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Gestational diabetes mellitus is a condition marked by raised blood sugar levels 
and insulin resistance that usually occurs during the second or third trimester of 
pregnancy. According to the World Health Organization, hyperglycemia affects 
16.9% of pregnancies worldwide. Dietary changes are the primarily alternative 
treatment for gestational diabetes mellitus. This paper aims to perform an 
exhaustive overview of the interaction between diet, gene expression, and the 
metabolic pathways related to insulin resistance. The intake of foods rich in 
carbohydrates can influence the gene expression of glycolysis, as well as foods 
rich in fat, can disrupt the beta-oxidation and ketogenesis pathways. Furthermore, 
vitamins and minerals are related to inflammatory processes regulated by 
the TLR4/NF-κB and one carbon metabolic pathways. We  indicate that diet 
regulated gene expression of PPARα, NOS, CREB3L3, IRS, and CPT I, altering 
cellular physiological mechanisms and thus increasing or decreasing the risk of 
gestational diabetes. The alteration of gene expression can cause inflammation, 
inhibition of fatty acid transport, or on the contrary help in the modulation of 
ketogenesis, improve insulin sensitivity, attenuate the effects of glucotoxicity, and 
others. Therefore, it is critical to comprehend the metabolic changes of pregnant 
women with gestational diabetes mellitus, to determine nutrients that help in the 
prevention and treatment of insulin resistance and its long-term consequences.
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Introduction

Gestational diabetes mellitus (GDM) is a condition marked by raised blood sugar levels 
(hyperglycemia) that first appears during gestation, mainly in the second or third trimester (1). 
According to World Health Organization (WHO), hyperglycemia in pregnancy affects 16.9% of 
pregnancies worldwide (2). Furthermore, GDM prevalence has been highly described in 
Southeast Asia (20.8%), the North Africa and Middle East (27.6%) (3).

The diagnostic values for GDM can vary based on the healthcare guidelines used. However, 
the following blood glucose values are commonly associated with gestational diabetes: fasting 
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blood glucose: ≥5.1 mmol/L; 1-h glucose challenge test: 
≥10.0 mmol/L; 2-h oral glucose tolerance test (OGTT): 
≥8.5 mmol/L (1, 4).

GDM risk factors involve obesity, family history of insulin 
resistance and diabetes, age, multi-parity, ethnicity, and short stature 
(5–7). Gestational diabetes can influence both the mother’s and the 
baby’s health. Preeclampsia, polyhydramnios, operative delivery, 
preterm delivery, and birth canal lacerations are common 
complications in GDM women (5, 8–10). Furthermore, the infant can 
develop shoulder dystocia, neonatal hypoglycemia, macrosomia 
(excessive fetal growth), jaundice, respiratory distress syndrome, and 
perinatal mortality (11–13). Women with GDM normally recovers 
after delivery, although both mother and child are more susceptible to 
developing obesity, hyperglycemia, vascular disorders, and type 2 
Diabetes Mellitus (T2DM) in the future (9, 12, 14, 15).

The pathogenesis of GDM is complex and multifactorial, involving 
beta cell dysfunction and altered insulin secretion (10, 16). Insulin is 
a protein produced by the pancreas hormone that modulates the 
absorption and consumption of glucose (sugar) by cells. When 
pregnant women have insulin resistance (IR), their cells lack the ability 
to use insulin, and sugar accumulates in the blood (17). Additionally, 
increased levels of hormones such as cortisol, progesterone, placental 
lactogen, leptin, estrogen, among others, may also affect the body’s 
capacity to utilize insulin effectively during pregnancy (18). Moreover, 
hormonal changes can significantly affect placental function, 
morphogenesis, and angiogenesis. The placenta plays a vital role as the 
communication organ between the mother and fetus, providing 
necessary nutrients and oxygen. In gestational diabetes, the placental 
metabolism may be  impacted, leading to alterations in fatty acid 
metabolism (19). Studies have shown that inflammatory processes can 
activate cytokines like IL-6, resulting in fat accumulation and 
inadequate fat supply to the fetus (20).

Furthermore, genetic and epigenetic changes play a significant 
role in placental function. Increased expression of the vascular 
endothelial growth factor (VEGF) and the cluster of differentiation 31 
(CD31) has been observed in gestational diabetes, correlating with 
maternal body mass index (BMI) and weight gain. Such altered VEGF 
levels may lead to abnormal embryo implantation and placental 
formation, resulting in abnormal blood vessel growth and chronic 
hypoxia. Conversely, CD31 regulates inflammatory responses (21, 22). 
Additionally, the expression of the parathyroid hormone-related 
peptide (PTH-rP) and the parathyroid hormone 1 receptor (PTH-R1) 
in the placenta varies with maternal glucose levels. This overexpression 
impacts fetal growth and development through placental calcium 
transfer and vasodilation (23).

Epigenetic analyses have revealed high methylation levels in genes 
involved in the Wnt and cadherin pathways, which are critical for 
placental development and vascularization. Moreover, methylation of 
genes like IRS1, ADORA2B, and PTPRN2 (insulin regulators) has 
been linked to altered insulin signaling in placentas (24).

The treatment for GDM consists of controlling blood glucose 
levels and, most importantly, changing lifestyle through a healthy meal 
plan, including regular exercise. Medications, especially insulin, are 
administered in some cases (8). Furthermore, glucose monitoring in 
women with GDM can effectively regulate maternal glucose levels and 
maternal weight (25). However, some studies have shown that 
monitoring may vary among women with gestational diabetes 
similarly to healthy pregnant women (26).

Nutrigenomics relates diet to genes and focuses on the changes 
induced by nutrients in the expression of genes that control biological 
processes to prevent or treat some diseases (27). In the case of GDM, 
it has been demonstrated that environmental factors, like diet, can 
influence gene expression involved in pathways related to nutrient 
metabolism, such as beta-oxidation, ketogenesis, and the one-carbon 
pathway. Disruption of these pathways, including the inflammatory 
via, could lead to insulin resistance and raise the GDM risk (28).

