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Intracellular protein trafficking and sorting are extremely arduous in endocrine and
neuroendocrine cells, which synthesize and secrete on-demand substantial
quantities of proteins. To ensure that neuroendocrine secretion operates
correctly, each step in the secretion pathways is tightly regulated and
coordinated both spatially and temporally. At the trans-Golgi network (TGN),
intrinsic structural features of proteins and several sorting mechanisms and
distinct signals direct newly synthesized proteins into proper membrane
vesicles that enter either constitutive or regulated secretion pathways.
Furthermore, this anterograde transport is counterbalanced by retrograde
transport, which not only maintains membrane homeostasis but also recycles
various proteins that function in the sorting of secretory cargo, formation of
transport intermediates, or retrieval of resident proteins of secretory organelles.
The retromer complex recycles proteins from the endocytic pathway back to the
plasma membrane or TGN and was recently identified as a critical player in
regulated secretion in the hypothalamus. Furthermore, melanoma antigen
protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the
retromer-dependent endosomal protein recycling pathway and, by doing so,
ensures proper secretory granule formation and maturation. MAGEL2 is a
mammalian-specific and maternally imprinted gene implicated in Prader-Willi
and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly
discuss the current understanding of the regulated secretion pathway,
encompassing anterograde and retrograde traffic. Although our understanding
of the retrograde trafficking and sorting in regulated secretion is not yet complete,
we will review recent insights into the molecular role of MAGEL2 in hypothalamic
neuroendocrine secretion and how its dysregulation contributes to the symptoms
of Prader-Willi and Schaaf-Yang patients. Given that the activation of many
secreted proteins occurs after they enter secretory granules, modulation of the
sorting efficiency in a tissue-specific manner may represent an evolutionary
adaptation to environmental cues.
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1 Introduction

Constitutive secretion or exocytosis occurs in all cell types and
predominantly facilitates housekeeping functions, including protein
insertion into the plasma membrane or secretion of extracellular
matrix components, growth hormones, and plasma proteins. In
contrast, regulated secretion facilitates the specialized function of
excitable cells (i.e., neurons and endocrine and neuroendocrine
cells) which is to synthesize, store, and secrete on-demand
hormones, neuropeptides, and neurotransmitters. The
fundamental pathway and the basic machinery for regulated and
constitutive secretion are similar, but their regulation and sorting
mechanisms differ (Palade, 1975; Gerber and Sudhof, 2002).
Through a series of membrane-trafficking steps, secretory
proteins are synthesized in the endoplasmic reticulum (ER) and
transported in membrane vesicles via the Golgi network to the
plasma membrane (Palade, 1975). Unlike the continuous release of
secretory molecules in the constitutive pathway, neuropeptides and

hormones in the regulated secretion pathway are accumulated and
stored in secretory vesicles, referred to as secretory granules (SGs),
until cells receive a signal for their release through fusion with the
plasma membrane (Figure 1) (Kelly, 1985). Some secreted small
molecules, like neurotransmitters, are synthesized in the cytosol and
taken up into synaptic vesicles (SVs) just before exocytosis (Liu and
Edwards, 1997; Kogel and Gerdes, 2010). While some neurons
contain only SVs or SGs, hypothalamic neurons can contain both
at the same time (Thureson-Klein, 1983; Burgoyne and Morgan,
2003). Since the nomenclature and abbreviation of vesicles in
constitutive and regulated secretion are sometimes confusing, we
will use the terms secretory vesicles (SeVs) for organelles in the
constitutive secretion pathway and secretory granules and synaptic
vesicles for those in the regulated secretion pathway.

Although the two principal pathways of regulated secretion
share many components, they differ in the size of the vesicles
[i.e., SGs are bigger (>100 nm in radius) than SVs (<25 nm)],
mechanisms by which secretory vesicles are filled with secretory

