
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Katherine Dafforn,
Macquarie University, Australia

REVIEWED BY

Paul Gribben,
University of New South Wales, Australia
Rosemary Steinberg,
University of New South Wales, Australia

*CORRESPONDENCE

Cinzia Corinaldesi

c.corinaldesi@univpm.it

RECEIVED 23 May 2023
ACCEPTED 04 September 2023

PUBLISHED 20 September 2023

CITATION

Corinaldesi C, Bianchelli S, Candela M,
Dell’Anno A, Gambi C, Rastelli E, Varrella S
and Danovaro R (2023) Microbiome-
assisted restoration of degraded marine
habitats: a new nature-based solution?
Front. Mar. Sci. 10:1227560.
doi: 10.3389/fmars.2023.1227560

COPYRIGHT

© 2023 Corinaldesi, Bianchelli, Candela,
Dell’Anno, Gambi, Rastelli, Varrella and
Danovaro. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 20 September 2023

DOI 10.3389/fmars.2023.1227560
Microbiome-assisted restoration
of degraded marine habitats:
a new nature-based solution?
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Microorganisms interact with all biological components in a variety of ways. They

contribute to increase the efficiency of marine food webs and facilitate the

adaptation of multicellular organisms to climate change and other human-

induced impacts. Increasing evidence suggests that microbiomes are essential

for the health of marine species, for maintaining productive marine ecosystems,

and thus for the sustainable functioning of the global biosphere. Marine

microbiomes are typically species- or habitat-specific and are susceptible to

environmental and human-driven changes. The microbiota of seagrasses,

macroalgae, mangroves or tropical corals benefits their hosts by increasing

their fitness, contributing to the removal of toxic compounds, conferring

protection against pathogens, and/or supporting nutrient requirements.

Alterations of the microbiomes might have negative consequences on species’

health, survival, and overall ecosystem functioning. Despite the key ecological

role of microbiomes in all ecosystems, their potential for the restoration of

degraded habitats is still largely unexplored. Here we present a literature survey

of the existing information on the microbiota associated with habitat-forming

species and suggest that the resilience/recovery of damagedmarine habitats can

depend largely on the changes in the microbiota. Nature-based solutions relying

on microbiome analyses (also through omics approaches) enable health

monitoring of transplanted organisms/metacommunities and potential

identification/production of probiotics/bio-promoters to stabilize unhealthy

conditions of transplants. In the context of international strategies concerning

ecological restoration, the use of the scientific knowledge acquired on the

marine microbiome deserves to be exploited to assist both traditional and

innovative restoration approaches. The success of habitat restoration may

depend on our ability to maintain, along with the restored species and

habitats, a functional microbiota.

KEYWORDS

marine ecosystem restoration, microbiome, corals, seagrasses, macroalgae, habitat-
forming species
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1 Introduction

Microorganisms support the existence and resilience of all life

forms (Gilbert and Neufeld, 2014). They are crucial for the

maintenance of healthy and productive marine ecosystems and

for the sustainable functioning of the global biosphere (Trevelline

et al., 2019). Microorganisms are intimately associated with

animals, plants, and algae, and contribute to their nutrition,

defence, immunity, and development (Pita et al., 2018; Stévenne

et al., 2021). The prevalence of these associations implies that

multicellular organisms can no longer be considered as individual

entities, but rather as “holobionts” (consisting of the host, the

microbiota, and the interactions among them). Consequently, the

impact of climate changes and human pressures on multicellular

organisms as well as their resilience will also depend on the

responses of their associated microbiota, which will be essential to

achieve an environmentally sustainable future (Doney et al., 2012;

McFall-Ngai et al., 2013; Petersen and Osvatic, 2018).

It is recognized that microorganisms have the potential to adapt

to climate change scenarios (e.g., global warming, ocean

acidification, oxygen depletion) and human-induced impacts (e.g.,

pollution due to chemical contaminants, eutrophication)

(Danovaro et al., 2011; Torda et al., 2017; Cavicchioli et al., 2019).

Micro-organisms, indeed, thrive in the most extreme environments

on Earth, from the coldest to warmest habitats, from the acid and

hypersaline environments to anoxic systems, even at the highest

pressures of the deep sea (Boetius et al., 2015; Dick, 2019; Manea

et al., 2019; Hiraoka et al., 2020). It has been also extensively

documented that marine microbiota can allow multicellular

organisms to thrive in extreme marine habitats by conferring

them the ability to cope with conditions incompatible with life

(Danovaro et al., 2017; Sogin et al., 2020) by regulating the

maintenance of their fitness, conferring them resistance and

resilience (Bang et al., 2018). Microorganisms can also be

sentinels of the impact of climate change and/or pollution on the

holobionts (Conte et al., 2021; Corinaldesi et al., 2022) revealing

early their health conditions (Peixoto et al., 2022).

Despite the key ecological role of microbiota in all ecosystems,

their potential for restoration actions of degraded habitats and

pollution control is still largely unexplored. Due to the rapid

decline of marine ecosystems and their associated biodiversity

(Danovaro et al., 2020; Orfanidis et al., 2021), both in coastal and

deep-sea habitats, ecological restoration actions appear to be the most

promising strategy to rebuild them (Cebrian et al., 2021; Fraschetti

et al., 2021). This practice refers to the process able to assist the

recovery of degraded, damaged, and destroyed ecosystems (Gann

et al., 2019), thus retrieving lost biodiversity and ecosystem services

(i.e., nutrient cycling, primary and secondary production,

maintenance of genetic diversity, habitat provisioning, pollution

control, carbon storage, erosion prevention). To revert the

trajectory of degradation of most ecosystems on Earth and to

accelerate the recovery of damaged ecosystems, the United Nations

has declared the Decade on “Ecosystem Restoration” 2021-2030.

The strategies and techniques for ecological restoration of

different marine habitats/ecosystems (e.g., seagrass beds,
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macroalgae forests, reef-forming corals) are mostly already

available, but these do not consider the role of the microbial

component. The International Coral Reef Society (ICRS) has

recently published a scientific policy document that underlines

the importance of “driving innovation by developing new

approaches, where current solutions are not sufficient to address

the coral reef emergency” (Knowlton, 2021). Accordingly, the

declaration of the Decade on Ecosystem Restoration by the

United Nations has sparked interest in the methods needed to

implement best practices for maximum gain.

In the present literature survey, we provide an overview of the

diversity and role of the microbiome (Berg et al., 2020) in marine

habitats/ecosystems to shed light on the importance of integrating

this component into future restoration plans. To the extent possible,

we will draw parallels with microbiome-based restoration in the

terrestrial environment, which is a much more advanced scientific

field than in the marine environment, to identify key aspects and

pathways in the recovery of degraded marine ecosystems. In this

regard, the use of microbial inoculants and microbiome engineering

will be addressed, emphasizing the challenges and pitfalls of these

practices in the marine environment.
2 Microbiome-based restoration of
marine ecosystems: lessons learnt
from terrestrial ecosystems

Ecological restoration in the marine environment is certainly a

much younger field of scientific application than the terrestrial one

(Saunders et al., 2020). In terrestrial ecosystems, it has been

reported that the success of ecological restoration largely depends

on soil microbial assemblages that degrade plant-associated organic

substances, thus improving the physicochemical characteristics of

the soil (Trivedi et al., 2013; Calderón et al., 2017). In addition,

plant-associated microbes (e.g., the rhizosphere and endophytic

microbiomes) provide nutrients, minerals, and vitamins and protect

plants against biotic and abiotic stress (Vandenkoornhuyse et al.,

2015; Dubey et al., 2019).

Especially, with the advent of the -omics approaches it has been

possible to identify key microbiomes and their metabolites in

different environments at unprecedented resolution. In terrestrial

ecosystems, there is evidence that the core microbiota is essential for

the maintenance of the functional stability of soil microbiomes,

nutrient cycling, and plant establishment in reforested ecosystems

and that it should be integrated into the policy and management

strategies of ecological restoration plans (Jiao et al., 2022). In this

regard, soil inoculation techniques and the use of carriers for

inoculants have been assessed to promote plant growth. In

particular, Rhizobium inoculants have been commercially

produced worldwide (Catroux et al., 2001; Deaker et al., 2004) as

well as Azospirillum brasilense and Bacillus pumilus (Cassán et al.,

2020). Manipulative experiments highlighted that the soil

community is an important driver of plant-community

development and that manipulation of the soil community is a

key step for successful restoration (Wubs et al., 2016).
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A large-scale, six-year-old field experiment on terrestrial

habitats has shown that the application of soil inoculants is a

powerful tool to promote ecosystem restoration and steer plant

community development depending on the origin of the soil

inoculum (Wubs et al., 2016). Other studies have reported that

inoculation of soils with mycorrhizal fungi can also increase the

growth performance of plants and that local mycorrhizal fungi

strains outperform commercial strains. Co-inoculation of different

native mycorrhizal fungi species can improve plant growth with

positive implications for restoration ecology (Crossay et al., 2019).

