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Background: The ruminant gastrointestinal contains numerous microbiomes that 
serve a crucial role in sustaining the host’s productivity and health. In recent times, 
numerous studies have revealed that variations in influencing factors, including 
the environment, diet, and host, contribute to the shaping of gastrointestinal 
microbial adaptation to specific states. Therefore, understanding how host and 
environmental factors affect gastrointestinal microbes will help to improve the 
sustainability of ruminant production systems.

Results: Based on a graphical analysis perspective, this study elucidates the 
microbial topology and robustness of the gastrointestinal of different ruminant 
species, showing that the microbial network is more resistant to random attacks. 
The risk of transmission of high-risk metagenome-assembled genome (MAG) 
was also demonstrated based on a large-scale survey of the distribution of 
antibiotic resistance genes (ARG) in the microbiota of most types of ecosystems. 
In addition, an interpretable machine learning framework was developed to study 
the complex, high-dimensional data of the gastrointestinal microbial genome. 
The evolution of gastrointestinal microbial adaptations to the environment in 
ruminants were analyzed and the adaptability changes of microorganisms to 
different altitudes were identified, including microbial transcriptional repair.

Conclusion: Our findings indicate that the environment has an impact on the 
functional features of microbiomes in ruminant. The findings provide a new 
insight for the future development of microbial resources for the sustainable 
development in agriculture.

KEYWORDS

ruminants, metagenomics, machine learning, network, metagenome-assembled 
genome

OPEN ACCESS

EDITED BY

Zhipeng Li,  
Jilin Agriculture University, China

REVIEWED BY

Limei Lin,  
Nanjing Agricultural University, China  
Fei He,  
Northeast Normal University, China

*CORRESPONDENCE

Qiushi Li  
 qiushili_jlu@126.com

RECEIVED 18 January 2023
ACCEPTED 28 August 2023
PUBLISHED 20 September 2023

CITATION

Yan Y, Shi T, Bao X, Gai Y, Liang X, Jiang Y and 
Li Q (2023) Combined network analysis and 
interpretable machine learning reveals the 
environmental adaptations of more than 
10,000 ruminant microbial genomes.
Front. Microbiol. 14:1147007.
doi: 10.3389/fmicb.2023.1147007

COPYRIGHT

© 2023 Yan, Shi, Bao, Gai, Liang, Jiang and Li. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 20 September 2023
DOI 10.3389/fmicb.2023.1147007

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1147007&domain=pdf&date_stamp=2023-09-20
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1147007/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1147007/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1147007/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1147007/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1147007/full
mailto:qiushili_jlu@126.com
https://doi.org/10.3389/fmicb.2023.1147007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1147007


Yan et al. 10.3389/fmicb.2023.1147007

Frontiers in Microbiology 02 frontiersin.org

1. Introduction

Ruminants, as ancient animals, exhibit a wide range of 
morphological and ecological diversity (Mennecart et al., 2021). They 
have adapted to diverse habitats, from tropical jungles (Díaz-Céspedes 
et al., 2021) to the plateau (Guo et al., 2020); range in size from 2 kg 
(Pickford, 2001) to 1.5 tons (Sauer et al., 2016); show great variations 
in diet, feeding on objects ranging from moss (Ihl and Barboza, 2007) 
to ordinary standard feed (Li et al., 2019); and have adapted to almost 
all ecosystems on Earth. Ruminants are distinguished by their plant 
digestion patterns and have evolved the rumen. As one of the most 
vital organs, the rumen allows partial microbial digestion of feed 
before it enters the true stomach (van Lingen et al., 2017). The rumen 
is a crucial factor underlying the domestication of ruminants. The 
productivity of ruminant livestock depends on their gastrointestinal 
microbiota, which can transform plant material that humans cannot 
digest into easily accessible animal products (Shabat et al., 2016). The 
gastrointestinal microbiota of ruminants is characterized by its 
diversity and dynamic nature, making it prone to alterations due to 
changes in diet (Malmuthuge and Guan, 2016), environmental factors 
(Cholewinska et al., 2021), and the presence of enteric pathogens 
(Cortés et al., 2020). These perturbations play an integral role in host 
nutritional intake, behavior, metabolism, immunological function, 
and development. Natural selection has allowed hosts and symbiotic 
microbes to evolve as integrated systems.