FIGURE 1
Anterograde and retrograde transport pathways in secretory cells. After protein synthesis in the ER, secretory proteins are sorted in the TGN through
import signals, post-translational modifications, and other oligomeric associations. In the regulated secretion pathway, SGs go through a maturation
process that includes fusion with other immature SGs and condensation of cargo proteins, as well as the removal of excess membrane and missorted
cargo through the budding of clathrin-coated constitutive-like vesicles that may be secreted. Mature SGs accumulate near the plasma membrane
until receiving a signal to undergo exocytosis and release their contents. In contrast, secretory vesicles (SeVs) in the constitutive secretion pathway
continuously release their contents through unregulatedmembrane fusion. In retrograde transport, endocytosedmaterial (e.g., receptors) are brought to
a sorting endosome that directs endosomal material either back to the membrane in a recycling endosome, to immature SGs, to the lysosome for
degradation, or to the TGN.
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molecules, and how the vesicles recycle after exocytosis for a new
round of secretion (Gerber and Sudhof, 2002). In Figure 1, we
schematically depict the major pathways of anterograde and
retrograde trafficking and use only SGs to represent regulated
secretion as SVs are beyond the scope of this review. We will
focus on the regulation and sorting of cargo and resident
proteins of SGs and discuss the sorting mechanisms that direct
cargo and resident proteins in the anterograde transport to SGs.
Furthermore, we will discuss new insights into the regulation of
retrograde trafficking and how it contributes to secretion in the
hypothalamus. Recently, ubiquitination-mediated regulation of
retromer and F-actin nucleation was found to be critical for the
recycling of resident SG proteins and the neuroendocrine function
of the hypothalamus. Ubiquitination is governed by Prader-Willi
associated protein MAGEL2 in conjunction with E3 ubiquitin ligase
TRIM27 and deubiquitinating enzyme USP7 (Hao et al., 2013; Hao
et al., 2015; Chen et al., 2020).

2 Brief overview of the biogenesis,
maturation, and anterograde transport
of secretory granules

Regulated secretion of hormones and neuropeptides is a
multistep, tightly regulated process, involving protein synthesis in
the ER, protein sorting and packing into SGs at the trans-Golgi
network (TGN), SG maturation during vesicle transport from the
TGN to the plasma membrane, SG storage and accumulation near
the plasmamembrane, and ultimately, exocytosis to release SG cargo
in response to a physiological stimulus (Figure 1). For more details
on these steps beyond our summary below, please refer to the
following: (Tooze, 1998; Chieregatti and Meldolesi, 2005; Kim
et al., 2006; Wickner and Schekman, 2008; Kogel and Gerdes,
2010; Tanguy et al., 2016; Ma et al., 2021).

In a process similar to viral budding, nascent SGs start forming
from the TGN by protein accumulation that leads to GTP-
dependent membrane deformation (Tooze, 1998). Cholesterol
facilitates membrane bending and SG scission by promoting
negative membrane curvature and recruiting proteins, like the
ubiquitously expressed mechano-GTPase dynamin-2 (Wang
et al., 2000; Kim et al., 2006; Gonzalez-Jamett et al., 2013; Bhave
et al., 2020). After leaving the TGN, the nascent or immature SGs
(ISGs) undergo maturation while transported in a microtubule-
dependent manner toward the plasma membrane and the F-actin-
rich cell periphery (Figure 1) (Howell and Tyhurst, 1982; Rudolf
et al., 2001; Ponnambalam and Baldwin, 2003).

During granule maturation, the content and membrane
composition of granules undergo remodeling (Figure 2).
Homotypic fusion of ISGs, which contributes to the increased
size and density of mature granules, is mediated by several
proteins, including NSF, α-SNAP, syntaxin 6, and synaptotagmin
IV (Tooze et al., 1991; Urbe et al., 1998; Wendler et al., 2001; Ahras
et al., 2006; Kogel and Gerdes, 2010). During maturation, the lumen
of ISGs progressively acidifies through the activity of vacuolar-type
H+-ATPases (V-ATPases), which are integral membrane proteins in
SGs (Figure 2) (Urbe et al., 1997; Jefferies et al., 2008). Besides
enabling further condensation of soluble cargo, protein aggregation,
and dense core formation, the acidic intragranular pH also activates

