IND).
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than validation of C: N models (R2 = 0.592, RMSEP = 1.688 and %

RMSEP = 18.49) (Figures 5D, H). In contrast, PLSR models could

not be built with C as the lowest RMSEP during LOO-calibration

suggested that a 0-component model was the most appropriate.
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3.3.2 Growth traits
Traits of this group included specific leaf area with respect to

leaf dry weight (SLA, cm2g−1), specific leaf area with respect to

carbon (SLAC, cm
2mg−1(C)), specific leaf nitrogen (SLN, mg(N)
BA

FIGURE 4

Nitrogen treatment levels predicted by support vector machines. Classification results from support vector machines using (A) a radial basis function
kernel and (B) a linear kernel. These were trained using WSV M from the training week.
B C

D E

A

FIGURE 3

Variation in weekly hyperspectral imaging (HSI) reflectance data over plant developmental time. (A) Spectra show accession-mean HSI reflectance
data (medians) across weeks. Stacked bar plots indicate key wavelengths identified based on the top 20 - 30 loadings in principal component
analysis (PCA) from each week. Horizontal bars represent regions that are sensitive to chlorophyll concentration (green; 480 – 510 nm and 640 –
670 nm), water content (blue; 1350 – 1500 nm and 1900 - 2100 nm) and cellulose (orange; 2200 – 2500 nm). The pink horizontal bar marks the
Red Edge region (680 - 720 nm). Plots shown in (B–E) are results from PCA conducted on accession-mean HSI reflectance data on Weeks 6, 9, 10
and 13, respectively.
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cm−2), final biomass (FB), and pre-dawn leaf-level net assimilation

(A, µmolm−2s−1), which reflects dark respiration. FB was normalized

and SLN was log transformed, denoted as normFB, and log(SLN),

respectively, prior to building prediction models. PLSR modeling

results are summarized in Figure S7. WPLSR across the three traits

were similar in that they did not include wavelengths in the green

light region (520 – 600 nm) but did include the Red Edge region.

Compared to WPLSR for N and C: N, SLA, SLAC and log(SLN)

included WPLSR in NIR plateau region. We found that calibration

models for these three traits were not ideal (R2 ≤ 0.295, %RMSEP ≥

14.00) and that their validation models were unstable as model

metrics varied greatly when datasets were permuted to generate

different combinations of calibration and validation datasets. For FB

and A, both their calibration and validation models were very poor

(Figure S7).

3.3.3 Photosynthetic capacity and water
transport traits

Photosynthetic capacity traits included pre-dawn quantum

yield Fv/Fm (pQY), midday quantum yield Fv’/Fm’ (mQY) and

Vcmax and Jmax. pQY and mQY were normalized prior to building

models, denoted as normmQY and normpQY, respectively.

Calibration models were not very predictive with R2 ≤ 0.344,

RMSEP ≥ 0.832, and %RMSEP ≥ 14.91, and validation models for

both traits revealed that the models were not applicable (R2 ≤ 0.19

and %RMSEP ≥ 20.90) (Figure S8). WPLSR for Vcmax and Jmax

spanned nearly the entire spectral region examined, and similar to

the performance of growth trait models, these models were not

stable as when the datasets were permutated or could not be

established. Likewise, PLSR models could not be established for

water transport traits, log(E) and log(gsw) (Figure S9).
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3.3.4 Trait predictions in one treatment level
using models developed from another

As models to predict leaf-level N and C: N from HSI data

performed well, we further examined whether we could develop

models using only one treatment level to predict traits in the other

treatment level, termed treatment-based models. Due to the smaller

sample size for model calibration, sizes of WPLSR shrunk to 300.

WPLSR for the treatment-based models generally covered the same

wavelengths asWPLSR for model calibration utilizing the full dataset.

However, treatment-based models tended to have WPLSR more

dispersed in NIR and SWIR regions, especially for models built

from the N2 treatment level (Figure 6). In addition, while WPLSR

from full datasets of N and C: N included wavelengths around 1350-

1500 nm, treatment-based models omitted wavelengths in this

region, possibly due to the smaller number of wavelengths

considered (300 vs 400). Calibration for treatment-based models

performed moderately well with R2 ≥ 0.35, and %RMSEP ≤ 18.37.

