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apoptotic signaling
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Introduction: Bisphenol F (BPF) has been shown to disrupt testicular functions

via perturbation of testicular redox balance, while omega-3 fatty acid (O3FA) has

been established to exert antioxidant and anti-inflammatory activities. Therefore,

this study focused on the role and associated molecular mechanism of O3FA in

BPF-induced testicular dysfunction in male Wistar rats.

Methods: Twenty-four (24) rats were randomly grouped after two weeks of

acclimatization into four (4) groups (n=6/group); the vehicle-treated control

group, BPF treated group received 30 mg/kg of BPF, and the intervention groups

received 30 mg/kg BPF + 100 mg/kg O3FA (BPF+O3FA-L) and 30 mg/kg BPF +

300 mg/kg of O3FA (BPF+O3FA-H). All treatment lasted for 28 days.

Results: Low and high doses of O3FA ameliorated BPF-impaired sperm quality,

and induced hormonal imbalance, accompanied by a distortion in testicular

histology and elevated testicular injury markers. Furthermore, co-administration

of BPF with both doses of O3FA blunted BPF-induced redox imbalance,

inflammatory response, and apoptosis.

Discussions: In conclusion, our present findings show that O3FA improves

testicular functions in BPF-treated rats by improving sperm quality and

reproductive hormones via the maintenance of testicular redox balance.

KEYWORDS

omega-3 fatty acid, bisphenol F, bisphenol analogs, endocrine disruptors, testicular
functions, apoptosis
1 Introduction

Plastics and cans are used in almost every facet of daily life. They are utilized in

transportation, telecommunications, clothes, footwear, and, most importantly, as

packaging materials for various foods, beverages, and other commodities. Numerous

researches have been conducted on various elements of plastics and cans, particularly
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their environmental effects and risks to natural environments,

wildlife, and, most significantly, human health. One of the major

raw materials in the production of plastics and cans is bisphenol A

(BPA) (1).

BPA is ubiquitous in the environment, resulting in high rate of

human exposure to this chemical. The concern of widespread

exposure and established adverse effects on human health has led

to strict restrictions on the production and usage of BPA in Canada,

France, and the European Union in 2008, 2010, and 2011

respectively (2). This consequently led to the introduction of

alternative substitutes for BPA. As the focus has switched to

producing “BPA-free” products, bisphenol F (BPF) has become

the major replacement for BPA. It is now widely used to produce

everyday consumer products such as plastics, cans, thermal papers,

and inner linings of food containers, infant bottles, and toys.

Unfortunately, BPF, which is expected to be a safer alternative to

BPA, displays a similar gonadotoxic effect to BPA. BPF is gradually

becoming a ubiquitous chemical, and investigations have revealed

that BPF may harm the reproductive system (3–5). BPF exposure

has been implicated in the increased production of free radicals

(oxidative stress) and pro-inflammatory cytokines (4, 6, 7), which is

a major cause of testicular toxicity.

Nuclear Factor Erythroid Related Factor 2 (Nrf2) and Nuclear

Factor-Kappa B (NFkB) are key regulators of the body’s response
to oxidative stress and inflammatory response (8). During

excessive and continuous exposure to external stresses, the body

produces excess free radicals and reactive oxygen species (ROS),

leading to the downregulation of endogenous antioxidants,

enzymes, and proteins, thereby damaging the body’s cellular

components such as proteins, DNA, and lipids (9). Nrf2 is a

major endogenous antioxidant controlling various aspects of

cellular homeostasis in response to oxidative stress (10). The

decline in Nrf2 due to external stressors can upregulate NFkB
expression, leading to an inflammatory response. Also, the

increase in NFkB expression can also lead to a further decrease

in Nrf2. Hence, Nrf2 and NFkB are important players in the

crosstalk between oxidative stress and inflammation (11). The

excessive decrease in the endogenous antioxidant system and

increased inflammatory response can possibly trigger an

apoptotic response (12). On the other hand, supplementation of

exogenous antioxidants can target oxidative stress by inhibiting

the production of free radicals and ROS and bolstering the

endogenous antioxidant capacity.