A key role is indeed represented by the species richness of the

inoculum (Hu et al., 2021). Previous investigations indicated that

the use of consortia that contained more Pseudomonas strains

produced beneficial effects on plant growth. Consistently, it has

been also documented that the transfer of whole soil communities,

enriched in plant grow-promoting consortia, is more effective than

the addition of individual species or strains in restoration actions

(Emam, 2016; Bulot et al., 2017). Another interesting finding

obtained in terrestrial ecology is that soil transplantation

experiments at large-spatial scales are more successful than at

smaller-spatial scales (Kardol et al., 2009; Pywell et al., 2011;

Jaunatre et al., 2014). Several investigations have also indicated

that environmental and biological factors such as nutrient loads and

interactions among soil biological communities can influence the

success of transplantation (De Deyn et al., 2004; Van Elsas et al.,

2012). However, several studies concluded that it is currently

unclear if the inoculant or soil transplantation effects will be

transient or whether they will last through plant generations, and

it is necessary to better deepen scientific research on plant-microbe

interactions for sustainable agriculture (Hu et al., 2021).

In terrestrial ecology, it has been also reported that plants and

their roots have evolved “a cry for help” response to resist

environmental and anthropogenic stress, by developing adaptive

strategies including the production of metabolites with direct

defensive effects and molecules that attract beneficial (micro)

organisms for protection (Rizaludin et al., 2021). In a recent

study, the “cry for help” concept was also supported by the

results of a field experiment, in which durum wheat (Triticum

turgidum L. var. durum) naturally infected with the crown rot

pathogen Fusarium graminearum enriched for Stenotrophomonas

rhizophila (SR80) in the rhizosphere and root endosphere (Liu et al.,

2021). After reintroduction, the SR80 strain induced resistance

against canopy rot and improved grain growth. The rhizosphere

microbiome is thus a reservoir of efficient helpers that plants can

specifically exploit to cope with one or more stressors. Deciphering

their communication can provide fundamental knowledge for the

future development of plants resistant to multiple stressors also in

marine ecosystems.

If the integration of the microbiome in the design and

management of terrestrial restoration actions is under

experimentation, in the marine environment this is still far from

being taken into consideration. This wide gap is due to the greater

complexity of the marine submersed environment compared to the

terrestrial one, its high variability due to hydrodynamic forcings, and

the difficulty of applying and managing bacterial inoculants.

Furthermore, while on land, vegetation is the main (practically the
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marine environment even animal components such as corals can

form habitats. Therefore, scientific research on the role and

application of the microbiome in restoration ecology has a

more complex job to do. However, knowledge accumulated in

terrestrial microbiome-based restoration may inspire marine

ecosystem restoration.
3 Microbiome selection to boost
the restoration success of
marine ecosystems

As it becomes more evident that microbiomes power ecosystem-

level processes and resilience to anthropogenic and climate-driven

impacts, scientific interest in microbiome engineering is increasing.

Microbiome selection (which is part of the wider field of microbiome

engineering but excludes any form of genetic manipulation) aims at

improving host fitness with designed microbial communities

(Mueller and Sachs, 2015). Microbiome selection thus foresees the

desired modulation of the tailored microbiome to enhance a selected

microbiome-dependent host phenotype. To this aim chemical-based

(prebiotics and antibiotics), cellular-based (probiotics and microbiota

transplants), phage-based (bacteriophages), or host-mediated

microbiome-modulation approaches can be implemented (Li

et al., 2022).

Traditionally, the modulation of the host-associated

microbiome to tailor a desired phenotype was mainly performed

empirically, thus completely blind concerning the compositional

and functional features of the target microbiome, just relying on the

use of allochthonous probiotics and prebiotics (i.e., compounds that

foster growth or activity of beneficial microorganisms such as

bacteria and fungi) as possible providers of the desired functions

(Peixoto et al., 2022; Figure 1). The current multi-omics era is

changing our capacity to study and understand the microbiome in

their native ecosystems. From an operational point of view, the

identification of the microbiome features being responsible for a

desired function foresees 4 phases: (i) microbiome sampling,

biobanking and multi-omics assessment; (ii) microbiome

modelling and networks construction; (iii) assembly of de novo

Microbiome-Assembled Genomes (MAGs) and (iv) construction of

genome-scale metabolic models. The identification of the

microbiome modules and their metabolic interactions allows the

knowledge-based implementation of microbiome-based approaches

- in terms of selected bio-promoters and bio-inocula – piloting these

modules, their components, and their web of interactions.

The recovery and selection of beneficial and resistant

microorganisms can be obtained through specific culture media

(Peixoto et al., 2017), whose selection and implementation can be

also carried out based on the genome-scale metabolic models of the

tailored beneficial microorganisms, allowing the in-depth

understanding of their nutritional requirements (Liu et al., 2010).

However, only a minor fraction of marine microbes are actually

cultivable even using the best available colturomics-based

approaches (Rodrigues and de Carvalho, 2022). In addition, if we
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consider that only a few marine isolates are endowed with the

technological properties necessary for their implementation in

concrete biotechnological applications, such as marine probiotics

(e.g., the ability to grow as axenic culture in pilot bioreactors) it is

clear that at present only a tiny fraction of the diversity of marine

microbiomes can be exploited to produce probiotics (Wang et al.,

2021a). These selected microorganisms can be inoculated at

different life stages of the host using similar approaches to those

already used in agriculture for probiotics (Backer et al., 2018). The

inoculation of beneficial microorganisms can be performed using

microencapsulation and nanoparticles as well as saline suspension

and substrates for the microbial immobilization adopted in

terrestrial ecosystems (Vassilev et al., 2020; Balla et al., 2022) and

aquaculture systems (Prado et al., 2020). However, the delivery of

microorganisms (microbial inoculum) in marine environments is a

major challenge due to dilution in the water column and dispersion

by currents and the difficulty of controlling interactions with a wide

range of micro- and macro-organisms naturally present in these

systems. Therefore, the immobilization of the microbial cells could

be one of the approaches that might be adopted to overcome this

problem (Peixoto et al., 2021).

Microbiome manipulation to improve host health could be based

on other approaches such as microbiome-assisted evolution, used to

accelerate adaptation on natural taxa to select those that show the
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transplanted species (Van Oppen et al., 2015). In this case,

experimental evolution studies involve the maintenance of

organisms under controlled conditions and the monitoring of their

response over several generations (Figure 1). Organisms are expected

to adapt to these conditions through selection due to random natural

genetic mutations, trans-generationally stable epigenetic

modifications and/or through the acquirement of adaptive changes

in the associated microbiome (Henry et al., 2021; Maire and van

Oppen, 2022; Mueller and Linksvayer, 2022). Even though the

selected pressures cannot dictate what adaptive traits will appear,

these factors may select beneficial changes at the microbiome level

(Maire and van Oppen, 2022). These microbiome-dependent

adaptive changes can be characterized by multi-omic approaches,

allowing the complete understanding of the correspondent functional

traits, and opening the opportunity for their engineering.

The experimental evolution of coral-associated bacteria is at the

stage of hypothesis, and it has been not implemented yet (Rosado

et al., 2019; Maire and van Oppen, 2022). Although scientific

literature is available on the possibilities of exploiting microbiome

selection and probiotic supply to improve the resistance and

resilience of natural ecosystems (especially concerning coral

reefs), the implementation of these technologies in restoration

plans is still far from being reached. Several gaps in knowledge
FIGURE 1

Conceptual model of the potential nature-based solutions relying on the microbiome to be applied to ecological restoration of habitat-forming
organisms. Nature-based solutions can be represented by a) the screening and selection, through the microbiome analyses, of habitat-forming
organisms or metacommunities containing beneficial microbes for transplanting and b) the biomonitoring of the health status of transplanted organisms
to make decisions (including the adoption of probiotics/bio-promoters based on the microbiome-culture approach, see the light blue dashed arrow) in
case of poor health conditions of the transplanted organisms. Microbiome manipulation allows the identification of keystone, beneficial and/or resistant
microbiota, and their functions through -omics technologies and their selection through culturomics-based approaches, which should provide usable
probiotics and or bio-promoters to be inoculated to transplanted organisms.
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and practical issues (e.g., in the approaches of target

microorganisms and the industrial production of pro-biotics and

bio-promoters) need to be filled (Peixoto et al., 2022) to make the

most of the potential of the microbiome in the restoration ecology.
4 Microbiomes of marine habitat-
forming species: integration into
ecological restoration approaches

Many of the marine restoration efforts have been focused on coral

reefs of shallow-coastal ecosystems contrary to what has been carried

out for cold-water corals, and mesophotic bioconstructions

(Fraschetti et al., 2021). Tropical coral transplantation is also one of

the pioneering approaches to marine ecological restoration

(Boström-Einarsson et al., 2020). This is due to several reasons,

including the high ecological and economic importance of these

habitats, their easy accessibility, and the rapid decline they are facing
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due to climate change and other anthropogenic impacts (Rivera et al.,

2020; Ferse et al., 2021). At the same time, wide information is

available on microbial assemblages associated with coral reefs, also

justified by the desire to identify microbial diseases that contribute to

their decline in the world’s oceans (Li et al., 2022). Despite this, the

microbiome has not yet been factored into effective plans to restore

coral reef ecosystems. However, it could contribute to the success of

their restoration, and to that of other bioconstructions and even deep

habitat-forming species (Figure 2). The general habitat characteristics

of the microbiomes and their potential in the restoration of different

bioconstructions is described here below.
4.1 Coral reefs, coral gardens, and
cold-water corals