In both the ecological and social realms, ruminants are immensely 
valuable. Due to rising consumer demand for animal products 
resulting from population growth (Seshadri et al., 2018), ruminants 
play an increasingly vital role in ensuring agricultural security. They 
generate a significant amount of the meat and milk that are the 
primary sources of protein in the human diet (Stewart et al., 2019). 
Nonetheless, sustainable manufacturing confronts significant 
obstacles due to the depletion of natural resources and the resulting 
rise in production costs.

The ability of ruminants to utilize microorganisms is one of their 
key traits. Microorganisms bring significant benefits to ruminant 
animals. However, due to the diverse functionalities and species 
diversity of microorganisms, they exhibit intricate physiological and 
biochemical characteristics, making their in-depth analysis quite 
challenging (Ban and Guan, 2021). We have uncovered inconsistencies 
in predicting microbial community structures, primarily stemming 
from a limited grasp of the mechanisms governing microbial 
community assembly. In order to mitigate this unpredictability, it is 
imperative to comprehensively understand the microbiome as a 
cohesive entity.

With the ongoing increase in the depth of metagenomic 
sequencing, the range of sequencing is progressively expanding 
(Vestergaard et  al., 2017), while the cost of the technology is 
decreasing. Thus, large amounts of data can be generated for analysis. 
Consequently, substantial volumes of data can be  generated for 
analysis. However, despite genomics being inherently data-driven, the 
resultant datasets are becoming both exceedingly large and complex, 
thereby giving rise to technological challenges. Recent publication of 
the most recent collection of gut microbial genomes includes a 
ruminant whole gastrointestinal tract microbial gene set and the 
reconstruction of over 10,000 nonredundant ruminant gastrointestinal 
microbial genomes (Xie et al., 2021). This represents a significant 
change in the ability to understand the ruminant microbiome. This 

study used public database collections to characterize the microbiomes 
and functional groups and applied a metagenomics approach to 
achieve the following objectives: (1) building microbial cooccurrence 
networks for exploring linkages in microbial communities, (2) the 
influence of the network’s special microstructure on the survivability 
of gastrointestinal networks in ruminant was explored, (3) detecting 
antibiotic resistance in different ruminants on a large scale, and (4) 
exploring the adaptation of ruminant microbes to their environment.

2. Results

2.1. Microbiological characteristics of the 
gastrointestinal microbiota of ruminants

The microbes serve as an often overlooked yet independent source 
of data for understanding host evolution and ecological shifts. Based 
on Spearman’s rank correlation coefficient matrix of the relative 
abundance of 488 collected microorganisms, a microbial network was 
constructed using seven microbiomes representing distinct ruminant 
gastrointestinal environments (Figure 1). To eliminate noise and false 
positive predictions, a conservative statistical cutoff was adopted to 
reject points with Spearman coefficients less than 0.85 and p-values 
less than 0.01 The number of modules in this global network was 
distributed with a long tail, with an average of 32 modules per 
network, while 80% of the vertices were concentrated in only 
8 modules.

The organization of ruminant gastrointestinal microbial networks 
varies greatly, and there is minimal relationship between the various 
species (Figure  2A). Dairy cattle had the highest mean clustering 
coefficients, which indicated substantial clustering and indicated that 
the network’s nodes tended to form relationships over shorter 
distances. Sheep, dairy cattle and water buffaloes all had more edges 
than the others. The quantity of edges varied notably among networks, 
with dairy cattle networks exhibiting three times the number of edges 
as compared to goat networks. Additionally, we  found that all 
networks had a modular structure (modularity > 0.3) and dense 
connections between nodes within modules.

Figure 2B demonstrates that the random attack is less effective 
than the purposeful approach, showing that the microbial network is 
more resistant to random attacks. During simulations of purposeful 
attacks, the network stability rapidly degrades and shows a clear 
declining trend, illustrating the superiority of the DG (max degree 
graph node) and PG (max pagerank graph node) importance ranking-
based techniques. Sheep had the most resilient microbial network 
regardless of the technique of hitting, while water deer and yak 
networks had the most susceptible microbial networks. The efficiency 
of network attacks using the same method varied in a multimethod 
robustness assessment of individual networks, with PG attacks 
performing better in elk and less successfully in deer.