PC1/3 and PC2 (Kogel and Gerdes, 2010). These proprotein
convertases (PCs) and carboxypeptidase E (CPE) process most
prohormones and neuropeptides into their mature, bioactive
forms (Steiner, 1998). The maturation of ISGs also involves the
removal of excess membranes and other proteins, including sortilin,
carboxypeptidase D (CPD), syntaxin 6, VAMP-4, synaptotagmin
IV, furin, and mannose-6-phosphate receptors (MPRs), which can
be recycled back to the TGN by retrograde transport (Figures 1, 2, 4)
(Klumperman et al., 1998; Varlamov et al., 1999; Eaton et al., 2000;
Wendler et al., 2001; Ahras et al., 2006; Mitok et al., 2022).
Mechanistically, ISGs contain coat protein patches of clathrin
and AP-1 adaptor complex that mediate the budding of these
proteins from ISGs into constitutive-like vesicles (Dittie et al.,
1996; Dittie et al., 1997; Klumperman et al., 1998; Tooze, 1998;
Eaton et al., 2000; Kakhlon et al., 2006). Overall, the process of
maturation refines the composition of SGs and imparts
responsiveness for regulated exocytosis (Burgoyne and Morgan,
2003; Kogel and Gerdes, 2010).

Mature SGs are stored near the membrane in the F-actin-rich cell
cortex until receiving a stimulus for exocytosis. In contrast to
constitutive secretion, exocytosis fusion is confined to specific sites
within the plasma membrane of the polarized secreting cell and is
temporally regulated by an extracellular secretion signal that increases
the intracellular concentration of Ca2+ or cAMP (Meldolesi, 2002;
Burgoyne and Morgan, 2003; Tanguy et al., 2016). Then, mature
SGs undergo a series of ATP-dependent processes, such as priming,
tethering, docking, and fusion to release their contents (Burgoyne and
Morgan, 2003; Tanguy et al., 2016). These processes are mediated by
several evolutionarily conserved proteins, including soluble
N-ethylmaleimide-sensitive factor attachment protein receptors
(SNAREs), NSF with adaptor proteins, Rab GTPases, SM (sec1/
munc18-like) proteins, and synaptotagmins (Gerber and Sudhof,
2002; Burgoyne and Morgan, 2003; Wickner and Schekman, 2008).
SNARE proteins enable the fusion of SGs with the plasma membrane
through the formation of the SNARE complex, where v-SNARE
(VAMP) on the SG membrane interacts with t-SNAREs (syntaxin
1 and SNAP-25) on the plasma membrane (Gerber and Sudhof, 2002;
Burgoyne and Morgan, 2003). Synaptotagmins are calcium-binding
proteins that act as calcium sensors and interact with both the granule
and plasmamembranes to trigger fusion and exocytosis (Sudhof, 2002).

Secretion is followed by rapid retrieval of the SG membrane and
resident proteins through multiple endocytic pathways whose
regulation is less understood but recently attracted our attention by
the serendipitous discovery of the role of MAGEL2 in retromer-
dependent retrograde transport (Chen et al., 2020). In the next
section, we will describe the composition of SGs with a focus on the
SG-unique resident proteins (i.e., granins, PCs, and CPE). Then, we will
describe the current understanding of their sorting into the regulated
secretion pathway at the TGN (i.e., anterograde transport) and their
retrieval and sorting at the endosome (i.e., retrograde transport).

3 Secretory granule composition with a
focus on SG-resident proteins

SGs are distinct organelles of endocrine and neuroendocrine
cells with a lipid bilayer that encases a dense proteinaceous core to
efficiently store hormones and neuropeptides in an osmotically inert
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environment (Figure 2) (Burgess and Kelly, 1987). Compared to
other biological membranes, SGs have a low protein-to-lipid ratio.
Membrane proteins in SGs include transporters [e.g., V-ATPase,
monoamine transporter, and peptidylglycine α-amidating
monooxygenase enzyme (PAM)] and proteins that facilitate SG
transport and exocytosis (e.g., VAMP and synaptotagmins)
(Figure 2) (Thiele and Huttner, 1998b). The composition and
size of SGs vary depending on cell type and maturation state
(Hammel et al., 2010; Shitara et al., 2020). SGs contain several
resident proteins, including PCs, CPE, and granins, that are required
for the proper sorting of cargo proteins into ISGs at the TGN and the
anterograde transport of SGs.