Omega-3 fatty acid (O3FA) is a polyunsaturated fatty acid

(PUFA) and an antioxidant with favorable effects against various

diseases such as cardiovascular disorder (13) and reproductive

dysfunction (14). O3FA can protect organs such as the testis via its

antioxidant (15), anti-inflammatory, and antiapoptotic (14)

properties. These data suggest that O3FA could be a promising

cytoprotective agent against extrinsic toxic stimuli. Despite these

established protective functions of O3FA, no study has

investigated the effectiveness of O3FA on testicular dysfunction

in BPF-induced reproductive toxicity. Hence, this study was

designed to investigate the ameliorative effect of O3FA on BPF-

induced gonadotoxicity.
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2 Methods

2.1 Chemical

O3FA was purchased from Gujarat Liqui Pharmacaps Pvt. Ltd.

Vadodara, Gujarat, India, and each O3FA capsule contains

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in

the ratio of 3:2. BPF was purchased from Sigma-Aldrich, St. Louis,

MO, USA, CAS: 620-92-8. All other chemicals except otherwise

stated were purchased from Sigma Aldrich.
2.2 Animals

Twenty-four (24) male Wistar rats of age 10 ± 2 weeks with

comparable weights (160-180 g) were obtained from the University of

Ilorin. The animals were randomly separated into clean wooden cages

under natural conditions and were allowed unlimited free access to

feed and water ad’libitum. The designed experimental protocol was

approved by the University of Ilorin Review and Ethical Committee,

and in accordance with the “National Institute of Health guidelines

using the guide for the care and handling of laboratory animals (NIH

Publication No. 80–23; amended 1978)”. The experimental protocol

was under theNational ResearchCouncil’s guidelines for the Care and

Use of Laboratory Animals, and ARRIVE guidelines for reporting

experimentalfindingswere followed.Animalswere randomlygrouped

after two weeks of acclimatization into four (4) groups (n=6/group);

the vehicle-treatedcontrol group,BPF treatedgroupreceived30mg/kg

of BPF, and the intervention groups received 30mg/kg BPF + 100mg/

kg O3FA (BPF+O3FA-L) and 30 mg/kg BPF + 300 mg/kg of O3FA

(BPF+O3FA-H).
2.3 Sample collection

The dose of BPF was calculated and dissolved in corn oil, and 0.5

ml of the solution containing the appropriate calculated dose was

administered for each animal. The 28 days administrations were

carried out using an oro-pharyngeal cannula via the oral route to

mimic the main route of human exposure. Overnight fasted animals

were sacrificed 24 hours after the last dose of BPF and O3FA with

ketamine (40 mg/kg) and xylazine (4 mg/kg) i.p (16). Blood samples

were collected via cardiac puncture while the left and right testes and

left epididymides were harvested. The blood samples were centrifuged

at 3000 rpm to obtain the serum for hormonal analysis, while the left

testes were homogenized in cold Phosphate Buffer for biochemical

assays. The right testes were used for histological examination, while

the left epididymides were harvested for sperm analysis.
2.4 Epididymal sperm parameters

Each caudal epididymis was carefully cut into small pieces in a

clean petri dish and sperm count, motility, and abnormal sperm

morphology were determined as previously described (14, 17).
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2.5 Reproductive hormones

Serum luteinizing hormone (LH) (Catalogue no.: B-1-

121032301), follicle-stimulating hormone (FSH) (Catalogue no.:

B-1-121040801), testosterone (B-1- 121071602), and estradiol (B-

1-122042001) were quantified using an ELISAmethod following the

manufacturer’s guidelines (Bio-Inteco, UK).
2.6 Histology

Testicular histopathological analysis was performed based on

documented methods (14, 18). The testis was fixed in bouin

solution, dehydrated with ethanol series, and cleared with toluene.

It was then embedded at room temperature of 37°C and blocked in

paraffin wax incubated overnight in a 60°C incubator. Afterward,

hematoxylin and eosin (H&E) stain was applied to the testes’ 5 µm

thick paraffin sections.

Testicular histoarchitecture was determined as established by

Cosentino et al. (19) scoring system as follows:

“4: Irregular and distorted seminiferous tubules engorged by

coagulative necrosis in the germ cells.