2.2. The K-shell decomposition in 
gastrointestinal microbiota of ruminants

The K-shell technique is utilized to examine the network’s 
hierarchical structure. The procedure is run repeatedly until the most 
concentrated core is discovered (Figure 3A). Nodes dispersed at the 
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FIGURE 1

Networks of co-occurrence among seven ruminant microbes. Unrooted tree exhibiting a Bray-Curtis clustering tree of microbial genera. The first eight 
domain modules in the cooccurrence network are displayed in various colors in the outer circle, which displays various animal microbial cooccurrence 
networks.

FIGURE 2

Network topology and robustness. (A) Microbial network topology inferred from a dataset of microbiome abundance of seven ruminant species. 
(B) The relationship between the proportion of removed nodes and the scale of the largest connected component.
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FIGURE 3

Network analyses of K-shell. (A) Schematic illustration of network layering using the k-shell decomposition method. (B) Distribution of the average 
degree of each shell. (C) each shell number.

network’s periphery have a much lower average than nodes positioned 
close to its core (Figure 3B). The statistics suggest that inner layer 
nodes may be more efficient information emitters (Figure 3C). We also 
found that the overall structure of the microbial network topology is 
reminiscent of the internet network. While merely 0.5% of the nodes 
in the internet network constitute the nucleus, a mere 0.1% of the 
nodes comprise the core of the microbiological network.

3. Broad-spectrum profile of ARG 
abundance in ruminant 
gastrointestinal

Antibiotics stand as influential elements in microbial networks, 
exerting substantial impacts. Unveiling antibiotic resistance genes’ 
presence holds the potential to influence the operational dynamics of 
microbial communities and the overall stability of ecosystems. 
We discovered a significant prevalence of antibiotic resistance genes 
(ARGs) in ruminant gastrointestinal microbes, with 6,268 (62%) of 
the 10,073 genomes tested in the microbial resistance gene analysis 
yielding positive results. Multiple ARGs demonstrated a high degree 
of variability within the ruminant resistance group (Figure 4). We also 
quantified the possible mechanisms of the identified ARGs. Multiple 
ARGs demonstrated a high degree of variability within the ruminant 
resistance group. We found that yaks had the fewest ARGs, with an 
average of 181 ARGs per sample. We hypothesize that this is because 
the Qinghai–Tibet Plateau is less contaminated as a result of 
human activities.

We further analyzed the detailed composition of ARGs in the 
gastrointestinal of seven ruminants. Among all the types of ARGs, 
uppP, tufab, tetW, tetT, tet37, rpsL, rpsJ, rpoC, rpoB, parE, nimJ, macB, 
and gyrAAPH (2″)-Ig, which had the highest prevalence, were found 

in the gastrointestinal tracts of all ruminants. We quantified the risk 
index of species containing risk genes using quantitative methods, and 
we  characterized the risk level of MAG based on the risk score 
quartile. The risk level is divided down into 4 levels: 2611 (risk index 
1), 1,491 (1 = risk index 10), 657 (10 = risk index 100), and 62 (risk 
index ≥100). The total number of level 1 microorganisms was 62, or 
1.2%. We  displayed the tick microbial symbiont risk indicator 
top 50 in. We discovered that among the top 10 MAGs of all hazards, 
there were members of Pseudomonas, Escherichia, and Acinetobacter.

Explanation of the machine learning-based analysis of the 
evolution of gastrointestinal microbial environmental suitability 
in ruminants.

Many creative strategies are supported by machine learning 
that can detect patterns and trends in huge data that cannot 
be identified using traditional analysis-based methods. To this end, 
we further investigated the differences between rumen microbes at 
different altitudes using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database based on feature engineering. The 330 
yak rumen microbial genomes were subjected to KEGG annotation 
with 1992 other ruminant rumen microbial genomes to generate a 
KEGG microbial function matrix (Figure 5) that indicated whether 
each genomic source was from a high altitude. Thus, the raw data 
were transformed into features that were more representative of 
potential problems with the prediction model. The ratio of the 
number of high-and low-elevation samples was approximately 1: 
6. The significant imbalance between these two categories was 
evident. In order to balance the two sets of sample data, our study 
employed the synthetic minority oversampling technique 
(SMOTE) algorithm, which is a completely sampled synthetic 
data algorithm.