In neurons, SGs coexist with SVs that are filled locally with
neurotransmitters, such as biogenic amines, at the presynaptic
terminals and regenerated after exocytosis through the refilling of
their cargo. However, the vesicles themselves are generated at the
TGN (Burgoyne and Morgan, 2003). Though many proteins
involved in regulated secretion are shared between vesicles and
granules, some proteins are specific to SVs or SGs and facilitate their
distinct functions of neurotransmitter or neuropeptide/hormone
secretion, respectively (Gerber and Sudhof, 2002). SG-specific
components are mainly enzymes and proteins that enable
neuropeptide maturation and condensation during maturation

for long-term storage. Importantly, protein recycling of many of
these SG-resident proteins and granule membrane components is
necessary for regulated secretion in the hypothalamus (Hurtley,
1993; Bittner et al., 2013; Chen et al., 2020).

3.1 Proprotein convertases (PCs)

Neuropeptide precursors packaged into SGs are cleaved into
active peptides and hormones by SG-resident PCs. The PC family
contains nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4,
PC7, SKI-1/S1P, and PCSK9 (Seidah et al., 2013). PC1/3 and PC2
(proprotein convertase subtilisin/kexin type 1/3 and 2) are encoded
by PCSK1 and PCSK2 genes and act as basic proprotein convertases
that cleave after polybasic clusters (Seidah et al., 1991; Cendron et al.,
2023). PC1/3 and PC2 are selectively expressed in endocrine and
neuroendocrine cells, suggesting they are important in prohormone
processing within SGs (Figure 3) (Halban and Irminger, 1994; Zhou
et al., 1999). PC1/3 and PC2 process a plethora of prohormones,
including pro-opiomelanocortin (POMC), neuropeptide Y (NPY),
agouti-related peptide (AGRP), progrowth-hormone releasing
hormone (GHRH), prothyrotropin-releasing hormone (TRH),
proinsulin, and proglucagon (Paquet et al., 1996; Nillni, 2010;

FIGURE 2
Components of immature (A) and mature (B) secretory granules. Lipid-raft-associated proteins like CPE, CPD, and secretogranin III interact with
aggregates of regulated secretory pathway proteins and granulogenic proteins (e.g., granins like ChgA andChgB) that form the dense proteinaceous core
of mature SGs. Proton pumps increasingly acidify the SG lumen during maturation, which activates proprotein convertases and carboxypeptidases that
process prohormones. The budding of clathrin-coated constitutive-like vesicles from immature SGs removes missorted constitutively secreted
proteins and many other proteins shown in brown, including the peptidase furin, M6P-lysosomal enzymes bound to mannose-6-phosphate receptors
(CI-M6PR or CD-M6PR), sortilin, synaptotagmin IV, VAMP4, and syntaxin 6. Calcium binding to synaptotagmin 1 stimulates exocytosis, which is mediated
by v-SNARE proteins and other complexes. Mature SG size ranges from 50 nm in the sympathetic nervous system to 1,000 nm in pituitary mammotrophs
or neurohypophyseal cells.
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Seidah, 2011; Cawley et al., 2016). Consequently, defects in PC1/3 or
PC2 activity result in several endocrinopathies in both humans and
rodents (Furuta et al., 1997; Jackson et al., 1997; Steiner, 1998; Zhu
et al., 2002; Scamuffa et al., 2006; Mbikay et al., 2007; Anini et al.,
2010; Creemers et al., 2012; Seidah and Prat, 2012).

3.2 Carboxypeptidase E (CPE)

After endoproteolytic cleavage by PC1/3 and/or PC2, the newly
exposed C-terminal basic residues of prohormones are removed by
CPE, another resident protein of SGs (Burgoyne and Morgan, 2003).
CPE was first identified as enkephalin convertase and subsequently
found to cleave the C-terminally extended basic residues from diverse
peptide intermediates, including POMC and probrain-derived
neurotrophic factor (BDNF) (Fricker and Snyder, 1982; Hook et al.,

1982; Fricker, 1988; Lou et al., 2005). CPE is expressed primarily in
endocrine tissues and specific areas of the central nervous system
(Figure 3) (Fricker, 1988; Cawley et al., 2012; Ji et al., 2017). CPE
differs from other carboxypeptidases in that its optimal pH is in the
acidic range, consistent with its localization to acidic compartments of
the TGN and to the dense core of SGs where prohormone processing
occurs (Supattapone et al., 1984; Ji et al., 2017).