Reef-building corals (Figure 2) - Awareness of the rapid decline

of coral reefs worldwide due to anthropogenic impacts and climate
FIGURE 2

Habitat-forming species, which can be involved in the microbiome-based-restoration. (A) Coral reef (image credits by Gabriella Luongo); (B) cold-
water corals; (C, D) coral gardens (credits by Gabriella Luongo); (E) mangroves; (F) seagrass meadows (credits by Gabriella Luongo), and (G)
macroalgal forests (credits by AFRIMED project).
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change has spurred restoration efforts, which are now widely

applied using several approaches (Pandolfi et al., 2003; Bellwood

et al., 2004; Vaughan, 2021) including coral gardening,

transplantation of coral fragments, micro-fragmentation, and the

use of artificial substrates (Boström-Einarsson et al., 2020). In the

last decade studies of the coral microbiome have allowed expanding

knowledge of the diversity and functions of microorganisms

associated with reef-building corals (Van Oppen and Blackall,

2019). There is evidence that coral-associated microorganisms

play a key role in the cycling and/or supply of nutrients (e.g.

carbon, nitrogen, and sulfur) to corals or their symbiotic algae

(e.g., Symbiodiniaceae), in the protection of corals (possibly

through the production of antimicrobial compounds), in

improving larval settlement (Van Oppen and Blackall, 2019) and

resilience to environmental stressors, which can lead to coral

diseases (Bourne et al., 2016; Vanwonterghem and Webster,

2020). Available studies indicate that the diversity of coral-

associated bacteria far outnumbers that of archaea (two archaeal

phyla versus at least 39 bacterial phyla described and candidate;

Gardner et al., 2023). However, few studies have specifically focused

on archaea, mainly because of technical limitations e.g., primer

specificity (Gantner et al., 2011; Apprill et al., 2015; Parada et al.,

2016), thus it is possible that their diversity is greater than what is

known to date.

The most common coral-associated bacterial taxa belong to

Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes,

Cyanobacteria, Firmicutes, and Tenericutes, while the coral-

associated archaea mostly affiliate with Euryarchaeota and

Nitrososphaerota (syn. Thaumarchaeota) (Table 1; Huggett and

Apprill, 2019). Available data for coral-associated fungi are currently

limited and only in recent research, some taxa such as Aspergillus,

Clonostachys, Mortierella, Cladosporium, Wicherhamomyces,

Simplicillium, Cutaneotrichosporon, and Penicillium have been

identified (Cheng et al., 2023). The microbiome of different coral

species can change over time and across different geographic regions,

and microbiome shifts can depend also upon environmental stressors

as well as coral health (Hernandez-Agreda et al., 2018; Morrow et al.,

2022). It has been also reported that coral adults have a less diverse and

more stable microbiome than larvae and early recruits, suggesting a

selection process during coral maturation (Epstein et al., 2019) and that

microbiome is fine-tuned to meet the needs of a particular host in a

certain environment (Van Oppen and Blackall, 2019). Given the

complexity of studying the whole coral microbiome, scientific

research is increasingly focusing on core microbial taxa that persist

within the host across different spatial and temporal scales (Hernandez-

Agreda et al., 2017; Dunphy et al., 2019). The core microbiome is

indeed composed of common taxa, host and habitat-specific (Sweet

and Bulling, 2017), which form stable and persistent symbiotic

interactions with corals to provide key functions (Shade and

Handelsman, 2012; Shafquat et al., 2014; Ainsworth et al., 2015; Chu

and Vollmer, 2016). A less stable core microbiome could indicate a

higher susceptibility of the holobiont to environmental stress (Ziegler

et al., 2016). Therefore, the analysis of the core microbiome is essential

to inform holobiont health status, which in turn is also fundamental for

outlining strategies for coral restoration (Hernandez-Agreda et al.,

2016; Sweet and Bulling, 2017).
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The top five reef-building coral species used in restoration

projects are Acropora cervicornis, Pocillopora damicornis,

Stylophora pistillata, A. palmata, and Porites cylindrica (Boström-

Einarsson et al., 2020). In general, the dominant taxa of

bacterial assemblages associated with corals are assumed to be

their healthy symbiotic state (Hernandez-Agreda et al., 2017

and references within). Bacterial members belonging to the genus

Endozoicomonas are dominant in corals although their contribution

to the entire microbial assemblage is highly variable within

individuals of the same species and among different species

(Hernandez-Agreda et al., 2017; Robbins et al., 2019; Rosales

et al., 2019; Vanwonterghem and Webster, 2020). There is

evidence that Endozoicomonas members are beneficial symbionts

of the coral hosts with a role in biofilm production (that promotes

surface colonization of other bacteria), sulphur metabolism, the

cycling of carbohydrates and the provision of proteins to the host

(Jessen et al., 2013; Ainsworth et al., 2015; Pootakham et al., 2019;

Krishnaswamy et al., 2023). Endozoicomonas can have a mutualistic

relationship with the endosymbiotic dinoflagellate partner

Symbiodinium. This relationship has been suggested to be critical

to the success of coral restoration (Bernasconi et al., 2019).

However, a broad spectrum of other microorganisms (e.g.,

bacteria, archaea, viruses and eukaryotic microbes) may play a

key role in maintaining coral health (Van Oppen et al., 2009;

Ainsworth et al., 2017) and beneficial microorganisms should be

identified specifically for each coral species, regional location, and

stage of development (Peixoto et al., 2017).

Previous studies suggested that coral transplantation can affect

coral microbial assemblages thus increasing the susceptibility of the

corals to diseases (Casey et al., 2015). This finding reinforces the

need to investigate the microbiome of coral reefs to increase

the success of the restoration actions (Garren and Azam, 2012;

Moriarty et al., 2020). In this regard, probiotics can also be adopted

for disease mitigation (Peixoto et al., 2019). For example, marine

bacteria isolated from Acropora palmata and other corals were

found to produce anti-bacterial molecules against a broad spectrum

of pathogens, including Serratia marcescens which is a pathogen

known to lead to the disease ‘white pox’ (Ritchie, 2006; Alagely

et al., 2011). This method was also tested on cnidarians affected by

whitepox disease revealing beneficial effects.

Transplant-induced coral diseases could combine with the

adverse effects of climate change, thus hampering successful

restoration. Despite it has been reported that the coral

microbiome can acclimatize to climate-driven changing

conditions (including pH acidification, and heatwaves) enriching

its functions related to nitrogen metabolism, host nutrition, and

increased resistance (Biagi et al., 2020; Palladino et al., 2022; Prada

et al., 2023), monitoring microbiome changes in restoration projects

could be useful for predicting the effects of multiple stressors.

Recent studies have also suggested that microbiome

manipulation could enhance heat tolerance and help corals

survive the effects of ocean warming (Doering et al., 2021). From

this perspective, microbiome engineering could represent a

powerful tool to mitigate disease-associated threats, increase

corals’ stress tolerance to perturbations, and improve coral

resilience in the face of ongoing climate change (Li et al., 2022).
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TABLE 1 Examples of microbial taxa of habitat-forming species which could have a key role in restoration activities.

Habitat
Habitat forming

taxa
Microbial taxa Isolation Potential functions Reference

Cold-water
corals

Lophelia pertusa,
Desmophyllum pertusum

(former Madrepora oculata)

Endozoicomonas, Entomoplasmatales,
Spirochaetales, Rickettsiales

no

Core members of the microbiome
with a role in pathogens protection;
protein and carbohydrate transport

and cycling

(Chapron
et al., 2020)

Coral
gardens

Paramuricea clavata,
Eunicella cavolinii

Endozoicomonas no

Core members of the microbiome
with a role in pathogens protection;
protein and carbohydrate transport

and cycling

(van de Water
et al., 2017)

Corallium rubrum Spirochaetaceae no
Core members of the microbiome
with a role in pathogens protection

(van de Water
et al., 2016)

Reef-
building
corals

Acropora cervicornis,
Pocillopora damicornis,
Stylophora pistillata, A.
palmata, and Porites

cylindrica

g-proteobacteria, a-proteobacteria,
Bacteroidetes, Cyanobacteria, Firmicutes,

Tenericutes, Euryarchaeota, Nitrososphaerota
(syn. Thaumarchaeota)

Some
strains

Biofilm production and nutrient
provisioning

(Huggett and
Apprill, 2019)

Pocillopora damicornis
Consortium including five Pseudoalteromonas
sp., Halomonas taeanensis, Cobetia marina

related species strains
yes Coral bleaching mitigation

(Rosado et al.,
2019)

Pocillopora sp., Porites sp. Fresh tissue homogenates no Coral bleaching reduction
(Doering

et al., 2021)

Seagrass
meadows

Zostera japonica, Z. marina,
Halophila stipulacea

Bacteroidetes, g-proteobacteria, a-
proteobacteria, d-proteobacteria, b-

proteobacteria, Epsilonbacteria, Actinobacteria,
Verrucomicrobia, Planctomicetes,

Cyanobacteria

yes
Nitrogen fixation, phosphorous
solubilization and organic matter

mineralisation

(Tarquinio
et al., 2019)

Posidonia oceanica,
Cymodocea serrulate, H.
uninervis, Thalassia
hemprichii, H. ovalis

a-proteobacteria, g-proteobacteria, d-
proteobacteria, Actinobacteria, Firmicutes,

Bacteroidetes
no Plant metabolism contribution

(Crump and
Koch, 2008;
Tarquinio
et al., 2019)

Zostera marina Labyrinthula zosterae yes
Parasitic bacteria, which causes

Wasting Disease
(Muehlstein
et al., 1991)