We developed four models of machine learning. The accuracy and 
applicability of the various techniques were assessed using 
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cross-validation score, incorporating the evaluation of 10 distinct sets 
of cross-validation (Figure 6A). In the 10 cross-validations, the effect 
of the training and test sets became less effective as more tests were 
conducted, and the green line (lightGBM) outperformed all the other 
algorithms. Because of this, we  ultimately chose lightGBM as the 

algorithm for the model. After choosing the LightGBM algorithm, 
hyperparameter training was performed. The input data were first 
divided into a test set and a training set, and then a search for 
hyperparameters was carried out. The appropriate parameters were 
selected using a plotted learning curve. By aggregating multiple 

FIGURE 5

Flow chart of machine learning implementation for predicting the adaptive function of microorganisms.

FIGURE 4

Antibiotic-resistance distribution in gastrointestinal microbes. Clades are 146 colored according to phyla and SHAP represents different hosts. The first 
layer uses 147 orange represents the genome of antibiotics. Second, three, and the four layers represent 148 the number of ARG, how many types and 
the ARG risk index.
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hyperparameters, this model achieved an accuracy of 92.2%, 
representing an improvement of 13.68% over the lightGBM before 
tuning. To evaluate the efficacy of the model, a receiver operating 
characteristic (ROC) curve was constructed (Figure 6C). The closer 
the ROC curve is to the upper left corner, the better the performance 
of the classifier; the point on the ROC curve closest to the upper left 
corner is the best threshold for the lowest number of classification 
errors and the lowest number of false positives and false negatives. The 
ROC of the model is 0.97, which shows that the model has good 
prediction performance and is accurate and reliable and that there is 
no overfitting.

The mean absolute value of a feature’s degree of influence on the 
target variable was utilized to determine its significance. Based on the 
Shapley additive explanation (SHAP) values (Figure  6D), the 
importance of features depicts the mean absolute SHAP values to 
illustrate the importance of global features. The abundance of genes in 
the KEGG orthology gene function category provides insight into the 
genetic underpinnings of adaptive phenotypic variation. The bee 
swarm plot is intended to show a summary of how the top 
characteristics of a data set influence the model’s output. In each 
instance, the given explanation is represented by a single dot on each 
feature row. The x coordinate of the dot is determined by the SHAP 
value of that feature, and dots “pile up” along each feature row to 
represent density. Color is used to display the original value of a 
feature. Our investigation yielded insights into the genetic factors 
essential for the environmental adaptation of the yak gastrointestinal 
microbiota, highlighting the importance of the transcription-repair 
coupling factor (K03723), trk/ktr system potassium uptake protein 

(K03498), amino acid metabolism (K00817), and genes associated 
with polysaccharide and lipid metabolism (K05989, K01181). These 
identified genetic elements play pivotal roles in enabling the yak gut 
microbiota to effectively adapt to its surroundings. For example, the 
transcription-repair coupling factor likely contributes to genetic 
stability and maintenance in dynamic environments. Similarly, the 
trk/ktr system potassium uptake protein may support the maintenance 
of ionic balance critical for physiological functions. Amino acid 
metabolism, as well as polysaccharide and lipid metabolism genes, 
suggest the microbiota’s ability to efficiently extract nutrients from 
its environment.

Enrichment analysis based on these gene revealed that the 
microbial community of yaks exhibits more robust specific 
pathways compared to other plains ruminants 
(Supplementary Figure  S1). These pathways encompass 
carbohydrate metabolism, nucleotide metabolism, transport 
systems, and amino acid metabolism, potentially playing a pivotal 
role in their adaptation and survival within their specific 
environment. The heightened activity of carbohydrate metabolism 
suggests efficient energy extraction from their diet, supporting 
energy-intensive processes. Emphasis on nucleotide metabolism 
might indicate enhanced DNA and RNA synthesis, potentially 
aiding cellular growth and repair. The well-developed transport 
system could facilitate nutrient absorption and intercellular 
communication, thereby optimizing resource utilization. Overall, 
these findings shed light on the mechanisms by which the yak gut 
microbiota adapts to its habitat and offers valuable insights into the 
genetic underpinnings of its environmental resilience.