Knowledge in nutrigenomics has expanded due to the emergence 
of new technologies such as massive sequencing, which allows a better 
understanding of the genome and its relationship with dietary habits 
(29). In this sense, nutrigenomics could be  helpful for the GDM 
management as it grants the identification of alterations at the 
genomic level related to the pathogenesis of this condition and 
the environment.

Diet modification is the main alternative treatment for gestational 
diabetes. Therefore, nutrigenomics could be a therapeutic tool for 
GDM management by providing nutritional strategies that help the 
metabolic response and prevent maternal and fetal complications 
(30–32).

In this context, this paper aims to perform an exhaustive overview 
of the correlation between diet, gene expression, and the metabolic 
pathways related to insulin resistance to contribute to the criteria for 
gestational diabetes management through nutrients.

Gestational diabetes mellitus

A pregnant woman’s body changes physiologically and 
anatomically to accommodate the developing fetus. Changes include 
weight gain, placental development, placental hormone production, 
and metabolic modifications (33). In the first semester of pregnancy 
(anabolic phase) the maternal system increases the storage of lipids in 
the tissues to use them as a source of energy for the last stage of 
gestation, during which glucose ingested by the mother is mostly used 
to fetal growth (33, 34). To build these energy reserves, the maternal 
system has to increase the energy intake and de novo hepatic fat 
synthesis (lipogenesis) (33). Increasing energy consumption requires 
rising insulin levels to transport sufficient blood glucose into the cells, 
increasing glycolysis. Additionally, elevated insulin levels suppress 
adipose tissue triglyceride breakdown (lipolysis), increasing 
lipogenesis and causing maternal white adipose tissue expansion 
(35–38). During the latter part of gestation, maternal glucose 
consumption decreases, and the maternal energy requirements are 
met by fatty acid oxidation; so, it is necessary to break down the 
adipose tissue created in the first two trimesters of pregnancy 
(catabolic phase) (34, 39, 40).

Glucose homeostasis is regulated by the liver throughout 
pregnancy. Fetus’s metabolic requirements are minimal in the early 
stages of pregnancy; hence, the hepatic insulin resistance is low, 
and the insulin levels increase. Moreover, this rise in insulin levels 
inhibits hepatic gluconeogenesis, causing glucose metabolism to 
become the primary energy production source (35, 41). In contrast, 
in the second half, the placental hormone production increases 
insulin resistance, suppressing glycolysis, elevating 
gluconeogenesis, and directing more glucose to the fetus. 
Simultaneously, during the catabolic phase, the liver also enhances 
fatty acid beta-oxidation (lipolysis) (41). Despite high glucose and 
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fat levels at this stage, most pregnancies have normal glucose 
ranges due to the maternal pancreas production and secretion of 
more insulin (42).

In summary, in the final stretch of a normal pregnancy, the 
maternal system overcomes insulin resistance and reaches glucose 
homeostasis by elevating the amounts of plasma insulin (43). However, 
in some cases, severe insulin resistance causes impaired pancreatic 
beta cells, leading to GDM (40, 44–47). Kim et al. (48) suggested that 
pancreatic beta cells increase insulin secretion in response to specific 
hormonal and metabolic signals to maintain facilitated anabolism.

Furthermore, there are not only physiological or anatomical 
processes in gestational diabetes but also changes at the cellular level 
involving pathways specifically related to the production of molecules 
that lead to insulin resistance or hypoglycemia, such as ketone bodies, 
oxaloacetate, and glucose, among others (44).

Molecular pathways in GDM 
associated with insulin resistance

Some of the more important metabolic pathways altered in GDM, 
which coincide with the dysregulated pathways in T2DM, are 
glycolysis, beta-oxidation, and metabolism of ketone body, asparagine, 
and one-carbon. In addition, inflammation mediated by the Toll-like 
receptor 4/Nuclear factor kappa B (TLR4/NF-κB) signaling pathway 
is essential in GDM development.

Glycolysis, beta-oxidation, ketone bodies, 
and asparagine metabolic pathways

In the human body, when insulin binds to its receptor (IRe), 
insulin receptor substrate (IRS-1 and IRS-2) is activated by 
phosphorylation. Phosphorylated IRSs activate two intracellular 
pathways: (1) the mitogen-activated kinase (MAPK) cascade, which 
promotes the expression of several proteins, including glucose 
transporter 1 and 4 (GLUT1 and GLUT4). (2) the phosphatidyl-
inositol 3-kinase (PI3K) which enhances the GLUT vesicles 
translocation to the plasma membrane. Importantly, GLUT proteins 
are responsible of the glucose transport into the cells (49, 50).

Otherwise, during a healthy pregnancy, the increase in plasma 
fatty acids concentration causes a decrease in intracellular glucose 
levels, indicating that fatty acids disrupt insulin-induced glucose 
transport activity. These changes were related with PI3K activity 
reduction and decreased tyrosine phosphorylation of IRS-1 (51).

Thus, due to the increment of plasma fatty acid levels, it is 
necessary to regulate their metabolism. Several studies have 
established that a higher discharge of fatty acids into the mother’s 
bloodstream leads to increased carnitine use, reducing its 
concentration in the circulation (52, 53). Carnitine is an indispensable 
metabolite in energy production because transports fatty acids into 
the mitochondria for beta-oxidation and subsequent ketone bodies 
formation or Adenosine triphosphate (ATP) generation through the 
tricarboxylic acid (TCA) cycle (54). In addition, reduced levels of 
carnitine also could be produced by increased uptake of carnitine 
from the maternal bloodstream to the placenta for normal fetal 
development (55, 56). Huo et  al. and Dudzik et  al. indicated that 
serum carnitine concentration was reduced in pregnancies with 

GDM, hence, carnitine deficiency may lead to impaired lipolysis 
(57–60).