Mangroves Avicennia marina Oceanobacillus picturae yes Enhancing plant growth
(El-Tarabily
and Youssef,

2010)

Macroalgal
forests-

Saccharina latissima
a-proteobacteria, g-proteobacteria,
Bacteroidota, and Planctomycetes

no n.a.
(Burgunter-
Delamare
et al., 2022)

Fucus vesiculosus Planctomycetes yes
Biofilm formation; degradation of
organic matter of plant and algal

cell walls

(Lage and
Bondoso,

2014; Parrot
et al., 2019)

Nereocystis luetkeana Microbiome including 6 phyla and 19 families no

Assimilation of dissolved organic
matter, involved in alginate
metabolism, vitamin B12
biosynthesis, and nitrogen

reduction

(Weigel et al.,
2022)

Cystoseira
sensu lato

Cystoseira compressa

Verrucomicrobia, Actinobacteria no
Utilization of organic carbon

sources
(Mancuso
et al., 2016)

Ruegeria, Nautella, Aquimarina, Loktanella,
Saprospira, and Phaeobacter

no Pathogens
(Mancuso
et al., 2016)

Caulerpa cylindracea,
Agarophyton

vermiculophyllum
58 bacterial species yes Protective role/pathogens

(Saha and
Weinberger,

2019)
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Knowledge of corals’ ability to acquire new microbiome

components to mitigate the negative effects of environmental

stress led to the development of the “Coral Probiotic Hypothesis”

based on the identification of strains of dinoflagellates and microbes

able to promote the growth and persistence of the host under

shifting environmental conditions (Epstein et al., 2019).

Theoretically, a coral treated with an inoculum of these

microorganisms taken from a stress-adapted conspecific should

adapt or acclimatize to that stress more rapidly (Epstein et al.,

2019). The “Coral Beneficial Microorganisms” (CBM) concept

provides procedures to further apply the “Coral Probiotic

Hypothesis” by identifying potential selected advantageous

mechanisms provided by the microbiome, isolating these

beneficial microbes, and experimentally testing them for their role

in coral resilience to environmental perturbations, both in situ and

in controlled conditions (e.g., aquaria, Peixoto et al., 2017). This

concept and its applications might be also translated to other

habitat-forming species, including vegetated habitats.

Pioneering studies have shown that the microbiome can be

shaped through inoculation with cultured bacterial isolates (Welsh

et al., 2017; Damjanovic et al., 2019), while other investigations have

tested the probiotic potential of these inoculations to assess

improvements in coral health and resistance under different types

of stress (Fragoso Ados Santos et al., 2015; Jacquemot et al., 2018;

Rosado et al., 2019). For example, a consortium of native (isolated

from Pocillopora damicornis and surrounding seawater) putatively

beneficial microorganisms for corals, including Pseudoalteromonas

sp., Halomonas taeanensis and Cobetia marina strains was added to

coral colonies to increase resistance to bleaching (Table 1; Rosado

et al., 2019). In a recent transplantation study of two cosmopolitan

reef-building corals, Pocillopora sp. and Porites sp., from the

Andaman Sea in Thailand, heat-sensitive corals were transplanted

with donor microbiomes using fresh tissue homogenates produced

from heat-tolerant conspecific donor corals, thus bypassing time-

consuming culturing and screening for beneficial bacteria from

healthy donors and allowing the transmission of the “unculturable”

microbiome fraction (Table 1; Doering et al., 2021). The inoculation

reduced coral bleaching under heat stress suggesting its beneficial

effect and the potential of a probiotic intervention to support

success in coral restoration.

Overall, based on the available information, although the

microbiome offers important opportunities for coral restoration

and re-establishing self-sustaining and functional habitats, its use

has been made on a limited spatial scale and is still at an

experimental level.

Gorgonian forests (Figure 2) - Gorgonian forests include corals

belonging to the Anthozoan subclass of Octocorallia, which

comprise soft corals (e.g., sea fans and sea whips - order

Alcyonacea-, sea pens -order Pennatulacea-), and blue corals

(order Helioporacea). They represent corals of conservationist

interest as they act as ecosystem engineers, supporting high

biodiversity levels (Ballesteros, 2006; Poulos et al., 2013; Sánchez,

2017; Angiolillo and Canese, 2018; van De Water et al., 2018a).

Over the last 30 years, gorgonian gardens have been reported to be

highly vulnerable to episodic climate-driven events as well as to

anthropogenic activities and diseases (Smith and Weil, 2004;
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Sánchez et al., 2014; Girard and Fisher, 2018; Garrabou et al.,

2019). Some coral species in the Mediterranean Sea including

Corallium rubrum, Paramuricea clavata, and Eunicella cavolini,

are regressing in different coastal areas (Barnes, 2010; Angiolillo and

Canese, 2018; Verdura et al., 2019; Gómez-Gras et al., 2021; Topçu

et al., 2023). Similarly, the soft coral Dendronephthya australis has

been listed as endangered in Australia (Larkin et al., 2023). For this

reason, these species have been a target of restoration experiments

in the field and in aquaria (i.e., to assist in situ recovery)

(Ballesteros, 2006; Ponti et al., 2014; Ingrosso et al., 2018;

Montero-Serra et al., 2018; Verdura et al., 2019; Steinberg et al.,

2020; Casoli et al., 2022; Topçu et al., 2023). Also, gorgonians

collected as by-catch can be a valuable resource for the restoration

of impacted ecosystems (Montseny et al., 2019; Casoli et al., 2020;

Montseny et al., 2020).

Only a few studies have been carried out to test the efficiency of

transplanting to rehabilitate gorgonian populations in impacted

areas reporting contrasting results in terms of survival rate (30%-

90% in 2.5 years; Linares et al., 2008; Fava et al., 2010; Montseny

et al., 2019; Casoli et al., 2022). The design of any restoration

procedure must take into account the likelihood of mortality of

coral colonies before transplanting since this can affect the initial

attachment effort necessary to increase the success of the restoration

process. To this aim, microbiome analyses including the detection

of pathogens can help to anticipate these actions by identifying

stressed colonies that visually do not show any signs of alteration

(Corinaldesi et al., 2022).

Octocoral-microbe interactions compared to those of

Scleractinia have attracted a lower interest, with only a limited

number of studies focused on their associated microbiota (van De

Water et al., 2018a), thus limiting understanding of the role of the

microbiome in gorgonian health. Available information indicates

that in natural conditions, the core microbiome of gorgonians is

stable (van de Water et al., 2016; van de Water et al., 2018b) over

space and seasons as in the case of E. cavolini, P. clavata and

different Caribbean Octocorals, which are generally dominated by

Endozoicomonadaceae (Table 1; Bayer et al., 2013; Vezzulli et al.,

2013; van de Water et al., 2017; McCauley et al., 2020; van de Water

et al., 2020) or Spirochaetaceae mostly associated with C. rubrum

(van de Water et al., 2016; van de Water et al., 2018b; Corinaldesi

et al., 2022). Thus, a shift in the composition of the core microbiome

of these species after transplantation actions can represent an early

warning indicator of stressful conditions that can decrease the

success rate of the restoration actions. Considering that newly

established coral populations need 30-40 years to show an

adequate colony size distribution (Montero-Serra et al., 2018), it

is quite difficult to assess the restoration success after only a few

years (Linares et al., 2008; Duarte et al., 2020). This constraint is

mainly due to the short time scale (3-4 years) of funded projects

aimed at promoting some restoration actions and experiments.

Consequently, long-term monitoring programs, including analyses

of the microbiome associated with transplanted organisms, should

be planned over a longer time scale to provide more comprehensive

information about the factors influencing microbiome dysbiosis,

thus allowing the implementation of possible intervention actions

to keep microbiome eubiosis in future restoration activities.
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Cold-water corals (Figure 2) - Cold-water corals are key habitat-

forming species, producing complex three-dimensional structures

over wide areas, which foster biodiversity hotspots including species

of high commercial interest (Roberts et al., 2009; Angiolillo and

Canese, 2018). These corals are generally found in the deep sea

(Roberts et al., 2009), particularly on continental margins,

seamounts and canyons (Montseny et al., 2021). These

ecosystems are threatened by multiple human activities such as

commercial bottom fisheries, hydrocarbon exploration and

extraction (Ramirez-Llodra et al., 2011; Ragnarsson et al., 2017;

Montseny et al., 2021) and ongoing climate changes (Danovaro

et al., 2017; Portilho-Ramos et al., 2022). Most restoration actions in

marine ecosystems have been conducted in shallow waters (Bakker

et al., 2002; Hughes and Paramor, 2004; Fraschetti et al., 2021),

including tropical coral reefs (Rinkevich, 2005; Precht and Robbart,

2006; Young et al., 2012; Deignan and McDougald, 2022) and

gorgonian forests (Linares et al., 2008; Fava et al., 2010; Weinberg,

2019; Basconi et al., 2020; Duarte et al., 2020; Montseny et al., 2021).

The restoration of deep-sea habitats, including cold-water

corals has been delayed due to the technological challenges

associated with their remoteness, water depth (below 200 m), and

high costs of intervention (Van Dover et al., 2014; Da Ros et al.,

2019). It has been estimated that the cost of deep-sea ecosystem

restoration might be up to 3–4 orders of magnitude higher than

that of shallow-water ecosystems (Barbier et al., 2014). The

most used techniques for active cold-water coral restoration are

transplantation techniques from a healthy donor reef to a degraded

reef, and the use of artificial structures (Brooke et al., 2006; Dahl

et al., 2012; Jonsson et al., 2015; Montseny et al., 2021).