3: Disordered and sloughed germ cells with shrunken and

pyknotic nuclei and impaired borders of the seminiferous tubules.

2: Loss of cohesion in germ cells , closely packed

seminiferous tubules.

1: Normal testicular tissue with an orderly arrangement of

germ cells”.

The Mean testicular biopsy score (MTBS), which is an index of

spermatogenesis, was determined at 400 X microscopic field as

earlier established by Johnsen (20) scoring system as follows:

“10: Complete spermatogenesis with many spermatozoa.

9: Many spermatozoa present but disorganized germinal epithelium.

8: Only a few spermatozoa (<5–10) are present.

7: No spermatozoa but many spermatids present.

6: No spermatozoa and only a few spermatids (<5–10) present.

5: No spermatozoa or spermatids but several or many

spermatocytes present.

4: Only a few spermatocytes (<5) and no spermatids or

spermatozoa present.

3: Spermatogonia are the only germ cells present.

2: No germ cells, but Sertoli cells are present.

1: No cells (either germ cell or Sertoli cell) in the tubular section”

Mean seminiferous tubular and luminal diameter and epithelial

height were estimated as reported earlier (14, 21, 22). “Mean

Seminiferous Tubular Diameter (MSTD) of each testis was

determined by measuring 20 separate roundest seminiferous

tubules with a light microscope-adaptable micrometer. The mean

of the values obtained was regarded as the MSTD of the testis.
2.7 Testicular injury markers

Gamma-glutamyl transferase (GGT) activities were estimated

according to the manufacturer’s instructions (Agape Diagnostics

Ltd., CAT: 31070095), while Lactate dehydrogenase activities were
Frontiers in Endocrinology 03
also determined following the manufacturer’s instructions (Agape

Diagnostics Ltd., CAT: 31060230) using a spectrophotometer. The

testicular lactate concentration was also estimated according to the

manufacturer’s guidelines (EnzyChrom, ELAC-100).
2.8 Steroidogenic enzymes

Testicular 3 beta-hydroxysteroid (3b-HSD) and 17 beta-

hydroxysteroid (17 b-HSD) enzymatic activities were determined

as previously documented (23) and (24) respectively.
2.9 Inflammatory markers

Standard ELISA kits were used to assay the concentrations of

interleukin-6 (IL-6) (Solarbio, China, CAT: SEKH-0013) and

tumour necrosis factor-a (TNF- a) (Solarbio, China, CAT:

SEKH-0047), NFkB (Elabscience Biotechnology Inc., USA, CAT:

E-EL-R0673) were determined using ELISA kits. Testicular

Myeloperoxidase (MPO) and nitric oxide were determined based

on established methods (25) and (26), respectively.
2.10 Markers of oxidative stress

Testicular malondialdehyde (MDA) (27) levels were assayed as

previously reported. In addition, testicular glutathione (GSH),

glutathione peroxidase (GPx), Glutathione-S-transferase (GST),

superoxide dismutase (SOD), and catalase (CAT) (10, 14, 28)

activities were assayed by colorimetric methods as previously

reported. In addition, testicular Nrf2 was determined using an

ELISA method according to the manufacturer’s guidelines

(Elabscience Biotechnology Inc., USA). Testicular xanthine

oxidase (XO) activities were based on a previously established

method (22, 29).
2.11 Apoptotic markers

A spectrophotometric assay using diphenylamine (DPA)

methods (14, 22) was employed in estimating the DNA

fragmentation index, while testicular caspase 3 activities were

estimated according to the manufacturer ’s instructions

(Elabscience Biotechnology Co., Ltd., USA).
2.12 Statistical analysis

Graph Pad Prism, version 7.00, was used for statistical analysis.