However, it was apparent from validation results that models

developed using data from one treatment should not be applied

to predict samples in the other treatment (R2 ≤ 0.127 and %RMSEP

≥ 19.48).

3.3.5 Trait predictions in one subpopulation using
models developed from another

Rice has two deeply diverged subpopulations, both of which

were represented in this study, so we next examined whether

models developed from one subpopulation could be used to

predict leaf-level N and C: N in the other subpopulation. These

are termed subpopulation-based models. In the case of N,WPLSR for

subpopulation-based models appeared similar and included

wavelengths in the VIS and Red
B C D

E F G H

A

FIGURE 5

Predicting leaf-level nitrogen (N) and CN ratio (C: N) using hyperspectral reflectance imaging data. (A) Distribution of leaf-level nitrogen (N) in indica
(IND) and tropical japonica (TRJ) accessions under high nitrogen (N1, green) and low nitrogen (N2, yellow) treatments, (B) Selected wavelengths
(green lines) for predicting N from Week 9 HSI data. (C, D) are model calibration and validation for predicting N, respectively. (E) Distribution of C: N
in IND and TRJ in N1 (green) and N2 (orange) treatments, (F) the selected wavelengths (dark red lines) for predicting C: N from the weekly averaged
HSI data, and (G, H) are model calibration and validation for predicting C: N, respectively. Error bars are 95% confidence intervals. In (B) and (F),
black lines show reflectance values and gray shaded areas indicate reflectances between the 5th and the 95th percentiles. In panels (C, D, G, H):
Open circles = N2 treatment; filled circles are N1 treatment; red = IND and blue = TRJ.
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Edge regions, wavelengths around 1900 – 2100 nm, and

wavelengths at the end of the SWIR region (Figures 7, S10). Both

model calibration and validation models performed well, with

performance similar to that of models developed from the full

dataset (calibration: R2 ≥ 0.775, RMSEP ≤ 0.671 and %RMSEP ≤

12.36; validation: R2 ≥ 0.689, RMSEP ≤ 0.298 and %RMSEP

≤ 13.91).

For the subpopulation-based C: Nmodels,WPLSR was similar to

those of the subpopulation-based N models (Figure 7), with the

exception of when TRJ was used for model calibration, WPLSR did

not include any wavelengths greater than 2300 nm. This

differentiated it from the other three subpopulation-based models.

All subpopulation-based models excluded wavelengths around

1350-1500 nm, which were used in full dataset models (Figure 5).

Model calibration and validation performed well in both
Frontiers in Plant Science 10
subpopulationbased models for C: N(calibration: R2 ≥ 0.772,

RMSEP ≤ 1.743 and %RMSEP ≤ 10.58; validation: R2 ≥ 0.682,

RMSEP ≤ 2.057 and %RMSEP ≤ 12.49). Comparing models

developed from the full dataset with subpopulation-based models,

the three model metrics (RMSEP, R2, and %RMSEP) did not point

to the same conclusion, i.e. high R2 in one model did not

correspond with low RMSEP or low %RMSEP. From the

perspective of RMSEP, models developed with data from IND

had better calibration results compared with models developed

from the full dataset or with model developed from data in TRJ

subpopulation. However, validation results from the full dataset

remained the best, as may be expected given its greater variability

around the mean. RMSEP from validation for full dataset was 0.133

and 0.369 lower than RMSEP from models developed from IND

and TRJ data, respectively.
B C
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FIGURE 6

Predicting traits in one treatment level using models developed from another. Wavelengths selected based on calibration datasets of (A) N data in N1
treatment, (D) N data in N2 treatment, (G) C: N data in N1 treatment and (J) C: N data in N2 treatment, respectively. Corresponding calibration
results are in (B, E, H, K), respectively. Calibrated models were used to predict (C) N in N2 treatment, (F) N in N1 treatment, (I) C: N in N1 treatment
and (L) C: N in N2 treatment, respectively. In (A, D, G, J), black lines show mean reflectance values and gray shaded areas indicate reflectances
between the 5th and the 95th percentiles. In calibration and validation plots: Open circles = N2 treatment; filled circles = N1 treatment; red = IND
and blue = TRJ.
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3.3.6 Effect of sample size and number of
wavelengths on model performance