Additionally, it may be necessary to harvest and maintain cold-

water corals ex situ (i.e., in aquaria before returning them to their

natural habitat. However, the slow growth rates of cold-water

corals, the stress experienced by corals during harvesting, such as

thermal changes, and the complexity of replicating their natural

environment in the laboratory are some of the most important

barriers to successful active restoration (Orejas et al., 2019). To

overcome all these problems, improving underwater technologies

and long-term monitoring strategies, as well as expanding

knowledge about species interactions, are key steps in deep-sea

restoration. To increase the success rate of transplantations, we

would also benefit from a better understanding of the role and

composition of coral-associated microbiomes and particularly of

the beneficial taxa, which can be markers useful to select healthy

coral colonies suitable for transplantation actions and to monitor

over time the holobiont health status.

Information on the microbiomes of the cold-water corals in the

frame of deep-sea restoration is still very limited. Spirochaetes or

Endozoicomonas have been suggested to be bacterial taxa

supporting the physiology of Desmophyllum pertusum (former

Lophelia pertusa) and Madrepora oculata (Kellogg et al., 2009;

Meistertzheim et al., 2016; Neave et al., 2016). However, the

Desmophyllum pertusum microbiome appears to be more variable

in terms of composition than the microbiome of M. oculata

(Meistertzheim et al., 2016; Galand et al., 2018). An investigation

of the microbiome during an in situ transplanting of Desmophyllum

pertusum andM. oculata revealed shifts of some bacterial taxa (such
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as Entomoplasmatales, Spirochaetales, Rickettsiales and

Endozoicomonas; Table 1; Chapron et al., 2020). In addition, the

microbiome-based analyses were useful in investigating the habitat

preference for the two cold-water species (i.e., D. pertusum did not

show a strict preference for habitat due to its higher capacity to

acquire bacteria from the surrounding waters, whereas M. oculata

did) (Chapron et al., 2020). This could be crucial information in

deep-water coral restoration as well as the potential presence of

pathogens in gorgonians, which could hinder their recovery. Deep-

sea ecosystem restoration appears to be the biggest challenge among

marine habitat restoration actions; the microbiome could help

address this challenge.
4.2 Restoration of vegetated habitats:
seagrass meadows, mangroves, and
macroalgal forests

Seagrass meadows, mangroves and macroalgal forests support

high biodiversity levels by providing food, habitat, and shelter to a

variety of marine organisms. They also underpin many important

ecosystem functions and services such as primary and secondary

productivity, C sequestration (acting as a “blue carbon” storage

system; Duarte, 2017), the provision of nursery areas for

endangered and commercially important species, protection from

coastal erosion (Duffy et al., 2019). However, these meadows/forests

are facing dramatic decline worldwide, so effective restoration

efforts are urgently needed to recover their associated key

ecosystem functions and services (Paling et al., 2009; Tan et al.,

2020; Cebrian et al., 2021; Dahdouh-Guebas and Cannicci, 2021;

Dunic et al., 2021). We detail below the general characteristics of the

microbiomes of these vegetated ecosystems and perspectives for

their potential application to the restoration of such habitats.

Seagrass meadows (Figure 2) - Classical seagrass restoration

practices have obtained contrasting results in different coastal

habitats, either testing bare-root transplanting, alternative

methods such as deploying multiple plants in larger cores,

planting seagrass seeds or using biodegradable containers (Zhou

et al., 2014; van Katwijk et al., 2016; Da Ros et al., 2021; Mokumo

et al., 2023). There is broad consensus that harnessing positive

biological interactions, including those between seagrass and

microbiota, can increase restoration success (Halpern et al., 2007;

Silliman et al., 2015; Tan et al., 2020; Valdez et al., 2020). Different

members of the seagrass microbiota can indeed benefit their hosts

(recently reviewed by (Ugarelli et al., 2017; Tarquinio et al., 2019;

Conte et al., 2021). Epiphytic diazotrophic bacteria can increase

nutrient bioavailability through nitrogen fixation and phosphorous

solubilization while sulphate-reducing bacteria play a similar role in

the rhizosphere and roots through anaerobic nitrogen fixation and

organic matter mineralisation (Table 1; Welsh, 2000; Hamisi et al.,

2009; Sharma et al., 2013; Tarquinio et al., 2019; Mohr et al., 2021).

Several microbes involved in growth-promotion activities in plants

or macroalgae (like Kocuria sp., Vibrio sp., Methylophilus sp.,

Alteromonas macleodii, and Marinomonas sp.) have been

described also as epi- or endophytic microbes of seagrasses, hence

hypothesized to play a similar role (Tarquinio et al., 2019). As in
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terrestrial plants, seagrass roots and rhizosphere are also enriched

with beneficial sulphide-oxidising bacteria able to remove the

otherwise toxic H2S produced by the sulphate-reducing bacteria

during organic matter degradation (Conte et al., 2021) while

sulphate-reducing bacteria have been suggested to detoxify from

ethanol (another phytotoxin produced by the seagrass fermentative

metabolism in the dark) (Ugarelli et al., 2017). Similarly, methanol

(a waste by-product of seagrass metabolism known to inhibit plant

growth and seed germination; Abanda-Nkpwatt et al., 2006) has

been suggested to be consumed by methylotrophic bacteria

(Methylophilaceae and Methylophagaceae), which are typically

associated with seagrasses (Adamczyk et al., 2022). An additional

protective mechanism of seagrasses can be attributed to microbes

capable of producing antioxidant enzymes (e.g., Marinomonas

mediterranea MMB-1), which can alleviate their oxidative stress

by scavenging extracellular toxic radicals (Sanchez-Amat et al.,

2010; Tarquinio et al., 2019). Additional plant-protection features,

including the production of antiviral, antiparasitic, antibacterial and

anti-biofouling compounds have been described or inferred for

several bacteria (e.g., Actinobacteria) directly isolated from

seagrasses or identified by metabarcoding (Marhaeni et al., 2010;

Tarquinio et al., 2019; Boontanom and Chantarasiri, 2020). Such

microbial products are supposed to benefit the seagrass by

promoting healthy microbe-host interactions and contrasting

potentially harmful outbreaks.

Bacteria have been by far the main target of seagrass

microbiome studies, even though it can be expected that future

research will provide evidence also on the relevance of archaea, as

anticipated from terrestrial plants (Jung et al., 2020; Ayangbenro

and Babalola, 2021). Similarly, the importance of fungi in fostering

plant fitness is well-known in terrestrial ecosystems (Averill et al.,

2022; Busby et al., 2022). As far as seagrasses are concerned, studies

on fungi and other eukaryotic microbiota associated with them have

mainly focused on pathogens and parasites like labyrinthulids,

oomycetes and Phytomyxea (Sullivan et al., 2018; Ettinger and

Eisen, 2019; Ettinger and Eisen, 2020), therefore the potentially

beneficial functions and implications of microbial eukaryotes for

the seagrass holobiont are still largely unknown (Wainwright et al.,

2019; Ettinger et al., 2021; Liu et al., 2022).

Despite the growing awareness of the key role of the microbiome

in seagrass health, little is still known about the possibility of using

and/or modulating specific components of the seagrass microbiota to

enhance transplantation success at large spatial scale (Trevathan-

Tackett et al., 2019; Unsworth et al., 2019; Tan et al., 2020; Unsworth

et al., 2022). Recent investigations on seagrass transplantation have

demonstrated the importance of implementing a more holistic

approach based on the “holobiont” concept, which argues that

‘macrobial’ hosts and their associated microbiota form a coherent

biological entity and we need to consider them together to

understand the ecology of hosts and their interactions (McFall-

Ngai et al., 2013; Wang et al., 2021b). Milbrandt et al. (2008)

showed that seagrass transplanting performed using portions of the

original bulk sediments can increase transplant success, compared to

the use of sterile sediment. Similarly, preliminary studies reported

that seagrass seeds germinate and grow more quickly after the

addition of their original sediments than in fully sterile sand (Boyer
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and Wyllie-Echeverria, 2010). These results suggested that seagrass

transplanting may be more successful if using the plant’s

autochthonous sediments, possibly also thanks to the beneficial

microbes living in it (Tarquinio et al., 2019). Indeed, as for other

terrestrial organisms (Jiang et al., 2022; Sorbara and Pamer, 2022;

Morales Moreira et al., 2023), also the seagrass microbiome

(including bacteria, archaea, fungi and other microbial eukaryotes

associated with the leaves, roots and surrounding sediments) has

been proposed to potentially increase the seagrass host fitness,

resistance to environmental stressors and hazards and resilience

(Fahimipour et al., 2017; Crump et al., 2018; Tarquinio et al., 2019;

Trevathan-Tackett et al., 2019; Unsworth et al., 2019; Wainwright

et al., 2019; Chen et al., 2022; Unsworth et al., 2022). For example,

Fuggle et al. (2023), investigated the influence of root and sediment

microbiomes on Zostera muelleri growth under stressful conditions

(i.e., excess nutrient load). They found that the disruption of the root

microbiome caused reduced seagrass growth under stressful

conditions, thus inducing an uncoupling between bacteria involved

in sulphate reduction and sulphide oxidation. These findings suggest

a “cry for help”mechanism also for seagrass as observed in terrestrial

plants, which under stress conditions attract beneficial (micro)

organisms for protection (Meena et al., 2017; Khan et al., 2021).