To analyze data from various groups, one-way analysis of variance

(ANOVA) was employed, followed by Tukey’s post hoc test for

multiple comparisons. Data are presented as the mean ± standard

error of the mean (SEM). P < 0.05 was considered

statistically significant.
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3 Results

3.1 Epididymal sperm parameters

O3FA ameliorated the BPF-induced decrease in sperm count,

motility, and normal morphology compared with the control

(Table 1). While there was no significant difference in abnormal

sperm morphology and motility of rats treated with low and high

doses of O3FA, animals treated with high doses of O3FA showed an

improved sperm count compared with their counterparts treated

with a low dose.
3.2 Hormonal imbalance

As shown in Table 2, O3FA blunted the observed BPF-induced

hormonal imbalance by significantly increasing serum LH

(p<0.0001), FSH (p<0.0001), and testosterone (p<0.0001) and

decreasing serum estradiol (p<0.0001) in BPF-exposed rats.

Although low and high doses of O3FA significantly blunted the

was observed BPF-induced hormonal imbalance, a more

ameliorative effect was observed in animals treated with a high

dose than their counterparts treated with a low dose.
3.3 Histopathological findings

As shown in Figure 1, BPF distorted the normal testicular

histology, evidenced by a distorted histoarchitecture, scanty

sperm cells in the lumen of the seminiferous tubule, and reduced

Sertoli cells and Leydig cell mass compared with the control. This

was accompanied by an increase in testicular histoarchitecture and

seminiferous luminal diameter and a decrease in biopsy score,

epithelial height, and seminiferous tubular diameter (Table 3).
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These observed alterations were ameliorated by co-administration

of BPF with both doses of O3FA.
3.4 Testicular injury markers

BPF exposure led to a significant increase in testicular LDH

(p<0.0001), GGT (p<0.001), and lactate (p<0.0001) and a decrease

in testicular SDH (Figure 2) compared with the control. In contrast,

co-administration of BPF with low and high doses of O3FA

prevented the observed alterations in testicular injury

markers activities.
3.5 Steroidogenic enzymes

BPF administration led to a significant decrease in 3b-HSD

(p<0.001) and 17b-HSD (p<0.001) compared with the animals in

the control group (Figure 3). This observed decrease was

ameliorated by the co-administration of BPF with both doses of

O3FA. Although both doses of O3FA blunted the observed

decrease, the animals treated with high doses exhibited better

ameliorative effects than their counterpart treated with low doses.
3.6 Inflammatory markers

Testicular IL-6 (p<0.0001), TnF-a (p<0.001), MPO (p<0.001),

NO (p<0.001), NFkB (p<0.0001), and XO (p<0.001) were

significantly increased in the animals treated with BPF alone

compared with their counterparts in the control group (Figure 4).

The observed increase was abolished by low and high-dose

treatment of O3FA. The ameliorative effect of O3FA was more

pronounced in animals treated with a high dose except in testicular
TABLE 1 Effect of BPF on sperm parameters.

Parameters Control BPF O3FA-L O3FA-H

Sperm Count (x106/ml) 9.760±0.143 6.300±0.148a 9.080±0.097a,b 9.640±0.093b,c

Motility (%) 86.00±0.548 63.40±0.510a 83.40±1.939b 86.00±1.095b

Abnormal Sperm Morphology (%) 79.578±1.047 49.895±1.894a 64.895±1.904a,b 68.904±1.894a,b
ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05 versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison.
BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low dose; O3FA-H, omega-3 fatty acid high dose.
TABLE 2 Effect of BPF on reproductive hormones.

Parameters Control BPF O3FA-L O3FA-H

Serum LH (mIU/mL) 6.125±0.129 2.500±0.321 a 4.313±0.449 a,b 5.806±0.374a,b,c

Serum FSH (mIU/mL) 4.123±0.0648 2.677±0.149 a 3.457±0.236 a,b 4.046±0.179 b,c

Serum Testosterone (ng/mL) 2.29±0.083 1.229±0.068 a 2.078±0.069 a,b 2.150±0.100 a,b,c