Moreover, fatty acids transport into the mitochondria is carried 
out by three proteins: carnitine-acylcarnitine translocase (CACT), 
carnitine palmitoyltransferase I and II (CPT I and CPT II). CPT I uses 
free carnitine from the cell to convert acyl-CoA into acylcarnitine. The 
acylcarnitine is transported to the mitochondrial matrix by CACT, 
then, it is reconverted to acyl-CoA by CPT II. The released carnitine 
diffuses into the cytoplasm and can be reused by CPT I (61).

Concurrently, in the mitochondrial matrix of hepatocytes, the 
acetyl-CoA becomes a substrate for the ketogenesis or combines with 
oxalacetate to be metabolized in the TCA cycle. Elevated production 
of ketone bodies is caused because much of the oxaloacetate is 
converted to glucose, with a small proportion remaining to enter in 
the TCA cycle. A decrease in oxaloacetate, is a characteristic event 
during GDM (33, 60).

The elevated synthesis of ketone bodies is exacerbated in states of 
excessive acetyl-CoA synthesis from fatty acids. These states may 
occur due to frequent alcohol consumption, reduced carbohydrate 
intake, and insulin resistance. Several studies have associated low 
oxaloacetate availability with high levels of ketone bodies in women 
with GDM at different stages of gestation (60, 62–65).

Finally, several authors have described reduced concentrations of 
aspartate in women with gestational diabetes, which could signal the 
forced production of oxaloacetate by the cell. Additionally, 
significantly lower levels of asparagine were also found, resulting from 
a probable deficiency of oxaloacetate and aspartate. Reduced 
asparagine levels have been linked to the occurrence of T2DM in 
non-pregnant women (66). Figure  1 illustrates the alteration in 
glycolysis, beta-oxidation, and the metabolism of ketone body and 
asparagine in GDM.

One-carbon metabolic pathways

The term one carbon (1C) is used to refer to functional groups 
containing only one carbon. In this context, 1C metabolism involves 
the methionine and folate cycles and the transsulfuration pathway and 
requires many 1C units (64) (Figure 2). 1C metabolism is fundamental 
in various cellular processes, such as amino acid homeostasis, redox 
defense, and methylation reactions (67). In a healthy pregnancy, there 
are deficiencies in 1C metabolism during intrauterine fetus 
development (68, 69). However, several studies have shown that in 
women with GDM, the levels of serine, glycine, methionine, and 
histidine (1C units) decrease even more.

In the cytosol and mitochondrion, 1C units could be supplied by 
the conversion of serine to glycine, catalyzed by serine 
hydroxymethyltransferase (SHMT). The placental SHMT is 
indispensable for meeting the glycine requirements of the fetus during 
its development. Moreover, numerous studies have reported a glycine 
decrease in patients with T2DM and women with GDM (60, 67, 70).

Additionally, GDM is also related to increased oxidative stress, 
which increases glutathione biosynthesis due to the extended 
antioxidant placenta capabilities to minimize oxidative damage (71). 
Spanou et al. (72) discovered lower levels of glycine and glutamate in 
GDM women. Their study supports the hypothesis of increased 
glutathione synthesis since glycine and glutamate are its precursors. 
Furthermore, glycine is a substrate for gluconeogenesis; thus, 
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decreased glycine levels during GDM may indicate an enhanced 
activity of this process (60, 72).

During the glycine synthesis from serine, the 1C transfer produces 
5,10-methylenetetrahydrofolate (5,10-MTHF). Moreover, 5,10-MTHF 
could be  reduced to 5-methyltetrahydrofolate (5-MTHF) by the 
methylenetetrahydrofolate reductase (MTHFR). 5-MTHF is the active 
form of folate, the most common circulating form of folate, and a 
methyl donor for homocysteine remethylation to methionine.

Folic acid (FA) metabolism is part of the folate cycle. In this sense, 
the enzyme dihydrofolate reductase (DHFR) is required to catalyze 
FA’s conversion to tetrahydrofolate (THF) (73). Then, THF is 

metabolized to 5-methylTHF via the one-carbon metabolic pathway 
by methylenetetrahydrofolate reductase (MTHFR). Thus, MTHFR is 
critical in regulating folate availability (74).

On the other hand, methionine can also be used as a source of 
1C units due to its conversion to S-adenosylmethionine (SAM), a 
reactive methyl carrier implicated in a variety of cellular functions 
(75). Furthermore, methionine, threonine, and cystathionine 
metabolism can produce 2-ketobutyrate (2-KB), which can 
be metabolized to 2-hydroxybutyrate (2-HB) or 2-aminobutyrate 
(2-AB) (76, 77). 2-HB is a compound that increases during oxidative 
stress (76). Many studies have suggested that 2-HB is an indicator 

FIGURE 1

Pathways related to insulin resistance. (A,C) Glucose breaks down producing pyruvate, which serves to produce energy in the TCA. (B) Glucose 
biosynthesis occurs from oxaloacetate. (C–E) Carnitine carries fatty acids into the mitochondria to synthesize acetyl-CoA, which serves to generate 
energy in the TCA cycle or to form ketone bodies via ketogenesis. (F) TLR4 activation sets off a series of events that culminate in the activation of NF-B, 
which is responsible for the synthesis and release of proinflammatory cytokines, eventually leading to GDM. Upward arrows indicate an elevation, while 
downward arrows indicate a reduction. Different colors represent each cellular process. GLUT, Glucose Transporter; PC, Pyruvate carboxylase; PDH, 
Pyruvate dehydrogenase; PEP, Phosphoenolpyruvate; OAA, Oxaloacetate; LPS, lipopolysaccharide; TLR4, Toll-like receptor 4; IKK, IκB Kinase; NF-kB, 
Nuclear factor κB.
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of insulin resistance and defective glucose metabolism (65, 78, 79). 
Spanou et al. (72) discovered elevated levels of 2-HB and lower 
levels of 2-AB in women with GDM. These findings point to a 
predilection for the formation of 2-HB rather than 2-AB due to 
enhanced lipid oxidation and oxidative stress, which are the results 
of increased circulating free radicals or a disruption in the 
antioxidant systems (72, 80).