We next investigated the effects of sample size and number of

wavelengths on model performance using N as the target trait

(Figure 8). Results showed that when total sample size was greater

than 70, models with 300 or 400 wavelengths had the best

performance. When the number of wavelengths were greater than

400, model performance dropped as indicated by the decrease in R2

(increase in RMSEP and %RMSEP) in model validation. This

suggested that: (1) We needed at least total sample size of 78,

which was equivalent to 62 samples in model calibration, to afford

model complexity, and (2) models suffered from over-fitting when

number of wavelengths were greater than 400. In addition, we

noticed that when the total sample size was less than 60, standard

errors of the model metrics in validation tended to be large; this
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meant models were too complex. Lastly, from the perspectives of R2

and RMSEP, sample sizes of 48 and 60 caused under-fitting,

observed as large differences in model metrics between validation

and calibration. Model performance started to converge when total

sample sizes were greater than 78. On the other hand, %RMSEP did

not converge as much as for R2 or RMSEP. This may be due to the

fact that %RMSEP was a normalized metric and is more robust than

R2 or RMSEP.
4 Discussion

In this study, we leveraged the genetic divergence of two rice

subpopulations along with two levels of nitrogen application to

drive the range of phenotypic variation observed for a suite of
B C
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A

FIGURE 7

Predicting nitrogen (N) and CN ratio (C: N) in one subpopulation using models developed from another. Wavelengths selected based on calibration
datasets of (A) N data in IND subpopulation, (B) N data in TRJ subpopulation, (G) C: Ndata in IND subpopulation and (J) C: N data in TRJ
subpopulation, respectively. Corresponding calibration results are in (B, E, H, K), respectively. Calibrated models were used to predict (C) N in TRJ
subpopulation, (F) N in IND subpopulation, (I) C: N in TRJ subpopulation and (L) C: N in IND subpopulation, respectively. In (A, D, G, J), black lines
show mean reflectance values and gray shaded areas indicate reflectances between the 5th and the 95th percentiles. In calibration and validation
plots: Open circles = N2 treatment; filled circles = N1 treatment; red = IND and blue = TRJ.
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physiological traits and hyperspectral images. As previous work

relating spectral features to rice traits focused on limited sets of

varieties, our overarching goal was to assess the potential

application of hyperspectral reflectance as trait surrogates across

diverse rice accessions. The relatively long experimental period (13

weeks) additionally afforded an opportunity to ask about the

persistence of HSI utility over the course of plant development.

Overall, we found that the traits, N (leaf-level nitrogen content)

and C: N (leaf-level carbon to nitrogen ratio) could be predicted

using HSI data, whereas for other traits, models either could not be

developed or resulted in poor validation. Of note, N and C: N were
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traits that contributed most to the first principal component of the

PCA using ground-reference data, which separated nitrogen

treatment classes, and we speculate that this relationship

contributed to the high performance of the PLSR models for

these traits. Previous work has also demonstrated successful N

prediction in crop species using HSI data (Vigneau et al., 2011;

Homolová et al., 2013; Din et al., 2017; Tan et al., 2018; Bruning

et al., 2019; He et al., 2020; Meacham-Hensold et al., 2020; Vergara-

Diaz et al., 2020; Yu et al., 2020; Baath et al., 2021; Lin et al., 2022).

Under various growth conditions, reflectance variation in the VIS

and Red-Edge regions along with the end of the SWIR region have
B

C

A

FIGURE 8

Effect of sample size and number of wavelengths on model performance. Model metrics, (A) R2, (B) RMSEP (N, %) and (C) %RMSEP, are derived from
nitrogen prediction models. Selected wavelengths are those with the top rankings based on the RReliefF algorithm in calibration datasets. Labels
denote total sample sizes, with 80% of it used for model calibration. Error bars are standard errors from 100 iterations.
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been identified as important for N prediction; our findings were