Serum Estradiol (pg/mL) 4.541±0.130 6.998±0.155 a 4.889±0.138 a,b 4.956±0.149 a,b
ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05 versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison.
BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low dose; O3FA-H, omega-3 fatty acid high dose; LH, Luteinizing hormone; FSH, Follicle stimulating hormone.
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MPO, where there was no significant difference between animals in

the BPF+O3FA-L and BPF+O3FA-H group.
3.7 Oxidative stress markers

As shown in Figure 5, BPF exposure led to a significant increase

in testicular MDA and a decrease in CAT (p<0.0001), SOD

(p<0.0001), GSH (p<0.001), GST (p<0.001), GPx (p<0.001), and

Nrf2 (p<0.0001) compared with the control. This observed increase

in testicular pro-oxidant and decrease in testicular antioxidants was
Frontiers in Endocrinology 05
blunted by co-administration of BPF with low and high doses

of O3FA.
3.8 Apoptotic markers

Bisphenol F administration significantly increased DFI

(p<0.001) and caspase 3 (p<0.0001) activities compared with the

control group (Figure 6). These observed increases in apoptotic

markers were ameliorated by the co-administration of BPF and low

and high doses of O3FA.
FIGURE 1

Cntrl: The testicular histoarchitecture appears preserved. The seminiferous tubules are normal with germ cells at varying degree of maturation
(arrow head). The lumen of the seminiferous tubules shows normal sperm cells (black circle). The Sertoli cells appear normal (red arrow). The
interstitial space appears normal with normal Leydig cell mass (black arrow). BPF: The testicular histoarchitecture appears distorted. The
seminiferous tubules show germ cells at varying degree of maturation (arrow head). The lumen of the seminiferous tubules shows scanty sperm cells
(black circle). The Sertoli cells appear reduced (red arrow). The interstitial space appears normal with reduced leydig cell mass (black arrow). BPF
+O3FA-L and BPF+O3FA-H: The testicular histoarchitecture appears preserved. The seminiferous tubules are normal with germ cells at varying
degree of maturation (arrow head). The lumen of the seminiferous tubules shows normal sperm cells (black circle). The Sertoli cells appear normal
(red arrow). The interstitial space appears normal with normal leydig cell mass (black arrow). Black span: diameter of the seminiferous tubules; red
span: epithelial height; green span: diameter of the seminiferous lumen. Stain H and E; x100. BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low
dose; O3FA-H, omega-3 fatty acid high dose.
TABLE 3 Effect of BPF on testicular cytoarchitecture.

Parameters Control BPF O3FA-L O3FA-H

Testicular histoachitecture 1.333±0.211 3.500±0.224a 1.833±0.307a,b 1.500±0.224b,c

Testicular biopsy score 9.667±0.211 6.833±0.307 a 8.667±0.211a,b 9.333±0.211b,c

Epithelial Height (µm) 68.910±3.863 40.020±2.065 a 71.070±6.016a,b 73.910±2.050a,b,c

Seminiferous Tubular Diameter (µm) 324.7±10.39 189.3±7.35 a 300.3±6.30a,b 336.0±19.54a,b,c

Seminiferous Luminal Diameter (µm) 38.26±5.102 141.5±5.440 a 41.62±0.558a,b 43.36±3.518a,b,c
ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05 versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison.
BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low dose; O3FA-H, omega-3 fatty acid high dose.
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C D

A

FIGURE 2

Effect of O3FA on testicular (A) LDH (B) Lactate (C) GGT (D) SDH in BPF exposed rats. ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05 versus
BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF: Bisphenol F, O3FA-L:
omega-3 fatty acid low dose, O3FA-H, omega-3 fatty acid high dose; GGT, Gamma glutamyl transpeptidase; SDH, Sorbitol Dehydrogenase.
BA

FIGURE 3

Effect of O3FA on testicular (A) 3 b-HSD (B) 17 b-HSD in BPF exposed rats. ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05 versus BPF +
O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF, Bisphenol F; O3FA-L, omega-3
fatty acid low dose; O3FA-H, omega-3 fatty acid high dose; 3 Beta HSD, 3-Beta–hydroxysteroid dehydrogenase; 17 Beta HSD, 17-Beta
hydroxysteroid dehydrogenase.
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4 Discussion

This study showed that BPF exposure disrupted testicular

functions and induced testicular injury in male Wistar rats. BPF-

induced hormonal imbalance and impaired sperm quality were

associated with impairment in steroidogenic enzyme activities,

inflammation, and oxidative stress. The alterations were

associated with impaired testicular cytoarchitecture and increased

testicular injury markers activities. It was also accompanied by the

Nrf2/NFkB pathway distortion and upregulation of caspase 3-
Frontiers in Endocrinology 07
mediated apoptosis. Also, this study established the protective

role of O3FA in BPF-impaired sperm quality, hormonal

imbalance, and oxido-inflammatory injury via the modulation of

the Nrf2/NFkB pathway and repression of the caspase 3 pathway.