TLR4/NF-κB signaling pathway

Toll-like receptor 4 (TLR4) is a transmembrane glycoprotein, a 
member of the Toll-like receptor (TLR) family. TLR4 plays an essential 
role in recognizing pathogen-associated molecular patterns (PAMP) 
and activating the innate immunity response (81). Moreover, TLR4 
consists of two domains: an internal TIR (Toll-interleukin-1 receptor) 
and an external LRR (leucine-rich repeat). When a PAMP is 
recognized, TLR4 forms a complex with other proteins. This 
oligomerization leads to conformational changes, which, in turn, 

trigger the recruitment of intracellular adaptor proteins through 
protein–protein interactions (82). There are five known TIR domain-
containing adaptor proteins: MyD88 (myeloid differentiation primary 
response gene 88), TIRAP (TIR domain-containing adaptor protein), 
TRIF (TIR domain-containing adaptor inducing IFN-b), TRAM 
(TRIF-related adaptor molecule), and SARM (sterile alpha and HEAT-
Armadillo motifs-containing protein) (82–84).

TLRs use several adaptor protein combinations, each of which 
triggers a specific intracellular signaling cascade that activates the 
innate immune response (84). TLR4 stimulation promotes two 
metabolic pathways: the MyD88-dependent or the MyD88-
independent. In the MyD88-dependent pathway, MyD88 
phosphorylates and ubiquitinates multiple signaling proteins, leading 
to the activation of NF-κB and MAPKs. Subsequently, NF-κB 
translocates to the nucleus and regulates the production of 
proinflammatory cytokines, including tumor necrosis factor-alpha 
(TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) (82). In the 
MyD88-independent pathway, TRIF stimulates the transcriptional 
factor IRF3 (interferon regulatory factor 3), triggering the synthesis of 

FIGURE 2

One-carbon metabolism. GLUT, Glucose Transporter; THF, Tetrahydrofolate; 5-10-MTHF, 5,10-methylenetetrahydrofolate; 5-MTHF, 
5-methyltetrahydrofolate; MTHFR, methylenetetrahydrofolate reductase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine.
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type I interferon (IFN-I) and the activation of IFN-I-inducible genes. 
Furthermore, it activates NF-κB and MAPKs at later stages (82, 85).

The increased expression and activation of the TLR4/MyD88/
NF-kB pathway in the placenta lead to an enhanced synthesis and 
release of inflammatory cytokines and bio-mediators. This, in turn, 
may affect insulin signaling and conduce to severe insulin sensitivity 
impairment in the placentas of women with GDM (86). Figure  1 
represents the inflammation pathway in GDM.

Insulin resistance develops due to increased levels of cytokines 
and hormones that inhibit insulin signaling (87). IRS-1 and Akt are 
essential components of the PI3K insulin signaling cascade (88). An 
increase in the phosphorylation of IRS-1 serine residues disrupts 
various biological processes, including IRe function, phosphorylation 
of IRS-1 tyrosine residues, and PI3K pathway activity, resulting in 
reduced glucose absorption (89). Furthermore, Akt phosphorylation 
allows GLUT4 translocation to the plasma membrane. For instance, 
Feng et al. (86) observed that the TLR4/MyD88/NF-κB pathways were 
overexpressed in the placenta of women with GDM, suggesting a 
potential role in insulin resistance. Moreover, Mrizak et  al. (90) 
explored the role of pro-inflammatory factors in the placenta of 
women with GDM, and the results corroborate that the mRNA 
expression of the TLR4 pro-inflammatory factor increased in the 
GDM placenta.

Nutritional genomic patterns and 
molecular pathways in gestational 
diabetes mellitus

The understanding of nutritional genomics could aid the 
development of diets to avoid and treat illnesses. In this sense, lifestyle 
changes are critical in gestational diabetes management. Diet is a 
modifiable environmental factor that constitutes the first step in GDM 
treatment. A healthy diet consists of a balance of macronutrients 
(protein, carbohydrates, and fats) and micronutrients (vitamins and 
minerals) for normal physiologic functioning (91); however, dietary 
patterns differ according to cultural, individual, environmental, 
economic, familial, food availability, and other factors (92, 93).

The interaction between genes and nutrients may be essential in 
determining the phenotype associated with diseases like gestational 
diabetes (94). Several studies have revealed that dietary patterns and 
gene expression related to molecular pathways may also be risk factors 
for diabetes, especially type 2 and gestational (95–97).

In this section of our review, associations between dietary patterns 
are established, including nutrients, gene expression, and molecular 
pathways with GDM. Also, studies of T2DM are included due to 
gestational diabetes could predispose to developing diabetes type 2 
after delivery.

Carbohydrates and GDM

Several investigations suggest that pregnant women need about 
175 g of carbohydrates per day (47% of total calories) (98, 99). A study 
analyzed the effect of low-carbohydrate diet in women with GDM and 
discovered that women with less than 42% carbohydrate consumption 
had less health problems than women with more than 45% 
carbohydrate intake. Furthermore, they found that proper glycemic 

control reduced the requirement for insulin therapy, fewer cesarean 
deliveries, and less incidence of macrosomia and large-for-
gestational-age babies (100). In contrast, Radesky et al. (101) analyzed 
297 women who developed GDM and had glucose intolerance. They 
observed that nutrient intake (saturated fats, polyunsaturated fats, and 
carbohydrates) in early pregnancy showed no relationship with the 
risk of GDM (101).