This mechanism indicates that the seagrass-microbiota interactions

can influence host resilience. A recent study on in-situ seagrass

(Zostera marina) transplanting investigated the changes in

microbial assemblages after transplanting (Adamczyk et al., 2022),

showing that the microbiota rapidly changed after transplanting and

was strongly influenced by environmental conditions. In addition,

this investigation revealed a stable microbiome core of the seagrass

leaves represented by methanol-utilizing bacteria suggesting their

relevant role for seagrass health, in view of transplanting and

ecosystem restoration purposes.

Further investigations pointed out the need to re-think the

holobiont concept in a “meta-holobiont” perspective (i.e., a network

of holobionts that can exchange biomolecules and microbiota

across generations, thus impacting the fitness of both biological

scales: holobionts and meta-holobionts; Vannier et al., 2019). This

new concept could have direct implications for seagrass restoration,

as also exemplified by the in-situ evidence that mutualism between

seagrasses and lucinid bivalves, which host sulphide-oxidizing gill

symbionts, can reduce the sulphide-induced stress (Valdez et al.,

2020; van der Geest et al., 2020). Other examples include the

investigation conducted by Schenck et al. (2023), which

performed a transplanting experiment of Zostera marina ex-situ,

with its pathogenic parasite Labyrinthula zosterae (Table 1). The

authors reported that changes in the host microbiome may

influence the outcome of the host–parasite interactions, which

would have direct implications for seagrass restoration and

conservation management. Similarly, another study carried out by

O’Connor et al. (2022) conducted an in situ reciprocal transplanting

experiment with Zostera marina with and without its epiphytic

macroalgal symbiont Smithora naiadum, showing that the presence

of Smithora changes the Zostera leaf microbiota, thus suggesting a

possible role of the microbiota in the plant-macroalgae symbiosis.

Overall, recent studies support the expectation that since the

seagrass microbiome has a crucial role in the seagrass meta-
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holobiont (Vannier et al., 2019; Valdez et al., 2020) by enhancing

nutrient uptake, immunity, and tolerance to environmental and

anthropogenic stressors, its examination can represent a useful tool

to increase restoration success. In this regard, the first milestone

would be to define best practices in meta-holobiont transplanting,

by emulating terrestrial microbiome studies (Emam, 2016; Bulot

et al., 2017).

Mangroves (Figure 2) - Mangroves are highly productive and

valuable habitat-forming species in tropical marine ecosystems, that

are facing a rapid human-induced decline worldwide and need

large-scale restoration interventions (Romañach et al., 2018;

Birnbaum and Trevathan-Tackett, 2022). Mangrove restoration is

technically feasible in appropriate locations (Lewis, 2005), but

projects often have failed because of the unsuitability of the

transplanting sites (Lee et al., 2019), largely associated with the

presence of plant growth-promoting microbiota living in the

sediment (Holguin et al., 2001).

The failures obtained so far in mangrove restoration, suggest the

need to explore in more detail the mangrove-microbe interactions

and develop microbial-based interventions (Lee et al., 2019; Allard

et al., 2020; Birnbaum and Trevathan-Tackett, 2022).

Classical microbiological research (mainly, non-omics

approaches) has provided plentiful examples of mangrove-

associated microbes (i.e., bacteria and fungi) with a role in plant

health such as the production of growth-promoting phytohormones

(Xu et al., 2018), metabolites that protect the plant against stress (Lata

et al., 2018), the provision of nutrients through nitrogen fixation and

the phosphate solubilization (Jha et al., 2011; Fukami et al., 2018), as

well as the degradation of contaminants (Sipahutar and Vangnai,

2017), which can alleviate the toxic effects of soil pollutants on the

plant (Siraj et al., 2023 and references within). However, mangrove-

microbiota interactions have been scarcely explored for their

potential to enhance mangrove restoration success (Holguin et al.,

2001; Birnbaum and Trevathan-Tackett, 2022). Pioneering laboratory

work inspired by terrestrial research on plant-growth-promoting

bacteria (PGPB) found that the inoculation of mangroves with

diazotrophic cyanobacteria isolated by the mangroves themselves

resulted in rapid colonization of the roots and the transfer of N from

the N2-fixing bacteria to the plant (Holguin et al., 2001 and references

therein). Successively, El-Tarabily and Youssef (2010), reported a

phosphate-solubilizing bacterium (Oceanobacillus picturae) isolated

from the mangrove Avicennia marina rhizosphere, able to strongly

enhance plant growth, and suggested its possible use in reforestation

programs (Table 1). The same authors also studied endophytic

mangrove actinobacteria, describing one of the most promising

strains (Streptomyces mutabilis) able to promote mangrove growth

under laboratory conditions (El-Tarabily et al., 2021). Janarthine and

Eganathan (2012), isolated one endophytic bacterial strain

(Sporosarcina aquimarina) from pneumatophores of Avicennia

marina, which enhanced the growth of different species of

mangroves. Similarly, Soldan et al. (2019) isolated bacterial

endophytes from mangrove propagules, describing one Gordonia

terrae strain able to strongly promote the mangrove propagule

germination and root colonization ability.

Overall, the available evidence supports the expectation that the

mangrove microbiota can have great potential to help increase
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mangrove restoration success. However, additional research is

needed to advance both theoretical and applied knowledge, by

integrating classical microbiological studies with meta-omics, also

performing microbiome-assisted mangrove transplant experiments

in the field (Allard et al., 2020; Birnbaum and Trevathan-

Tackett, 2022).

Macroalgal forests (Figure 2) - Among macroalgal forests, kelps

(brown algae in the order Laminariales) play essential roles as

ecosystem engineers in temperate coastal marine environments.

Besides the ecosystem services provided, they are also important in

many industries to produce alginates, human food supplements or

food for abalone aquaculture (Burgunter-Delamare et al., 2022 and

citations therein). Climate change and anthropogenic impacts are

contributing to the global decline of the macroalgal forests making

it increasingly urgent to restore these habitats (Mills et al., 2017).

The history of kelp forest restoration, based on transplanting,

seeding, grazer control, and artificial reefs (Eger et al., 2022),

revealed that interactions between kelps and its associated

microbiome can be crucial for obtaining successful restoration

(Eger et al., 2022). The microbial partners, indeed, regulate and

support their metabolism, health, fitness, resistance to pathogens,

and adaptation to environmental changes (Wiese et al., 2009;

Goecke et al., 2010; Dittami et al., 2016; Burgunter-Delamare

et al., 2020).

Most available studies on the kelp microbiome are descriptive

(i.e., focused on microbiome composition and distribution, and the

interactions with environmental conditions; Lachnit et al., 2011; King

et al., 2023). Knowing the environment and host characteristics

shaping the kelp microbiota is important, as this may have

implications on how we design restoration and/or future-proofing

programs (Wood et al., 2019). Previous investigations documented

that kelp and brown algae-associated microbiota is typically

dominated by Alphaproteobacteria, Gammaproteobacteria, and

Bacteroidota (Burgunter-Delamare et al., 2022 and citations

therein; Table 1). In perennial species, such as Saccharina latissima,

differences in the assemblage composition have been observed

between different parts of the individuals, for example between

apex and meristem. This is due to the algal growth mainly

occurring in the meristem region, and younger meristem tissues

are typically less colonised by bacteria (Burgunter-Delamare et al.,

2022). Planctomycetes, which were observed predominantly in the S.

latissima apex, have been observed also in other species, such as the

brown algae Fucus vesiculosus, and are typical components of algal

biofilms (Table 1; Lage and Bondoso, 2014; Parrot et al., 2019). The

N. luetkeana blades’ bacterial genomes spanned 6 phyla and 19

families and included common alga-associated microbial symbionts

such as those belonging to the genus Granulosicoccus. Key functions

encoded in kelp-associated bacterial genomes included dissolved

organic matter assimilation, alginate metabolism, vitamin B12

biosynthesis, and nitrogen reduction from nitrate and urea to

ammonium, potentially providing the host kelp with vitamins and

reduced nitrogen compounds (Weigel et al., 2022). Field studies

conducted on the bull kelp (Nereocystis luetkeana) microbiota,

compared with other different substrates and the surrounding

water column, revealed that new kelp blade tissues were colonized

by markedly distinct microbial taxa (Table 1; Weigel and Pfister,
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2021; Ramıŕez-Puebla et al., 2022). This suggests that microbial

establishment on algae surfaces is more than just an attraction to a

polysaccharide-rich surface and that host-specific factors may deter

some surface-associated marine microbial taxa (Ramıŕez-Puebla

et al., 2022; Weigel et al., 2022). Microbes can also be useful to

sustain food webs in kelp forests as indicated by an experimental

study based on the manipulation of bacterial abundances in kelp

biofilm (Singh et al., 2021).

Despite the increasing interest in the diversity and functions of

the algal microbiome, only a few studies have gone beyond the

structural and functional description of the microbiomes and

evaluated the responses to experimental inoculation of target

microorganisms (Vairappan et al., 2001; Peng and Li, 2013) or

assessed the role of microbiome in restoration actions (Eger et al.,

2020). These approaches may be useful to identify beneficial or

pathogenic microbes and to help in enhancing kelp performance

and/or confer resistance or resilience to future environmental

conditions. Although some studies tested the responses of the

microbiomes of different kelp species (Macrocystis pyrifera and

Ecklonia radiata; Minich et al., 2018; Qiu et al., 2019) to climate

changes (e.g., increased temperature and partial pressure of carbon

dioxide (pCO2), how these changes will module the holobiont

responses in restoration interventions is still practically unknown.