consistent with these previous studies (Figure 5). The close

relationship between N and chlorophyll may explain why model

prediction is often successful, as plant spectral features in the VIS

region are largely determined by pigments. In contrast with N, C: N

has not been frequently reported as a predictable trait from

hyperspectral reflectance. Gao et al. (2020) found that predicting

C: N was related to wavelengths around the red and Red-Edge

regions (560 nm, 600 nm, 660 nm, 680 nm, 720 nm, 760 nm and

1470 nm) of forage-grass in the Tibetan Plateau. The WPLSR for the

full C: N model as well as subpopulation-based models largely

overlapped with the wavelengths that previous study had identified,

except for 760 nm, which was not inWPLSR for TRJ model, and 1470

nm, which was not found in either TRJ- or IND-based models. Our

results showed that WPLSR between N and C:N were similar

(Figure 5, consistent with the high correlation between the two

traits Figure S4). This observation suggests that interpretation of

selected wavelengths should be made with caution, as they may not

represent cause-effect relationships with the target trait.

HSI data were unable to predict the other traits evaluated in this

study. In the case of leaf-level carbon, C, past literature also concluded

that C was not predictable Gao et al. (2020), even though specific

chemical compounds like lignin, cellulose and starch could be

inferred from spectral data (Curran, 1989). We speculate that while

those chemical compounds are responsive to specific wavelengths,

signals disappear when all of the compounds are considered at once,

as in the case of C. For FB, the inability to predict this trait using HSI

data sits in contrast to previous research that was able to leverage HSI

to predict biomass (Cho et al., 2007). Since FB was only collected at

the end of the experimental period in our study, there may have been

too much architectural complexity by that late stage in development.

In this case, image transformation may be helpful to amelerioate the

influence of plant architecture on spectral characteristics, and

previous studies have reported various methods to extract relevant

information from complex HSI data (Al Makdessi et al., 2019; Asaari

et al., 2019; Mishra et al., 2020; Mertens et al., 2021). Additionally, the

observed variation of FB between the two treatments in our study was

small (Figure S7M). Collecting biomass data at multiple time points

would increase the overall size and variation of the ground-reference

dataset, which would likely improve model performance. However,

this requires more destructive sampling, which was not amenable to

the experimental design considered here.

For other traits, we surmise that one general underlying reason

for the inability to build satisfactory models is due to the differences

in spatial scale between imaging data (taken at canopy-level) and

ground-reference observations (taken at leaf-level of the youngest

fully expanded leaf of a single tiller). For these particular traits,

heterogeneity among individual leaves is likely present, which

would not have been captured by our ground-reference

observations. Previous research successfully predicted SLA from

HSI data by utilizing a hand-held spectroradiometer on the same

individual leaves used for ground-reference measurements

(Cotrozzi et al., 2020). To improve model performance, future

work using canopy-level HSI systems should strive to capture

some intra-canopy variation in ground-reference trait data.

Similarly, temporal lags between ground-reference measurements
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and imaging events should be minimized, especially for traits that

represent fast processes in plants that are very sensitive to

environmental differences Ge et al. (2016). In our particular setup

at the AAPF, plants travel on conveyor belts out of the growth

chamber environment to the imaging booth (Figure S2). This takes

approximately four minutes, during which temperature drops to

around 21 °C. A sensors-to-plants approach would alleviate the

effects of temporal decoupling Yang et al. (2020), however, this

would depend on available infrastructure. Lastly, Meacham-

Hensold et al. (2019) and Fu et al. (2020) were able to predict

Vcmax and Jmax in tobacco with PLSR. Compared to the current

work, these past studies had many more observations; we speculate

that our dataset did not have enough variation in A/Ci curves for

successful PLSR predictions.

One question we were keen to address here was whether HSI

signatures differed in accordance with subpopulation identity. We

determined that, despite clear subpopulation differentiation in

ground-reference trait data, there were no background genetic

signatures in HSI information for rice, based on PCA and model

predictions of N and C: N (Figures 3, 7). This has several

implications for moving forward in conducting larger-scale

experiments leveraging HSI-predicted physiological traits in

diverse rice: (1) subpopulation genetic background does not need

to be controlled for in prediction models; and (2) calibration models

can be developed from a combination of genetic materials, similar

to NIR models for stem non-structural carbohydrate traits in rice

(Wang et al., 2016b), conditional that there is adequate phenotypic

variation. Contrary to our results, He et al. (2020) suggested that

indica and japonica subpopulations required different models to

estimate N. The main design difference is that their study utilized

top-view HSI data, and they analyzed only derived Vegetation

Indices. In contrast, we utilized side-view data and analyzed

spectral data directly. One important point to make is that our

experiment was carried out only during the vegetative stage of rice.