On the other hand, numerous investigations have suggested that 
a diet low in carbohydrates during pregnancy may increase urinary 
ketone levels (ketonuria) (102–104). Ketonuria is caused by inefficient 
glucose utilization, and cells metabolize lipids to obtain energy. These 
ketones can cross the placenta and harm the baby’s cognitive 
development; as a result, various studies disagree on the benefits of a 
low-carbohydrate diet (102, 103, 105). However, one study explored 
46 women with GDM on a low-carbohydrate diet (approximately 
135 g/day) and found that lowering carbohydrate intake did not 
significantly increase ketones. This implies that more research on the 
relationship between diet and this condition is required to assess the 
benefits and risks (106).

Consequently, understanding carbohydrate metabolism is 
fundamental in the GDM management. In the digestive tract, 
carbohydrates ingested by the maternal diet are broken down mainly 
into glucose, which is transported into the bloodstream and used as a 
source of energy by the mother and the developing fetus through the 
placenta (107). Furthermore, blood glucose also comes from hepatic 
gluconeogenesis and glycogen metabolism. In the mother, the glucose 
is transported to pancreatic beta cells, where it enters the carboxylic 
acid cycle within the mitochondria, producing energy in the form of 
ATP. The rise in cytosolic ATP leads to insulin exocytosis (108, 109). 
Therefore, insulin plays an essential function in the control of glucose 
metabolism in the liver, muscle, and adipose cells.

In the second period of pregnancy, maternal tissue cells become 
insulin resistant to provide more glucose for fetal development (34, 
41). Insulin resistance is a natural process that is reversed after delivery 
(110). Therefore, it leads to the activation of several compensatory 
mechanisms by the maternal system to maintain glucose homeostasis 
during this stage. In a healthy gestation, the main compensatory 
mechanism is the increase of circulating insulin levels by the maternal 
pancreas (43). However, alterations in this mechanism could result in 
hyperglycemia and excessive endogenous glucose production by the 
liver (34, 44). Thus, prolonged exposure to hyperglycemia 
(glucotoxicity) may result in beta cell dysfunction and reduce insulin 
secretion, which could be permanent (111). In summary, GDM would 
be triggered by impaired pancreatic beta cell function (108, 109).

Nutrients have significant effects on beta cells (112, 113). For this 
reason, the regulation of carbohydrate intake plays an essential role in 
blood sugar level control. Glucose enters the cells through the glucose 
transport facilitator systems (GLUT), these transporters are expressed 
in all tissues of the organism, constituting the main mechanism of 
glucose entry into all cells. One of the most studied transporters is 
GLUT4 because it has an elevated affinity for glucose and is expressed 
in tissues susceptible to insulin. GLUT4 is localized in the cytoplasm 
and stored into vesicles. Then, the vesicles are translocated to the 
plasma membrane, and this process is controlled by insulin (49). In 
addition, IRS is a key modulator of insulin signal activation, which is 
essential for the transfer of GLUT4 and glucose transport (114).

Krause et al. (115) treated HepG2 cells with high concentrations 
of insulin and glucose and observed that hepatic let-7e-5p miRNA 
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expression was increased, and IRS-2 protein expression was decreased. 
The group of researchers suggested that let-7e-5p miRNA is very 
important in modulating hepatic IRS-2 expression (115).

Moreover, Ide et al. (116) evaluated the level of expression of 
SREBP-1, IRS-1, and IRS-2 in the liver of sucrose-rich diet mice. The 
authors determined increased levels of SREBP-1 and decreased 
levels of IRS-2, compared to the levels of the same proteins in fasting 
mice. They also observed that IRS-1 levels were not significantly 
altered, suggesting that SREBP-1 may regulate IRS-2 gene 
expression (116).

The specific causes of the alterations in the compensatory 
processes of the pancreatic beta cells in GDM have not been certain 
determined; however, it is likely that this failure is multifactorial and 
involves variations in genes and protein expression caused by nutrient 
overload, inducing oxidative stress, or elevated inflammation (47).

Accordingly, the intake of carbohydrate-rich foods primarily 
influences the expression of IRS and GLUT genes, which are involved 
in the glycolysis pathway.

Nutrients from fruits and vegetables in 
GDM

Fruits and vegetables are nutritionally essential in a healthy diet 
because they are rich in vitamins, minerals, and antioxidants (such as 
flavonoids, anthocyanins, and polyphenols). Their high fiber and 
antioxidant content can help reduce inflammation and prevent disease 
(117). According to the American Diabetes Association (ADA), 
women with GDM should consume 28 g of fiber, which means that 
they should eat 600 g of fruits and vegetables per day, with a minimum 
of 300 g of vegetables, focusing on fibrous and rough vegetables 
(118, 119).

Fruits and vegetables rich in vitamins, antioxidants, or FA are 
recommended during pregnancy for the baby’s development and 
healthy weight. However, some fruits contain a lot of sugar and should 
be  avoided during pregnancy. Low glycemic index fruits, such as 
cherries, prunes, grapefruit, dried apricots, raisins, peaches, apples, 
pears, strawberries, plums, guava, oranges, grapes, papaya, bananas, 
kiwi, pineapple, figs, and mangoes, are recommended to be consumed 
by diabetic pregnant women (120). The increase in blood glucose by 
high glycemic index fruits can cause inflammation, which is more 
evident in obese pregnant women (121).

A Chinese population case-control study (1,464 GDM women 
and 8,092 healthy women) examined dietary patterns and the risk of 
gestational diabetes. The vegetable dietary pattern was defined by the 
consumption of vegetables like carrots, tomatoes, Chinese greens, 
cabbage, eggplants, mushrooms, potatoes, peppers, bamboo shoots, 
agaric, garlic, and bean products. They found that eating vegetables 
reduced the risk of developing GDM by 6–9% (122). Furthermore, 
Asadi et al. (123) found a negative association with the risk of the 
GDM development, and a dietary pattern based on a higher intake of 
fruits, low-fat dairy, potatoes, eggs, poultry, fish, nuts, offal, and red 
meat. Also, a case-control study analyzed 460 pregnant women and 
discovered that a plant-based diet was correlated with a reduced risk 
of GDM (124).