Like other proteins in the regulated secretory pathway, CPE is
synthesized in the ER as a 476-amino acid precursor containing an
N-terminal signal peptide that directs proCPE into the ER before its
removal (Song and Fricker, 1995a). ProCPE is transported through
the Golgi to SGs where the 17-amino acid “pro” region is cleaved
after a penta-arginine sequence to generate mature membrane-
bound CPE that is glycosylated at two N-linked glycosylation
consensus sites, Asn139 and Asn390 (Song and Fricker, 1995a;
Cawley et al., 2012; Ji et al., 2017). Within SGs, the membrane-

FIGURE 3
Heatmap showing expression of constitutive components of SGs, retromer, MUST, WASH, and ARP2/3 complexes. Data was extracted from GTEx
on 05/24/2023.
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bound CPE can be further processed by cleavage of its C-terminal
cytoplasmic tail to generate a soluble form of CPE that is
enzymatically more active (Hook, 1985; Fricker and Devi, 1993).

In addition to its enzymatic function, CPE acts as the
quintessential regulated secretory pathway sorting receptor for
many prohormones (e.g., POMC, pro-BDNF, proenkephalin,
proinsulin, and prophogrin). Under mildly acidic conditions and
increasing calcium concentrations, CPE aggregates and binds SG
cargo proteins through their prohormone sorting signals, such as
those found in POMC (Song and Fricker, 1995b; Rindler, 1998;
Zhang et al., 1999). CPE binding enables protein condensation and
directs cargo proteins to SGs (Cawley et al., 2012). The C-terminus
of CPE forms an amphipathic α-helix under acidic conditions that
binds to lipid rafts in the TGN membrane and directs prohormones
bound to CPE into nascent granules (Fricker et al., 1990;
Dhanvantari and Loh, 2000; Dhanvantari et al., 2002; Zhang
et al., 2003; Cawley et al., 2012). In a neutral environment
(pH 7.2), CPE’s C-terminus does not exhibit a helical secondary
structure, preventing premature association with the membrane
(Dhanvantari et al., 2002). Interestingly, CPE may only sort
certain prohormones to the regulated secretory pathway, as CPE
depletion did not affect sorting of chromogranin A (CHGA) (Cool
et al., 1997; Normant and Loh, 1998; Ji et al., 2017).

3.3 The granin family

Chromogranins A and B (CHGB), secretogranins II and III
(SCGII and SCGIII), and a few additional related proteins together
comprise the granin family of water-soluble acidic glycoproteins
(Bartolomucci et al., 2011). These granin proteins serve essential
roles in the regulated secretory pathway, with the chromogranins
comprising much of the SG matrix (O’Connor and Frigon, 1984;
Borges et al., 2010), and, accordingly, are predominantly expressed
in endocrine and neuroendocrine cells (Figure 3) (Day and Gorr,
2003; Dominguez et al., 2018). Like CPE and other SG resident
proteins, granins are also synthesized at the rough ER, inserted into
the ER cisternae via a signal peptide located at their N termini, and
trafficked to the TGN via transport vesicles (Bartolomucci et al.,
2011). Several biochemical properties that are critical for the
function of granins include an acidic isoelectric point, Ca2+

binding, and thermostability (Yoo and Albanesi, 1991; Taupenot
et al., 2003; Bartolomucci et al., 2011). Additionally, granins
aggregate in an acidic environment (pH 5.5) with a millimolar
concentration of calcium ions and, by doing so, induce granule
formation (Chanat and Huttner, 1991; Parmer et al., 1993;
Koshimizu et al., 2010). Granins are negatively charged, which
may prevent premature aggregation, but a surplus of calcium
ions and protons in the SG lumen may help neutralize the
repulsive forces among the granin proteins to allow aggregation
(Glombik and Gerdes, 2000). An alternative explanation proposed is
that the pH gradient prompts interactions between negative and
positive charges of cargo proteins, and then divalent ions may
generate a chelate bridge between two negatively charged granins
to permit aggregation (Ma et al., 2008; Zhang et al., 2010).