This will be another challenge for restoration practices.

The canopy-forming macroalgae Cystoseira sensu lato (s.l.)

(Figure 2G; including the Cystoseira, Gongolaria and Ericaria

genera; Smith et al., 2023), are among the most important brown

macroalgal forests, which are object of restoration projects for their

key ecological role in coastal habitats (Cebrian et al., 2021) and

provision of ecosystem services (including potential pharmaceuticals;

Zbakh et al., 2020). Although available studies on the microbiome

of Cystoseira s.l. forests are very limited, an investigation on

Ericaria amantacea showed a core of associated bacterial families

(including Rhodobacteraceae, Flavobacteriaceae, Alteromonadaceae,

Vibrionaceae, and Halomonadaceae) also present in other brown

algae suggesting a great plasticity of the microbiome of these

macroalgae (Malfatti et al., 2023). Other studies carried out on C.

compressa showed a distinct microbiota from the surrounding water

column, with only a few taxa in common (Table 1; Mancuso et al.,

2016). At the same time, a clear successional pattern in the epiphytic

bacteria of C. compressawas observed, with the gradual appearance of

specific bacterial taxa (e.g., Verrucomicrobia, Actinobacteria) over the

growing season (Mancuso et al., 2016). An increase of bacteria

affiliated with Rhodobacteraceae, which comprise six potential

pathogenic genera, Ruegeria, Nautella, Aquimarina, Loktanella,

Saprospira, and Phaeobacter, was also observed in aged thalli of C.

compressa. These bacteria could influence the health and ecology of

the algae, suggesting a possible role of the microbiome in contributing

to the extensive ongoing declines of populations of Cystoseira s.l. in

the Mediterranean Sea. In this regard, information on red macroalgae

revealed that their decline is caused by bacterial diseases, such as the

case of Delisea pulchra affected by bleaching also in combination with

temperature rise events (Case et al., 2011; Campbell et al., 2014).

However, the microbiome can also prevent the establishment of

pathogenic microbes (Abdul Malik et al., 2020). An example is the

study conducted on the seaweed Phyllospora comosa (Fucales,
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Seirococcaceae), where a “core” of microbial taxa (i.e., present on

all individuals sampled) was considered responsible for multiple

functions, including biological defence (Wood et al., 2022). The

capacity of aquatic macrophytes to “garden” protective

microorganisms to the benefit of strengthened disease resistance

has been demonstrated in the model invasive seaweed holobiont

Agarophyton vermiculophyllum (Saha and Weinberger, 2019). This

species is characterized by beneficial microbiota on its surface that

protects from bacterial pathogens. Metabolites from the holobiont

surface reduce the settlement of opportunistic pathogens and

promote the settlement of other beneficial bacteria (Saha and

Weinberger, 2019). Other functions can be attributed to the

interactions between seaweeds and microbiomes; for example,

investigations conducted on non-indigenous and invasive algae,

such as Caulerpa cylindracea and Agarophyton vermiculophyllum

(Table 1; Saha andWeinberger, 2019; Morrissey et al., 2021), reported

a key role of microbiomes in their success in quickly colonizing

new areas.

The tight relationship between macroalgae and microbiota

suggests that they interact as a unified functional entity (i.e.,

holobiont), therefore, future restoration interventions cannot

ignore the microbiome component (Morrissey et al., 2021). This

holds true especially in the light of future climate change scenarios,

which can determine shifts in macroalgal microbiomes and may

lead to host disease, with potential cascading impacts on associated

ecosystems (Qiu et al., 2019). In this regard, it remains largely

unexplored how the interactions between macroalgae and microbes

are affected by environmental stressors (van der Loos et al., 2019).

Macroalgae–microbe interactions have been recognized as drivers

of acclimatization to environmental changes as in the case of the

brown alga Ectocarpus, whose ability to acclimate to salinity

gradients has been attributed to their microbial associations

(Dittami et al., 2016). In addition, it has been reported that the

responses of macroalgae to various environmental perturbations,

such as heat stress and nutrient enrichment, may depend on the

niche-specific microbiota of macroalgae (i.e., endo-microbiota, epi-

microbiota and rhizo-microbiota) (Morrissey et al., 2021). For

example, in C. cylindracea, endomicrobiota has been reported to

have the highest resistance, but the lowest resilience to

environmental stress.

Given the rate at which macroalgal forests and other marine

habitats are changing and given the predicted increases in the

frequency and magnitude of multiple stressors, the need for

subtidal marine macrophyte restoration efforts is evident (Wood

et al., 2022). Future macroalgal forest restoration may rely on

resistance and resilience of the associated microbiomes, therefore

exploiting the provided probiotic functions to facilitate the

holobiont adaptation to environmental stress, will be a step

forward in the macroalgae forest restoration (Ghaderiardakani

et al., 2020). Investigations into the selection and use of

inoculants and probiotics in macroalgae restoration are very

limited. A recent study based on metabarcoding analysis

suggested that some bacterial taxa (Postechiella, Winogradskyella,

Roseovarius and Arenibacter) are the main responsible for algal

growth and potential candidates for probiotic consortia promoting

the growth of Ericaria amentacea (Phaeophyceae) seedlings
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(Malfatti et al., 2023). Molecular analysis of the microbiome of

macroalgal forests based on metagenomic approaches can be a

valuable tool for biomonitoring and predicting their health status,

thus guiding restoration actions. However, we urgently need to

increase the number of in situ investigations of the macroalgal forest

microbiome in different habitats and environmental conditions and

at different spatial scales to understand more about how to use the

microbiome in restoration actions.
5 Microbiomes as nature-based
solutions for marine
ecosystem restoration

Nature-based solutions (i.e., actions that are inspired by,

supported by, or copied from nature), also those relying on

microbes, are gaining momentum globally as a concept to address

ecological and societal challenges. Here, we advocate for combining

these two concepts to incorporate microbiome analysis into nature-

based solutions for the restoration actions of different habitat-

forming marine species (Figure 1).

Microbiome characterization and identification of beneficial

microbial taxa or their potential metabolites can be used for

screening and selection of the “meta-community and meta-

ecosystem” (e.g., plants and their sediment containing microbiota

and nutrients) to be transplanted. Traditionally, this screening and

selection was done empirically (e.g., visually) but, nowadays we can

leverage multi-omics and computational approaches (e.g.,

metabarcoding, metagenomics and meta-transcriptomics) to

identify organisms, colonies or sediment clods to be translocated

to the restoration site or to identify the most suitable substrate for

larval/propagule settlements (Jorissen et al., 2021). Changes in the

composition of microbiome are, indeed, considered an early

warning of holobiont health (Glasl et al., 2019; Corinaldesi et al.,

2022), therefore microbiome analysis might be particularly useful in

deep-sea ecosystems (e.g., cold-water corals) for the selection of

healthy organisms and their monitoring once translocated/

transplanted. The biomonitoring of the microbiome of habitat-

forming species is now possible thanks to well-consolidated

methodologies and ready-to-use technologies. However, it does

not represent a way to remediate failed restoration interventions,

but rather a strategy for the early detection of potential pathogens

and for making quick decisions, for example, to stop the spread of

disease (Pollock et al., 2011; Traylor-Knowles et al., 2022). Probiotic

and bio-promoter supplements could, once their efficacy has been

demonstrated, not only increase the resistance of the holobiont (e.g.,

to coral bleaching and other stress factors) before transplanting, but

also stabilize it or improve its health conditions after transplanting.

Other microbiome-based strategies for addressing restoration

intervention include isolating microbiome components through

culturomics-based approaches, which allow the selection of

microbes producing usable probiotics and or bio-promoters to be

inoculated to transplanted organisms. Other methods based on

culturomics include the natural microbiome-assisted evolution,

used to select microbial taxa that show the greatest resilience to
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stress and thereby increase the fitness of transplanted species.

However, these approaches are characterized by drawbacks (e.g.,

difficulties in culturing marine bacteria and in producing

probiotics), which make their application difficult, especially for

large-scale interventions. Given the urgency of implementing

marine ecosystem restoration, culturomics-based approaches need

to be optimized.
6 Conclusions

Microbiota can respond and adapt more rapidly than their

associated pluricellular organisms to climate change and

anthropogenic stressors, potentially increasing holobiont resilience to

novel environmental conditions (Duarte, 2017; Martin et al., 2019).

Due to their great potential, microbiome-based approaches can be very

useful for the recovery of degraded ecosystems, contributing to their

resilience and the achievement of the UN objectives of sustainability

and habitat restoration. In the context of international strategies

concerning ecological restoration, the use of the scientific knowledge

acquired on the marine microbiome deserves to be exploited to assist

both traditional and innovative restoration approaches. Taking a cue

from the positive results obtained in terrestrial ecosystems, especially

from reforestation experiments, there is ample space to exploit the

potential of the microbiome in the restoration of different habitat-

forming species. Although the use of microbiomes is still in its infancy

in marine ecosystem restoration, it is being successfully applied in the

restoration of coral reefs and experimentally in seagrass beds and

macroalgal forests. The delay in the use of microbiomes in marine

restoration is more relevant for deep-sea ecosystems due to

technological and logistical difficulties. Therefore, upgrading the

portfolio of technology tools for supporting such approaches,

especially in deep-sea ecosystems (e.g., collecting samples in the

long-term monitoring of deep-sea communities) is, as well, needed

to effectively make microbiome-based restoration feasible in the future.