Consequently, diets with an elevated consumption of vegetables 
and fruits are the most recommended for the prevention and 
treatment of GDM. Several investigations have focused on analyzing 
the compounds or active principles of fruits or vegetables to improve 

insulin resistance (125). Flavonoids, anthocyanins, polyphenols, 
among others have been tested in rat and mouse models to measure 
gene expression levels of pathways that regulate insulin resistance 
(126, 127).

Therefore, increasing the consumption of low glycemic index 
fruits but rich in antioxidants, such as flavonoids, may help to decrease 
inflammation mediated by the TLR4/NF-B signaling pathway. For 
instance, Duan et al. (128) investigated the anti-inflammatory effects 
of flavonoids in a rat model with T2DM. After 8 weeks of using 
flavonoids, they found that plasma glucose and insulin resistance 
decreased. In addition, they found that the liver inflammation of 
T2DM rats significantly improved, due to the expression of myeloid 
differentiation factor 88 (MyD88), TNF receptor-associated factor 6 
(TRAF6), toll-like receptor 4 (TLR4), an inhibitor of NF-κB alpha 
(IκΒα), p-IκΒα, and NF-κB were downregulated (128). Other studies 
found that anthocyanins reduced insulin resistance by inhibiting 
hepatic inflammation through the reduction of TLR4/NF-κB/JNK in 
liver tissues and improving oxidative stress. TLR4-mediated JNK and 
NF-κB inflammatory vias inhibit insulin signaling in the liver (129).

Moreover, Kim et al. (130) treated pancreatic beta cells (RINm5F) 
with mixtures of inflammatory cytokines, with or without flavonoids. 
As a result, the flavonoids decreased cytotoxicity in cells and mitigated 
the decrease of glucose-stimulated insulin production due to 
inhibiting the nitric oxide synthase (NOS) gene expression. Naringin, 
another bioflavonoid, was tested in rats with T2DM (caused by 
streptozotocin and a high-fat diet) for insulin resistance improvement 
and beta cell dysfunction. The authors found that naringin improves 
insulin resistance by regulating oxidative stress, inflammatory 
processes, and upregulation of peroxisome proliferator-activated 
receptor gamma (PPARγ) and heat shock protein-27 and 72 (131).

Similarly, other studies have been conducted with the polyphenol 
epigallocatechin gallate (EGCG) to evaluate its antioxidant and 
protective properties on pancreatic beta cells. EGCG can be found in 
fruits, vegetables, cocoa-based products, and green teas (132). Zhang 
et al. (133) evaluated the effects of EGCG on beta cells by exposing 
insulin-producing cell lines, with and without EGCG pretreatment, to 
a combination of citokines like interleukins and among others. The 
researchers found that EGCG protects against cytokines, restores 
insulin secretion, and prevents cytokine-induced iNOS 
overexpression (133).

Furthermore, another study analyzed the effect of EGCG and 
rutin. The antioxidant rutin comes from the triffid of buckwheat 
(Fagopyrum esculentum) and has been studied in diabetic rat models 
due to its ability to decrease blood glucose levels. The investigation 
group found that Rutin and EGCG have anti-diabetic benefits by 
providing pancreatic beta cell protection in rats by attenuating the 
glucotoxicity effects through activation of AMPK to inhibit NF-κB-
induced inflammatory responses (134).

These studies show that a diet rich in vegetables and fruits can 
be used for the GDM management, due to the relationship between 
antioxidants present in these, gene expression, and reduction of 
inflammation (induced by the activation of the TLR4/
NF-κB pathways).

Fats in GDM

According to the ADA, pregnant women’s diets should be low in 
saturated fats (128). Meanwhile, the Institute of Medicine recommends 
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that 25-40% of energy come from fats (135). A study of 1,698 pregnant 
women’s dietary intake found a correlation between an risen fat 
consumption and the development of glucose imbalances during the 
second trimester of pregnancy (136). Consequently, high-fat 
consumption should be avoided in GDM because it is associated with 
infantile adiposity, maternal inflammation, and placental 
dysfunction (119).

However, some fats play a vital function in the growth and 
development of a baby throughout pregnancy. For instance, 
unsaturated fats like polyunsaturated fatty acids (PUFAs) are a type of 
healthy fats found in fish oils, vegetable oils, and some nuts. Pregnant 
women should consume a minimum of 350 g of fish per week, of 
which 200 g should be  fatty fish (anchovies, black cod, salmon, 
sardines, bluefin tuna, and others) (119, 137, 138).

An investigation discovered a correlation between saturated and 
polyunsaturated fats consumption, and gestational diabetes in patients 
with and without risk factors (older, shorter in stature, significantly 
higher BMI before pregnancy, and a high percentage of diabetic first-
degree relatives). They found an increased risk of developing GDM 
when consuming saturated fats (139).

Thus, controlling fat intake is fundamental in the GDM 
management. Fatty acid metabolism is mediated by beta-oxidation 
and ketogenesis and may have effects on gene expression in pancreatic 
beta cells and other cells (140). A study established that CPT I activity 
is key in the control of fatty acid oxidation (141). Bruce et al. (142) 
concluded that increased CPT I expression promotes beta-oxidation 
of fatty acids, ameliorating the effect of high-fat diet-induced 
insulin resistance.

Another study in healthy mice evaluated CREB3L3, PPARα, CPT 
I, and BDH1 genes due to their essential role in regulating fatty acid 
oxidation, fatty acid transport and ketogenesis. Nakagawa et al. (143) 
analyzed mice on a ketogenic diet and found that Creb3l3−/− mice 
exhibited reduced expression in fat oxidation and ketogenesis genes 
such as CPT I and BDH1 (D-β-hydroxybutyrate dehydrogenase). 
Thus, they found that reduced expression of CPT I in the liver of 
Creb3l3−/− mice inhibited fatty acid transport into mitochondria and 
suppressed fatty acid oxidation. Moreover, BDH1, a ketogenesis gene 
that together with HMGCS2 and HMGCL enzymes, transforms 
acetyl-CoA to β-OH butyrate, was up-regulated by CREB3L3, altering 
the ketogenesis. Finally, they found in Pparα−/− mice a decrease in the 
oxidation of other fatty acids, suggesting that CREB3L3 cooperates 
with PPARα, directly and indirectly, by modulating the expression of 
genes involved in the metabolism of fatty acids and ketogenesis (143).