FIGURE 6

Performance and characteristics of the machine learning model. (A) Selection of model algorithms based on 10 cross-validation sets: lightGBM is the 
blue line, XGBoost is the green line, random forest is the yellow line and the decision tree is the red line. (B) Confusion matrix showing the 
performance of the LightGBM model. (C) Receiver operating characteristic (ROC) curve of the RF model. The horizontal coordinate of this curve is the 
false-positive rate (FPR), and the vertical coordinate is the true-positive rate (TPR). (D) Plots summarizing the SHAP values of all the samples were used 
for analysis to interpret key features.
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4. Discussion

Ruminants are among the most successful herbivorous mammals 
(Decker et al., 2009). In this study, we took full advantage of the largest 
and most comprehensive database of ruminant gastrointestinal 
microbes available. We employed a range of approaches, encompassing 
complex networks and interpretable machine learning, to characterize 
the state of environmental microbial populations.

In this study, we employ network science theory to examine the 
properties of gastrointestinal networks and evaluate the robustness of 
these networks by examining these properties in more detail. Diverse 
profiles of topological features in diverse environmental networks 
reveal the unique co-occurrence patterns of microorganisms in 
ruminant species. The prevalence of cross-feeding relationships in the 
network may be indicated by the high clustering coefficient, which 
suggests that these settings have abundant degradation pathways, 
niche filtering, or environmental unpredictability. Different models 
built to test the resilience of networks reveal that they are more 
resilient to random faults and more vulnerable to deliberate attacks. 
Understanding the resilience of networks and the various approaches 
to averting catastrophic failures of these networks is essential. Only a 
tiny number of significant species have been eliminated, which may 
have an effect on the general structure of the network of microbes in 
a healthy microbiome. This finding highlights the importance of using 
antibiotics sparingly once more.

By investigating antibiotic resistance genes, we gain insights into 
how microbial communities respond to antibiotics. This 
understanding is pivotal, as it unravels the intricate interplay among 
microorganisms and is fundamental to comprehending the intricate 
web of interactions that shape ecosystems (Sharland et al., 2015). The 
presence of antibiotic-resistant microbiomes (ARBs) and ARGs in 
supermarket meat and dairy products suggests that ARBs/ARGs from 
ruminants can penetrate the food system. It would be helpful to make 
an effort to compile a list of significant ARG-carrying species for 
monitoring and control based on the assessment of the total antibiotic 
resistance risk at the species level. It is alarming that the farming 
environment contains high-risk MAGs. Additionally, microbiomes 
communities frequently experience an increase or decrease in ARGs 
as a result of genetic changes or HGT. Human health would 
be seriously endangered by these high-risk MAGs.

The Qinghai–Tibet Plateau, sometimes known as the “Third Pole,” 
is a huge, high-altitude region with a unique and fragile ecological 
environment (Yao et al., 2012). The region is characterized by a harsh 
climate of extreme cold, drought, high ultraviolet radiation and a lack 
of oxygen, making it a challenging living environment for humans and 
other mammals (Zhu et al., 2018; Pan et al., 2021; Shen et al., 2021). It 
is essential to determine precisely which genetic features give 
ruminants their exceptional digestive capacity and ability to live in 
harsh conditions (Zhu et al., 2020). To answer this question, 
we developed interpretable machine learning methods to deeply mine 
complex, high-dimensional metagenomic data. We found a significant 
increase in the transcription repair coupling factor (K03723) in the yak 
gastrointestinal microbiota. K03723 regulates transcriptional processes 
and recognizes DNA damage. In addition, such phenomena were also 
found in samples from plateau-based animals for Rhodobacter sp. 
(Pérez et  al., 2018) and nitrogen-fixing microbiomes (Suyal et  al., 
2018). We hypothesize that this may be a common measure adopted 
by microorganisms facing extreme environments. In addition, 
we found that the K03498 trk/ktr system potassium uptake protein 