Marine microbial nature-based restoration is an emerging and

promising sector to accelerate and expand the spatial scale of blue

restoration plans and to increase success of restoration initiatives.
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Insights into the interactions among roots, rhizosphere, and rhizobacteria for
improving plant growth and tolerance to abiotic stresses: A review. Cells 10, 1551.
doi: 10.3390/cells10061551
frontiersin.org

https://doi.org/10.1007/s11104-010-0280-y
https://doi.org/10.1007/s11104-010-0280-y
https://doi.org/10.1111/rec.12287
https://doi.org/10.1002/fee.2001
https://doi.org/10.3389/fmicb.2019.02476
https://doi.org/10.1371/journal.pone.0236135
https://doi.org/10.1128/AEM.02795-20
https://doi.org/10.1128/AEM.02795-20
https://doi.org/10.1128/AEM.03391-16
https://doi.org/10.1080/11250000902769680
https://doi.org/10.1371/journal.pone.0249966
https://doi.org/10.1038/srep18268
https://doi.org/10.3389/fmars.2021.626843
https://doi.org/10.1111/1365-2745.14081
https://doi.org/10.1186/S13568-018-0608-1
https://doi.org/10.3389/fmicb.2018.02565
https://doi.org/10.1111/rec.13035
https://doi.org/10.1016/j.mimet.2010.10.001
https://doi.org/10.1007/s10750-023-05221-7
https://doi.org/10.3389/fmars.2019.00707
https://doi.org/10.1111/j.1462-2920.2011.02597.x
https://doi.org/10.3389/fmars.2020.575228
https://doi.org/10.1371/journal.pbio.1002020
https://doi.org/10.1016/J.BIOCON.2018.06.028
https://doi.org/10.1186/s40168-019-0705-7
https://doi.org/10.3354/meps08607
https://doi.org/10.1111/ele.13718
https://doi.org/10.1890/1540-9295
https://doi.org/10.3354/ame01323
https://doi.org/10.1038/s41467-021-25315-x
https://doi.org/10.1038/s41467-021-25315-x
https://doi.org/10.1016/j.tim.2016.11.003
https://doi.org/10.1016/j.tim.2016.11.003
https://doi.org/10.1128/mBio.00560-16
https://doi.org/10.1128/mBio.00812-18
https://doi.org/10.1038/s41396-019-0564-z
https://doi.org/10.1038/s41396-019-0564-z
https://doi.org/10.1007/s003740000319
https://doi.org/10.1098/rspb.2021.1396
https://doi.org/10.1098/rspb.2021.1396
https://doi.org/10.1111/1758-2229.12686
https://doi.org/10.1111/J.0021-8901.2004.00915.X
https://doi.org/10.1111/J.0021-8901.2004.00915.X
https://doi.org/10.1016/bs.amb.2018.05.001
https://doi.org/10.3389/fmicb.2018.02501
https://doi.org/10.1155/2012/532060
https://doi.org/10.1016/j.ecoleng.2013.12.022
https://doi.org/10.1371/journal.pone.0062091
https://doi.org/10.1371/journal.pone.0062091
https://doi.org/10.1007/978-3-642-20332-9_8
https://doi.org/10.1007/978-3-642-20332-9_8
https://doi.org/10.1038/s43705-022-00094-8
https://doi.org/10.1111/gcb.16024
https://doi.org/10.1038/s41598-021-94096-6
https://doi.org/10.1038/s41598-021-94096-6
https://doi.org/10.1016/j.csbj.2020.09.005
https://doi.org/10.1016/j.csbj.2020.09.005
https://doi.org/10.1111/j.1526-100X.2007.00351.x
https://doi.org/10.1128/AEM.02357-08
https://doi.org/10.3390/cells10061551
https://doi.org/10.3389/fmars.2023.1227560
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Corinaldesi et al. 10.3389/fmars.2023.1227560
King, N. G., Moore, P. J., Thorpe, J. M., and Smale, D. A. (2023). Consistency and
variation in the kelp microbiota: patterns of bacterial community structure across
spatial scales. Microb. Ecol. 85, 1265–1275. doi: 10.1007/S00248-022-02038-0

Knowlton, N. (2021). Local management matters for coral reefs. Sci. (1979) 372, 908–
909. doi: 10.1126/science.abi7286

Krishnaswamy, V. G., Mani, K., Senthil Kumar, P., Rangasamy, G., Sridharan, R.,
Rethnaraj, C., et al. (2023). Prevalence of differential microbiome in healthy, diseased
and nipped colonies of corals, Porites lutea in the Gulf of Kachchh, north-west coast of
India. Environ. Res. 216, 114622. doi: 10.1016/j.envres.2022.114622

Lachnit, T., Meske, D., Wahl, M., Harder, T., and Schmitz, R. (2011). Epibacterial
community patterns on marine macroalgae are host-specific but temporally variable.
Environ. Microbiol. 13, 655–665. doi: 10.1111/j.1462-2920.2010.02371.x

Lage, O. M., and Bondoso, J. (2014). Planctomycetes and macroalgae, a striking
association. Front. Microbiol. 5. doi: 10.3389/FMICB.2014.00267

Larkin, M. F., Davis, T. R., Harasti, D., Benkendorff, K., and Smith, S. D. A. (2023).
Substantial advancement in aquaria rearing methods to assist recovery of an
Endangered soft coral. Aquat. Conserv. 33, 1–14. doi: 10.1002/AQC.3895

Lata, R., Chowdhury, S., Gond, S. K., and White, J. F. (2018). Induction of abiotic
stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 66, 268–276.
doi: 10.1111/LAM.12855

Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J., and Lewis, R. R. (2019). Better
restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3,
870–872. doi: 10.1038/S41559-019-0861-Y

Lewis, R. R. (2005). Ecological engineering for successful management and
restoration of mangrove forests. Ecol. Eng. 24, 403–418. doi: 10.1016/
J.ECOLENG.2004.10.003

Li, J., Yang, Q., Dong, J., Sweet, M., Zhang, Y., Liu, C., et al. (2022). Microbiome
engineering: A promising approach to improve coral health. Engineering. doi: 10.1016/
j.eng.2022.07.010

Linares, C., Coma, R., and Zabala, M. (2008). Restoration of threatened red
gorgonian populations: An experimental and modelling approach. Biol. Conserv. 141,
427–437. doi: 10.1016/j.biocon.2007.10.012

Liu, L., Agren, R., Bordel, S., and Nielsen, J. (2010). Use of genome-scale metabolic
models for understanding microbial physiology. FEBS Lett. 584, 2556–2564.
doi: 10.1016/j.febslet.2010.04.052

Liu, H., Li, J., Carvalhais, L. C., Percy, C. D., Prakash Verma, J., Schenk, P. M., et al.
(2021). Evidence for the plant recruitment of beneficial microbes to suppress soil-borne
pathogens. New Phytol. 229, 2873–2885. doi: 10.1111/nph.17057

Liu, P, Zhang, H., Sun, Y., Wang, C., and Hu, X. (2022). Molecular diversity and
biogeography of benthic microeukaryotes in temperate seagrass (Zostera japonica)
systems of northern China. Acta Oceanol. Sin. 41, 115–125. doi: 10.1007/s13131-021-
1960-6

Maire, J., and van Oppen, M. J. H. (2022). A role for bacterial experimental evolution in
coral bleaching mitigation? Trends Microbiol. 30, 217–228. doi: 10.1016/j.tim.2021.07.006

Malfatti, F., Kaleb, S., Saidi, A., Pallavicini, A., Agostini, L., Gionechetti, F., et al.
(2023). Microbe-assisted seedling crop improvement by a seaweed extract to address
fucalean forest restoration. Front. Mar. Sci. 10. doi: 10.3389/FMARS.2023.1181685

Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L., and De Clerck, O. (2016).
Diversity and temporal dynamics of the epiphytic bacterial communities associated
with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and
Nizamuddin. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.00476

Manea, E., Dell’anno, A., Rastelli, E., Tangherlini, M., Nunoura, T., Nomaki, H., et al.
(2019). Viral infections boost prokaryotic biomass production and organic C cycling in
hadal trench sediments. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.01952

Marhaeni, B., Radjasa, O. K., Bengen, D. G., and Kaswadji, R. F. (2010). Screening of
bacterial symbionts of seagrass Enhalus sp. against biofilm-forming bacteria. J. Coast.
Dev. 13, 126–132.

Martin, B. C., Bougoure, J., Ryan, M. H., Bennett, W. W., Colmer, T. D., Joyce, N. K.,
et al. (2019). Oxygen loss from seagrass roots coincides with colonisation of sulphide-
oxidising cable bacteria and reduces sulphide stress. ISME. J. 13, 707–719. doi: 10.1038/
s41396-018-0308-5

McCauley, M., Jackson, C. R., and Goulet, T. L. (2020). Microbiomes of caribbean
octocorals vary over time but are resistant to environmental change. Front. Microbiol.
11. doi: 10.3389/fmicb.2020.01272

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Losǒ, T.,
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