Besides, Radler et  al. (144) studied the PPAR pathways and 
determined that consumption of PUFAs, polyphenols, and L-carnitine 
increased the amount of peroxisome proliferator-activated receptor 
(PPARα) mRNA and its target genes (CPT I, carnitine acetyltransferase 
and organic cation transporter 2) were also upregulated in cells of the 
peripheral blood.

Consequently, carnitine, PUFAs, antioxidants, and polyphenols 
could help to reduce the deposition of partially degraded long-chain 
fatty acids and be useful in GDM treatment and prevention.

Discussion

Gestational diabetes is one of the most prevalent medical issues 
during gestation, and its associated conditions can further complicate 

the disease, including the offspring’s health. Different studies have 
found a correlation between gestational diabetes and insulin 
resistance. Ryan and collaborators investigated the mechanisms of 
insulin resistance by measuring glucose infusion rates in non-pregnant 
(213 ± 11 mg/m2 • min), pregnant without GDM (143 ± 23 mg/m2 • 
min), and pregnant with GDM (57 ± 18 mg/m2 • min). They found that 
pregnant women with gestational diabetes had more evident insulin 
resistance (145).

Another study analyzed pregnant women with GDM and the 
presence or absence of insulin resistance. They found that all women 
showed impaired pancreatic beta cell function. Moreover, they 
observed that GDM with increased insulin resistance has an elevated 
risk of adverse pregnancy outcomes and complications like 
hyperglycemia, elevated BMI, blood sugar, and lipid levels (146).

The ADA recommends that women with gestational diabetes 
have access an individualized nutrition plan to avoid the 
complications caused by insulin resistance. The diet recommended 
should include a balance of micronutrients and macronutrients to 
maintain fetal growth while limiting postprandial glucose excursions 
and maintaining normal gestational weight (17, 119). However, 
different studies contradict each other regarding the intake 
percentages of each macronutrient or micronutrient; but some of 
them agree that the diet should have an increased intake of fruits, 
vegetables, and fish and a reduction to a minimum of processed 
foods, artificial sweeteners, sugary drinks, sweets, and high glycemic 
index foods (136, 147, 148). He et al. (97) studied the correlation 
between different dietary patterns and GDM development. They 
found that the vegetable diet pattern was associated with a lower risk 
of gestational diabetes while the sweets and seafood diet pattern was 
correlated with a higher incidence of GDM, concluding that the 
vegetable diet pattern had a more evident protective effect in women 
with a familial diabetes (97).

Furthermore, a healthy diet before pregnancy may help to prevent 
GDM and IR. A study monitored the diet of pregnant women 1 year 
before pregnancy. They discovered that the Mediterranean diet, high 
in vegetables, fruits, cereals, legumes, fish, dairy products, and lesser 
extent meat, had a protective effect against gestational diabetes (149).

On the other hand, different research groups evaluated the 
correlation between ingested nutrients and gene expression in 
different tissues and cells. As a result, they have found that gene 
expression changes, disrupt physiological cell mechanisms and 
increase or reduce GDM risk. In addition, the use of cell lines or 
mouse models has facilitated the investigation of gene expression and 
diet-induced beta cell dysfunction (150, 151). For example, Koloverou 
et  al. (152) found that the Mediterranean diet is high in anti-
inflammatory compounds. Mediterranean diet has an anti-diabetic 
effect because attenuates the inflammatory state using multiple 
mechanisms, such as the reduction of oxidative stress and the 
regulation of NF-κB and PPARγ pathways.

Other studies have evaluated low-fat plant foods such as curcuma 
and soy. These foods were studied for their antioxidant properties 
because they may also help regulate gene expression in beta-oxidation. 
Lone et al. (153) demonstrated that curcumin produced by curcuma, 
upregulates CPT I  expression in brown adipocytes. Likewise, 
Meléndez-Salcido et al. (154) established that curcumin induces CPT 
I  overexpression in cardiac tissue. Another study concluded that 
physical training and soy protein intake play a fundamental role in the 
induction of PPAR pathways, leading to increased CPT I enzyme 
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activity and also increased mRNA levels of CPT I and other enzymes 
involved in lipid oxidation in muscle (155).

Also, several studies have established that excess lipids cause or 
worsen insulin resistance through multiple mechanisms (156). 
Ringseis et al. (157) discovered that a significant amount of partially 
metabolized fatty acids in muscle caused mitochondrial stress, 
inhibiting both insulin signaling and glucose metabolism. Moreover, 
high-fat diet studies found variations in the expression of other 
genes. For instance, Qiu et al. (158) analyzed normal and T2DM 
mice induced by a high-fat diet. They found that REG1, REG2, and 
GSHPX1 were differentially expressed in the pancreas of normal 
mice and mice with diabetes. In the diabetic mouse model, 
up-regulation of the three proteins increased pancreatic beta cell 
proliferation and insulin production (158). Another altered protein 
in pancreatic cells is WNT4, reported by Kurita et al. (159). They 
evaluated mice with a diet rich in fats and sucrose and discovered 
over-expression of WNT4 in beta cells, which resulted in enhanced 
glucose-induced insulin production and reduced beta cell 
proliferation (159).

Other investigations have been focused on the gene expression 
that could alter the pancreatic beta cell function. For instance, Hall 
and collaborators evaluated the effect of elevated glucose 
concentrations on gene expression in human pancreatic islet cells. The 
researchers exposed cells to a high glucose level (19 mM) and a control 
concentration (5.6 mM). After 48 h, they determined that exposure to 
19 mM glucose significantly altered the expression of SLCO5A1, 
RASD1, SYT16, GLRA1, TMED3, VAC14, CHRNA5, and LEPREL2 
genes (160).