contributes significantly to plateau acclimatization. We speculate that 
the numerous high-salinity sites in the plateau region have resulted in 
a microbial response to salt stress (Li et al., 2021). Similar to previous 
studies (Guo et al., 2021),the results indicate a preference for an amino 
acid metabolism gene (K00817) and polysaccharide and lipid 
metabolism genes (K05989 and K01181) in the yak gastrointestinal 
microbiota. These pathways provide additional adaptive responses to 
the lack of energy intake in yaks. In conclusion, our study provides 
important insights into ruminant plateau adaptation and highlights the 
key role of the microbial genome as a “second genome” for adaptation, 
contributing to a more comprehensive understanding of mammals 
living in extreme environments.

5. Conclusion

In-depth exploration of ruminant gastrointestinal microbes is 
necessary to understand the function of the microbiome and its 
interactions with the host animal. This study enhances our 
comprehension of both the structure and function of the ruminant 
gastrointestinal microbiota, a critical aspect for investigating microbial-
host symbiotic functional dynamics. Furthermore, it advances our 
understanding of the gastrointestinal microbiota adaptations necessary 
for herbivores. In addition, it informs strategies to decrease 
contamination and increase the robustness and efficiency of ruminants.

6. Methods

6.1. Data used in this study

The sequence files of 10,373 gastrointestinal microbial genomes 
of ruminants were downloaded in FASTA format from Figshare 
(DOI: 10.6084/m9.figshare.14176574). All the gene catalogs, 
annotation information, abundance profiles, assemblies, and 
predicted open reading frames (ORFs) from this study are available 
at https://microbiomejournal.biomedcentral.com/articles/10.1186/
s40168-021-01078-x. The details of all samples used in this study are 
provided in Supplementary Table S1.

6.2. Network analysis

A Spearman correlation matrix was calculated based on the relative 
abundance of genera in each sample, and networks were graphed using 
Gephi (Bastian et al., 2009). Topological features were estimated with 
the igraph package (Csardi and Nepusz, 2006) (v1.4.1) in R 3.6.0.

The robustness of gastrointestinal networks can be regarded as the 
ability of the entire network to maintain the same performance when 
nodes in the network are affected by random factors and intentional 
damage. The survivability of networks can be measured by the change 
in network topological structure characteristics. We  selected the 
relative size of the largest connected subgraph (RS) and relative 
connectivity efficiency (RE) after node failure as the measurement 
indexes of network survivability (Wei et al., 2021).

 
RS N

N

t
=
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where N is the number of nodes in the largest connected subgraph 
and N is the total number of nodes in the airline network. As the 
nodes in the network are attacked, the network splits into several 
subgraphs, and the relative size of the largest connected subgraph 
gradually decreases until the nodes are no longer connected with each 
other and finally become scattered nodes.

In this research, different attack strategies are developed to further 
understand the failure process of the network under different 
scenarios, specifically including random failures and targeted attacks 
(Wang et al., 2010). The strategies can be summarized as follows: First, 
there is the random attack strategy based on nodes. Second, the largest 
degree first attack strategy based on nodes. Third, the largest pagerank 
degree first attack strategy based on nodes.

7. Functional analysis of microbial 
genes

7.1. ARG annotation

The functional annotation of all identified proteins encoded by 
ARGs was based on sequence similarity searches carried out with 
DIAMOND BLASTP v2.0.9 (Buchfink et al., 2021) with the default 
settings against the HMD-ARG database (Li et al., 2021). ARGs were 
selected at a sequence similarity threshold of 75% and a score 
threshold of 60 (Yan et al., 2022). In our study, we utilized a set of 
equations to effectively quantify the antibiotic risk associated with the 
presence of ARGs within different Metagenome-MAGs in the context 
of the larger ecosystem. These equations, as described by equation 
(Zhang et al., 2022), were structured as follows:

 
Risk num ARG

total ARG
num ARG subtypes
total ARG suntypes

= ×
_
_

_ _
_ _

In this context, “num_ARG” stands for the count of ARGs detected 
within a specific MAG, while “total_ARG” refers to the overall count of 
ARGs encompassing the entire ecosystem under consideration. On the 
other hand, “num_ARG_subtypes” represents the tally of distinct ARG 
subtypes found within the same MAG, and “total_ARG_subtypes” 
denotes the comprehensive count of distinct ARG subtypes present 
within the entire ecosystem. By applying this approach, we aimed to 
evaluate and quantify the potential antibiotic risk posed by the presence 
of ARGs within each MAG, within the broader context of the ecological 
system. This method allowed us to gain insights into the degree of 
antibiotic resistance-related risk associated with specific MAGs and 
their ARG compositions, contributing to a more comprehensive 
understanding of the ecosystem’s antibiotic resistance dynamics.