CHGA, the most well-studied granin family member, is a
prohormone and a granulogenic factor in neuroendocrine tissues
(Laguerre et al., 2020). While CHGA is mostly hydrophilic, its C-

and N-termini contain hydrophobic and cell-specific evolutionarily
conserved sequences necessary for sorting and granulogenesis (Yoo
and Lewis, 1993; Cowley et al., 2000; Montero-Hadjadje et al., 2009;
Elias et al., 2010). Cysteine residues within the amino terminus form
an intramolecular disulfide loop to interact with the membrane
(Parmer et al., 1993; Yoo, 1994; Kang and Yoo, 1997). The primary
structure of CHGA contains several glutamic acid stretches that can
interact with Ca2+, leading to aggregation in specific environments,
such as the TGN and SG (Parmer et al., 1993). CHGAmay associate
with membrane either directly by binding to specific lipids (e.g.,
phosphatidic acids enriched in TGN and SG membranes) (Carmon
et al., 2020; Tanguy et al., 2020) or indirectly by interacting with
SCGIII, which in turn binds to cholesterol-rich membranes and
targets proteins to the regulated secretory pathway (Hosaka et al.,
2004; Han et al., 2008).

Besides their granulogenic function, granins contribute to
calcium homeostasis and many are also precursors of bioactive
peptides that, upon further processing in ISGs, modulate different
physiological processes, including pain pathways, inflammatory
responses, metabolic and mood disorders, and blood pressure
(Montero-Hadjadje et al., 2008). As an example, the CHGA-
derived peptide pancreastatin, which was the first granin-derived
peptide discovered, strongly inhibits glucose-induced insulin release
(Tatemoto et al., 1986; Bartolomucci et al., 2011).

Even though the granin family is ubiquitously expressed in
neuroendocrine tissues, individual proteins exhibit tissue
specificity and redundancy (Figure 3). For example, the ablation
of Chga and Chgb reduced the size and number of SGs in adrenal
chromaffin cells, while SGs in mouse hippocampal neurons were
unaffected (Dominguez et al., 2018). In addition, ablation of Chga
upregulated the expression of Chgb and secretogranins II-VI in the
adrenal medulla and other endocrine glands (Hendy et al., 2006).
These data indicate that chromogranin-mediated dense core
formation of SG is tissue-specific and that other granin family
members may perform a similar function.

3.4Mannose-6-phosphate receptors (MPRs)

MPRs facilitate the transport of soluble acid hydrolases from the
TGN to the lysosome by binding to mannose-6-phosphate (M6P)
modifications on the enzymes. There are two different MPRs, the
larger cation-independent receptor (CI-MPR) and the smaller
cation-dependent receptor (CD-MPR) that binds M6P more
efficiently in the presence of divalent cations (Gary-Bobo et al.,
2007). Besides binding to phosphomannosyl residues, the
extracellular region of CI-MPR, also known as IGF2R, binds
insulin-like growth factor (IGF)-II to facilitate its endocytosis and
clearance by lysosomal degradation (Oka et al., 1985; Oshima et al.,
1988; Schmidt et al., 1995; Brown et al., 2008). CI-M6PR also binds
other ligands, such as retinoic acid, granzyme B, latent TGF-β,
urokinase-type plasminogen activator receptor, and leukemia
inhibitory factor, impacting a variety of biological pathways
(Purchio et al., 1988; Kang et al., 1997; Blanchard et al., 1999;
Godar et al., 1999; Veugelers et al., 2006).

CI-MPR is one of the most thoroughly studied proteins that is
removed from ISGs and then recycled back to the TGN (Figures 1, 2,
4, 5) (Bonnemaison et al., 2013; Seaman, 2018). As SGs mature, the
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concentration of MPRs declines by about 90% (Klumperman et al.,
1998). MPRs are sorted from ISGs by binding to adaptor protein 1
(AP-1) and the Golgi-localized, γ-ear containing, ARF-binding
(GGA) family of proteins in clathrin and syntaxin 6–positive
vesicles that are delivered to endosomes (Figures 1, 2)
(Klumperman et al., 1998; Coutinho et al., 2012). Then, the
multiprotein retromer complex mediates the endosome-to-TGN
retrieval of CI-MPR (Bonnemaison et al., 2013; Seaman, 2018).
Retromer is critical for the recycling and reuse of MPRs in a new
cycle of acid hydrolase transportation.

In the following sections, we discuss sorting into the regulated
secretory pathway, as well as the retromer-dependent recycling of
CI-MPR, potential retrograde trafficking targeting motifs, and
finally, the tissue-specific role of MAGEL2 in the retromer-
dependent recycling of mature and immature SG components.