Liu et al. (161) determined the effects of glucotoxicity on gene 
expression in pancreatic islet microvascular endothelial cells (IMECs) 
by treating them with 5.6 mmol L-1 glucose (control group), 
35 mmol L-1 glucose (glucotoxicity), and 35 mmol L-1 glucose plus 
10-8 mol L-1 insulin. The study group determined that glucotoxicity 
resulted in the differential expression of 1,574 mRNAs compared to 
the control and 2,870 mRNAs relative to the insulin-treated group. In 
addition, they also identified that these deregulated genes played roles 
in the regulation of proliferation, apoptosis, adhesion, migration, and 
metabolic activities (161).

While alterations at the mRNA level can affect a variety of cellular 
and molecular processes, there are compensatory mechanisms at the 
translational level that allow dynamic regulation of gene expression in 
response to changes in the cellular environment, intracellular signals, 
and adaptation to various stressors (162, 163).

Furthermore, Nakane et al. (164) used rat insulinoma INS-1 cells 
as a model of pancreatic glucotoxicity and treated them with 11.2 mM 
and 22.4 mM glucose for 7 days. The scientists found that insulin gene 
expression increases with 11.2 mM of glucose and decreases with 
22.4 mM. Additionally, they also determined that the expression of 
protein kinase CPG16 increased, pointing to its importance in 
suppressing insulin gene expression in pancreatic beta cells under 
cytotoxicity (164).

Impaired lipolysis and glucose homeostasis could be controlled by 
nutrients obtained from the diet, thus preventing the development of 
GDM. However, several studies have established the need for 
nutritional supplement consumption, such as folic acid, because they 
are difficult to obtain from the diet alone. Furthermore, supplements 
could also influence gene expression (165, 166).

The Centers for Disease Control and Prevention (CDC) suggests 
that women of reproductive age who plan to become pregnant 
consume at least 400 ug of folic acid per day. A woman can obtain the 
folate needed for pregnancy by following a balanced diet rich in 
natural folate or taking vitamins containing folic acid (165). Folic acid 
prevents neural tube defects, and many studies have established 
recommendations for FA supplementation before and during 
pregnancy (167). However, excessive intake may be associated with 
the development of GDM (168–170). Researchers evaluated folic acid 
as a dietary supplement in pregnant mice and rats and found that high 
doses of FA (40 mg/kg) during gestation caused glucose intolerance 
and insulin resistance (171, 172). Moreover, Reynolds (173) and Kelly 
et  al. (174) found that doses larger than 260-280 g of FA lead to 
circulating unmetabolized folic acid (uFA) as a result of DHFR 
capacity saturation. High intake of FA during the periconceptional 
period (approximately 1,000 μg/day) results in elevated uFA levels in 
pregnancy (173, 174).

Several studies have also suggested that excess FA causes 
inhibition of folate-dependent pathways, promoting the thymidylate 
synthase (TS) process rather than the methionine synthase (MTR) 
cycle. MTR activity is directly proportional to vitamin B12 availability 
and is necessary to support homocysteine remethylation processes 
(175). Koseki et al. (176) and Ortbauer et al. (177) demonstrated that 
elevated FA content in C. elegans causes a decrease in the expression 
of methylenetetrahydrofolate reductase (MTHF-1), methionine 
synthase (METR-1) and methionine synthase reductase (MTRR-1); 
and an increase in TS expression. Elucidating the mechanism by 
which the organism favors TS activity over MTR activity is essential 
because many investigations have proposed elevated folate and 
reduced vitamin B12 interaction during gestational diabetes 
(176, 177).

In addition, studies in mice have suggested that high dietary FA 
intake induces a functional alteration in MTHFR. Bahous et al. (178) 
determined that a FA intake 10 times higher than recommended could 
reduce the concentration of MTHFR protein in the liver of pregnant 
mice. Additionally, the same study indicates that a FA intake 5 times 
higher than recommended may decrease the amount and activity of 
MTFR protein in the maternal liver (178).

Regarding iron supplementation for preventing anemia during 
pregnancy, several studies have raised concerns about a potential 
association between high iron levels and an increased risk of 
gestational diabetes (179, 180). However, contradictory findings have 
been reported, with some researchers finding no adverse effects of iron 
supplementation on pregnant women (181, 182). Nevertheless, it is 
crucial to monitor iron levels before considering it as a supplement 
due to its potential impact on glucose metabolism and insulin 
resistance (183).

On the other hand, probiotics have also shown potential benefits 
for glycemic control in women with GDM. A meta-analysis indicated 
that probiotic supplementation can improve blood sugar levels and 
positively influence other metabolic parameters, including insulin 
sensitivity and lipid profiles (184). However, further research is needed 
to fully understand the mechanisms underlying these effects and to 
determine the most effective probiotic strains and dosages for 
GDM treatment.

GDM is a complex disease in which the patient’s genetic 
background and environment must be considered. Without a doubt, 
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balanced nutrition may be  beneficial in GDM management; in 
addition, knowing the genes related to GDM and determining what 
kind of food can positively interact with them and be helpful in the 
treatment and management of this disease. In this review, we show 
several studies that pointed to the interaction of the active ingredients 
of certain foods with genes related to glucose and fatty acid 
metabolism, oxidative stress, and control of insulin secretion, among 
others. Most of these studies have determined a change in the 
expression level of these genes.

In conclusion, our review supports that the relationship between 
nutrients and gene expression could alter metabolic pathways that 
trigger insulin resistance in GDM. Thus, nutritional advice and 
physical exercise are critical for improving the health of mothers and 
their babies, especially for women who are overweight or have other 
associated risks for gestational diabetes mellitus.
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