In the present study, a significant decline in sperm count,

motility, and normal morphology of rats exposed to BPF was

observed. Furthermore, there was a significant decrease in serum

testosterone which was accompanied by a decline in steroidogenic

enzyme activities, which are consistent with our previous findings

(5, 7). Different mechanisms may explain the reduced sperm quality
B

C

D

E

A

FIGURE 4

Effect of O3FA on testicular (A) IL-6 (B) TnF-a (C) MPO (D) NO (E) NFkB in BPF exposed rats. ap <0.05 versus control, bp < 0.05 versus BPF, cp < 0.05
versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF, Bisphenol F;
O3FA-L, omega-3 fatty acid low dose; O3FA-H, omega-3 fatty acid high dose; IL-6, Interleukin-6; TnF-a, Tumor necrosis factor alpha; MPO,
Myeloperoxidase; NO, Nitric Oxide; NFkB, Nuclear factor kappa-light-chain-enhancer of activated B cells.
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and circulatory testosterone. The impaired sperm parameters and

decline in serum testosterone could be associated with the direct

effect of BPF on the testicular tissue leading to male reproductive

dysfunction (30). The findings from this study showed that BPF

distorted the normal testicular histology by disrupting testicular

histoarchitecture and reducing sperm cells in the lumen of the

seminiferous tubule, which was accompanied by a distortion in

testicular histoarchitecture, mean testicular biopsy score,
Frontiers in Endocrinology 08
seminiferous tubular and luminal diameter, and epithelial height.

These suggest that BPF-impaired sperm quality via direct testicular

damage. Also, BPF-impaired sperm quality and declined

testosterone could be due to its endocrine-disrupting activities.

The findings from this study that BPF disrupted the

hypothalamic-pituitary-gonadal (HPG) axis are consistent with

the findings of 31. The HPG axis forms a closed loop, and it is

the major signaling pathway controlling reproductive hormone
B

C D

E F

G H

A

FIGURE 5

Effect of O3FA on testicular (A) MDA (B) Catalase (C) SOD (D) GSH (E) GST (F) GPx (G) Nrf2 (H) XO in BPF exposed rats. ap <0.05 versus control, bp <
0.05 versus BPF, cp < 0.05 versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise
comparison. BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low dose; O3FA-H, omega-3 fatty acid high dose; MDA, Malondialdehyde; SOD,
Superoxide dismutase; GSH, Glutathione; GST, Glutathione S-transferases; GPx, Glutathione peroxidase; Nrf2, nuclear factor erythroid 2–related
factor 2, XO: Xanthine oxidase.
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secretion (32). The hypothalamus produces gonadotropin-releasing

hormone (GnRH), which stimulates the production of LH and FSH

from the pituitary gland. LH is responsible for stimulating the synthesis

of testosterone (steroidogenesis), and FSH stimulates sperm production

(spermatogenesis) from the testis suggesting that the observed decline in

sperm quality, serum testosterone, and steroidogenic enzymes activities

could be via the endocrine disrupting activities of BPF.

Also, the findings that BPF impaired testicular functions via

direct testicular cell damage are consistent with the observed

increase in testicular injury markers. Testicular activities of LDH,

GGT, and SDH are markers of energy balance, spermatogenesis,

and Sertoli functions (16). The observed significant increase in

testicular lactate following BPF exposure indicates energy

imbalance (33) and could result from a BPF-induced increase in

the activities of LDH, which is an index of testicular degeneration.

Redox balance plays an integral role in testicular functions (34),

and a disturbance in the redox balance leads to oxidative stress.