4 Sorting compartments, mechanisms,
and signals in the anterograde pathway
of regulated secretion

Overall, the cellular life of regulated secretory proteins (RSPs)
begins similarly to constitutive secretory proteins. An N-terminal
signal sequence enables the signal recognition particle (SRP)-
dependent co-translational translocation into the ER lumen. This
signal sequence is then removed from the nascent protein, and the

protein is post-translationally modified during anterograde transport
through the Golgi to the TGN. The TGN serves as the main sorting
station in the anterograde traffic of secretory proteins, and the sorting is
fine-tuned during ISG maturation when the missorted proteins are
removed by clathrin-coated vesicles (Figures 1, 2, 4) (Farquhar and
Palade, 1998). The canonical targeting signals that direct proteins into
the constitutive secretory pathway or to other cellular destinations (e.g.,
the plasma membrane, mitochondria, nucleus, and lysosomes), as well
as the signals for ER or Golgi retention, are well established. In contrast,
RSPs are not targeted to SGs by a common sorting motif but rather
through intrinsic protein features and a variety of motifs that may
synergize to increase granule-sorting efficiency (Glombik and Gerdes,
2000; Lacombe et al., 2005). As an example of multiple sorting signals
being present on a single molecule, prothyrotropin-releasing hormone
has two intermediates that are stored in different vesicles and secreted
by different stimuli (Perello et al., 2008). Specific sorting signals that
have been discovered on RSPs include linear amino acid sequences,
conformation epitopes, polypeptides, and post-translational
modifications (Thiele and Huttner, 1998b). The propensity of RSPs
to aggregate contributes to their sequestration in the TGN, packaging
into ISGs, and removal of mistargeted proteins from ISGs during
maturation. Besides aggregation, association with distinct membrane
lipids, sorting receptors, and adaptor proteins also facilitate the sorting
of soluble RSPs to SGs (Thiele and Huttner, 1998b; Glombik and
Gerdes, 2000; Kogel andGerdes, 2010; Bonnemaison et al., 2013). These
sorting signals and mechanisms can also be tissue- or cell-specific

FIGURE 4
Proposed sorting models for secreted proteins. (A) In the “sorting for entry” model, secreted and lysosomal proteins are segregated by binding to
specific receptors clustered in the TGN before granule formation. (B) In the “sorting by retention”model, secreted and lysosomal proteins enter nascent
SGs, but the non-regulated secretory proteins are excluded from the maturing SG by budding, possibly mediated by clathrin.
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(Chidgey, 1993; Marx et al., 1999; Cowley et al., 2000; Dikeakos and
Reudelhuber, 2007).

4.1 Sorting models

For secreted proteins, there are two proposed sorting models
that are not mutually exclusive, as supporting evidence suggests both
models may occur in cells (Figure 4) (Dikeakos and Reudelhuber,
2007; Goronzy and Weyand, 2009). In the “sorting-at-entry”model,
constitutively secreted proteins are segregated from regulated
proteins by binding to specific receptors clustered in the TGN
before granule formation (Figures 4, 5) (Chidgey, 1993). Initial
aggregation of cargo proteins (e.g., granins and prohormones) in
a mildly acidic pH (6.0–6.5) and cation-dependent manner excludes
certain constitutive proteins. Then, the aggregates can bind to
sorting receptors at the TGN membrane. One of the first sorting
receptors proposed was CPE, which sorts POMC and proBDNF
(Cool et al., 1997; Lou et al., 2005). SCGIII can also act as a sorting
receptor, as SCGIII associates with cholesterol-sphingolipid-rich
membrane microdomains (i.e., lipid rafts) in the TGN membrane
and, by doing so, serves as a sorting receptor for CHGA in pituitary

and pancreatic cells (Tooze, 1998; Hosaka et al., 2004; Park and Loh,
2008). Receptors are then recycled through vesicles budding off ISGs
(Tooze, 1998).