Therefore, we speculate that these results may not extend to rice

during the reproductive stage; there are several reasons: (1)

occlusion of rice leaves or panicles would likely be more apparent

in reproductive stage than in early vegetative stage (Din et al., 2017).

In addition, some genotypes exert more panicles than the others

(Wang et al., 2016a). And (2), during the reproductive stage,

resources in leaves are transferred to grains, which would likely

lead to changes in hyperspectral signature of leaves.

Automated phenotyping systems, such as Purdue’s AAPF, readily

support high frequency of hyperspectral imaging, as imaging events

can be programmed prior to the start of the experiment and require

limited human intervention (Figure S2). In our study, these events

occurred two to three times per week throughout the experimental

period. The frequency of imaging allowed us to average across several

days to obtain pot-level spectral information to be used for

downstream analysis and modeling; this attenuates potentially

noisy individual spectra and helps detect the overall HSI signature

of each plant during timepoints of interest. Having automated

imaging occur from Week 6 through Week 13 also enabled us to

ask about the consistency of HSI information over developmental

time. To test this, we employed SVM to see if HSI could classify

nitrogen treatments forwards and backwards in time (i.e., using one
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week to predict another week). Classification using HSI data

performed very well overall (Figure 4), and prediction accuracies

were greater than 0.83, excluding Week 13. Accuracies where

Training and Evaluation Weeks were the same (diagonals in

Figure 4), however, may be over-estimated due to overlap in

datasets. Additional improvements in classification accuracy of

nitrogen treatment could consider (1) testing different feature

selection methods prior to SVM; (2) analyzing hyperspectral

images directly, such as using Fourier Transformation to extract

spectral features; or (3) using different classification methods such as

CNN (Singh et al., 2016).

It is interesting to note that the latest timepoint, Week 13,

showed the poorest performance out of all weeks, no matter

whether it served as the Training or the Evaluation Week. This

timepoint occurred at the very end of the experimental period, and

we speculate that water may have played an interactive role with the

nitrogen treatment to modify HSI signatures. We found that higher

levels of nitrogen led to greater SLA in our experiment (Table S3),

meaning greater transpiring leaf area per unit dry biomass; this

translates to an increased demand. Watering regime, which was

managed on a target weight basis using the facility’s automated

system, did not differ between the two nitrogen treatments;

therefore, it is plausible that the high nitrogen treatment would

have experienced some level of water stress by the end of the

experiment. This explanation is supported by the observation that

on Week 13, key wavelengths derived from PCA showed a shift

from 2400 nm to 1800 nm, adjacent to the region known to be

responsive to water (Figure 3A), and we noticed leaf-rolling

(O’Toole and Cruz, 1980) in some plants during midday in the

latter part of the experimental period.

With the establishment of automated plant phenotyping systems,

the promise of hyperspectral images to serve as surrogates for plant

physiological traits has motivated a wide range of studies across

different species and treatments over the last decade. However, it is

important to recognize that these image-derived reflectance data are

influenced by multiple factors such as plant architecture, scaling,

equipment (e.g., cameras), and the particular setup of each facility,

which impacts the timing of imaging as plants move from their

growing environment to imaging booths. For these reasons,

prediction models are generally considered non-transferrable across

species, experiments, or facilities (Cho et al., 2007; Verrelst et al.,

2015). Flexible approaches to designing within-experiment

calibration sets with robust ground-reference data are therefore

needed; general frameworks such as RReliefF-PLSR prediction

coupled with the optimization of hyperparameters for model

development, as presented here, can be extended beyond any single

study. As image processing methods continue to advance, researchers

may be able to more readily extract reflectances of individual leaves

from canopy-level images; this would enable plant scientists to

explore within-plant trait distributions and how that varies across

genotypes. These kinds of insights can help deepen understanding of

plant physiological response mechanisms across intra-specific

genetic variation.
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