Oxidative stress can activate various transcription factors leading to

the activation of inflammatory pathways (35–37). Antioxidant

defense systems have been identified to protect against oxidative

stress, and Nrf2 is the major transcription factor responsible for

regulating redox balance (38). Nrf2 maintained redox balance by

regulating antioxidant enzymatic activities responsible for

detoxifying and eliminating ROS. In addition to its antioxidant

activities, Nrf2 is an anti-inflammatory agent by inhibiting NF-kB
activities. NF-kB is responsible for proinflammatory gene

induction, which increases inflammatory response (39). The

observed decrease in Nrf2 following BPF exposure in this study

agrees with the findings of Zhou et al. (40), which associated BPF

exposure with decreased Nrf2 expression. This may account for the

observed increase in oxidative stress (evidenced by an increase in

testicular MDA and a decrease in CAT, SOD, GSH, GST, GPx) and

Nf-kB-mediated inflammatory response (evidenced by an increase

in testicular IL-6, TnF-a, MPO, NO, and XO).
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Furthermore, excessive ROS and inflammation collaborate to

stimulate caspase 3-mediated apoptosis (41), which is a contributing

factor to male infertility (42). Caspase-3 is a major player in apoptosis

initiation because of its involvement in receptor-mediated and the

mitochondrial pathway, which are the major apoptotic signal

transduction pathways (43). The increase in testicular caspase 3

could explain the increase in testicular DFI in this study since both

have been positively related (43). The observed increase in caspase-3

and DFI in this study is similar to the findings of Ferreira et al. (44),

which reported an increase in apoptotic markers activities following

BPF exposure. Hence, BPF impaired hormonal balance and sperm

quality by inducing oxidative stress, inflammation, and apoptosis via

the modulation of Nrf2/NF-kB signaling and caspase-3

mediated apoptosis.

Another important finding from this study is the beneficial

role of O3FA in BPF-induced testicular dysfunction. The present

study revealed that O3FA alleviated BPF-induced testicular

damage by suppressing testicular injury markers, oxidative

stress, inflammatory response, and apoptotic markers, thus

improving sperm qualities, reproductive hormones synthesis,

and test icular cytoarchi tecture . Although this s tudy

demonstrates for the first time that O3FA ameliorates BPF-

induced testicular dysfunction, these findings concurred with

previous findings that reported the antioxidant (45), anti-

inflammatory (46), and antiapoptotic (47) activities of O3FA.

The observed redox balance and decreased levels of NF-kB, IL-
6, Tnf-a, MPO, and XO in the testicular tissues of O3FA-treated

animals possibly explained O3FA-driven repression of apoptotic

markers via the upregulation of Nrf2 activities. The gonado-

protective effect of O3FA was accompanied by the restoration of

testicular histoarchitecture and function by preventing distortion

of histoarchitecture, scanty sperm cells in the lumen of the

seminiferous tubule, and reduced Leydig cell mass, and

normalization of sperm qualities and reproductive hormones.
BA

FIGURE 6

Effect of O3FA on testicular (A) DFI (B) Caspase 3 in BPF exposed rats. ap <0.05 versus control, bp < 0.05 versus BPF versus BPF + O3FA-L using one-
way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF, Bisphenol F; O3FA-L, omega-3 fatty acid low
dose; O3FA-H, omega-3 fatty acid high dose; DFI, DNA Fragmentation Index.
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5 Conclusion

The results from this study showed that O3FA co-treatment

suppressed hormonal imbalance, poor sperm quality, oxidative stress,

inflammation, and apoptosis via the modulation of Nrf2/NF-kB
signaling and caspase-3 mediated apoptosis in BPF-treated rats. These

findings suggest a possible insight into the protective molecular

mechanisms of O3FA against BPF-induced testicular dysfunction.
6 Limitations and future perspectives

The BPF-treated rats testicular histology showed reduced Sertoli

and Leydig cell count, which could result from BPF-induced

apoptosis, and the TUNEL assay would establish which of the cells

were more affected. However, this special staining was not done. This

limitation opens a grey area for future exploration. Nevertheless, the

in-depth testicular planimetry analysis and quantitative Sertoli and

Leydig cells count in this study strengthened our findings on the

distortive activities of BPF on testicular histology and cells.
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