8. Machine learning model 
development

8.1. Data collection

In this experiment, 330 yak rumen microbial genomes were used 
as input data, along with 1992 other ruminant genomes. After 
comparing the protein sequences to the database using eggNOG, the 
proteins were grouped into different KOs (KEGG Orthology), with 

each cluster of KOs consisting of direct homologous sequences so that 
the function of the sequence could be inferred. The KO gene function 
matrix was built as an input file for machine learning.

8.2. Data preprocessing

Unbalanced data can pose challenges for machine learning 
models. Most machine learning models assume that the same number 
of samples is available for each class. Ignoring this problem can lead 
to errors in a few classes (and thus make the model sensitive to 
classification errors), causing ML models to ignore observations in a 
few classes. In the current work, the number of samples collected was 
uneven because the number of ruminant gastrointestinal samples 
varied from region to region. The synthetic minority oversampling 
technique (SMOTE) method was applied to overcome the adverse 
effect of learning data imbalance (Chawla et al., 2002).

8.3. Model development and tuning

Four machine learning models were developed to predict 
microbial plateau adaptive function in the Jupyter lab development 
environment (Perkel, 2018) using scikit-learn,1 Numpy (v1.15.3), 
Pandas (v0.23.4), Matplotlib (v3.0.1), and Scipy (v1.1.0) for 
experiments. The machine learning algorithms used for classification 
in this work were random forest (Qi, 2012), decision tree (Somvanshi 
et al., 2016), light gradient boosting machine (lightGBM) (Ke et al., 
2017), and XGBoost (Chen and Guestrin, 2016). These are all 
integrated tree-based learning methods and are rated by the machine 
learning community as the most popular nonlinear models today. 
LightGBM is a fast and efficient GBDT algorithm in the open-source 
promotion framework designed by Microsoft MSRA in 2016. The 
algorithm is used for many machine learning tasks, such as sorting, 
classification, and regression, and supports efficient parallel training.

8.4. Shapley additive explanation

SHAP quantifies the importance of variables by leveraging 
Shapley values, a concept originating from cooperative game theory 
introduced by Shapley in (Bouneder et al., 2020). SHAP’s theoretical 
foundation is rooted in cooperative game theory, as highlighted by 
Lundberg and Lee in 2017 (Van den Broeck et al., 2022). The 
methodology explicates the model’s predictions by embracing the 
idea of additive feature attribution. The fundamental principle of 
SHAP is to decompose the explanation of a prediction into 
contributions from each feature (Wang et al., 2022). It assigns each 
feature’s contribution based on its Shapley value across different 
subsets of features, which is equivalent to a weighted average of 
feature contributions. Shapley values are a concept from cooperative 
game theory and denote the average contribution of a player across 
all possible coalition formations.

The SHAP value of feature i(ϕi) can be  computed using the 
following equation:

1 https://scikit-learn.org
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Where: N represents the set of all features. S is a subset of NN that 
does not include feature i. f S( ) represents the model’s prediction when 
considering only the feature set S. f S ∪{ }( )i  is the model’s prediction 
when feature ii is added to the features in subset S. The idea behind 
this formula is to consider all possible combinations of features, 
excluding feature ii, and calculate the difference in model predictions 
when feature ii is included in these combinations. The Shapley value 
concept assigns weights to these differences based on the number of 
ways a specific feature can contribute to different subsets of features. 
The summation calculates the weighted average of these differences, 
yielding the SHAP value for feature i.

In essence, the SHAP value quantifies the contribution of each 
feature to the model’s prediction by considering how including or 
excluding that feature influences the model’s output across various 
combinations of features.
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