In the “sorting by retention” model, both regulated and non-
regulated proteins enter the nascent granule with the latter proteins
excluded from the ISG by budding of clathrin-coated vesicles
(Chidgey, 1993). In support of this model, lysosomal proteins
have been found in immature SGs, which are then most likely
excluded through binding to MPRs and budding of a
constitutive-like vesicle. All evidence points to the conclusion that
the best-fitting sorting model is reliant on the specific protein, its
affinity for aggregation, the relative speed of its synthesis, and tissue
or cell specificity (Tooze, 1998). As an example of cell specificity, the
sorting domain in the C-terminus of PC2 is essential for sorting in
Neuro2A cells (Assadi et al., 2004) but is not required in
corticotrophic AtT-20 cells (Taylor et al., 1998; Lacombe et al.,
2005). Similarly, the SG sorting of CHGA and CHGB requires an
N-terminal domain in neuroendocrine PC12 cells but not in
endocrine GH4C1 cells (Chanat et al., 1993); rather, a C-terminal
region of CHGA was required for proper sorting in GH4C1 cells
(Cowley et al., 2000). Different sorting domains on the same protein
offer insights not only into targeting efficiency but also into the

FIGURE 5
Sorting of proteins destined for the regulated secretory pathway occurs through various mechanisms, motifs, and adaptor proteins. (A,B)Within the
lumen of the TGN and ISGs, sortingmotifs within RSPs and interactions with other proteins facilitate aggregation and association with the membrane. (C)
On the cytosolic side of the TGN/SG membrane, adaptor proteins recognize specific motifs in RSPs to help with sorting, and phosphorylation of some
RSPs, like furin, enhances sorting.
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possibility of targeting signal redundancy, which may offer
protection from mutations and other damage.

4.2 Sorting mechanisms

Mechanistically, several processes contribute to sorting RSPs into the
regulated secretory pathway. An intrinsic propensity to aggregate
combined with Ca2+-binding motifs underly one sorting
mechanism–selective aggregation of a subset of soluble proteins in
the TGN, excluding soluble non-aggregating proteins and giving rise
to SGs (Figure 5). In this aggregation mechanism, only one or perhaps a
small number of proteins need to interact with the membrane, as the
other regulated proteins are targeted to the SG through protein-protein
interactions mediated by helper proteins, like the granins. Accordingly,
overexpression of CHGB led to more effective sorting into granules in
cells (Natori and Huttner, 1996; Huh et al., 2003). Expression of
granulogenic proteins (e.g., CHGA) in regulated secretory-deficient
cells was sufficient to induce the formation of vesicles that resembled
SGs (Kim et al., 2001; Huh et al., 2003; Beuret et al., 2004). However,
aggregation alone is insufficient to target all RSPs to SGs (Quinn et al.,
1991; Jutras et al., 2000), suggesting additional sorting mechanisms
(Lacombe et al., 2005).

Association with lipid rafts is another sorting-at-entry
mechanism used by several RSPs (Figure 5). Through insertion
into lipid rafts, the transmembrane domains of several prohormone-
processing enzymes, like PAM, mediate their own sorting into the
regulated secretory pathway (Bell-Parikh et al., 2001). In addition,
several sorting receptors in the TGN recruit and fasten SG-destined
proteins to membrane sites where a nascent vesicle will bud (Park
and Loh, 2008). For example, SCGIII, CPE, PC1/3, and PC2 have all
been reported to associate with cholesterol- and sphingolipid-rich
lipid rafts, which is crucial for their own targeting to the regulated
secretory pathway (Dhanvantari and Loh, 2000; Jutras et al., 2000;
Arnaoutova et al., 2003; Assadi et al., 2004; Hosaka et al., 2004;
Dikeakos et al., 2009).

Besides interacting with sorting receptors, various cargo
adaptors, such as adaptor protein (AP) complexes and
monomeric GGA proteins, can help direct proteins into their
appropriate transport carriers (Figure 5) (Robinson, 2004). The
AP family includes five cytosolic heterotetrameric complexes, AP-
1 to AP-5, that mediate sorting of transmembrane proteins on
defined intracellular routes (Bonnemaison et al., 2013). AP-1, AP-3,
and AP-4 are associated with the TGN, and AP-1 also removes
material from ISGs (Bonnemaison et al., 2013; Guardia et al., 2018).
AP-2 regulates clathrin-mediated endocytosis at the plasma
membrane, and AP-5 facilitates the retrograde transport of
proteins from endosomes to the TGN (Bonnemaison et al., 2013;
Hirst et al., 2013; Guardia et al., 2018). The subunits of these AP
complexes have several isoforms in mammals, suggesting
evolutionary adaptation to finetune the process of regulated
secretion, particularly in neurons that uniquely express two AP-3
subunits (Dell’Angelica et al., 1997; Boehm and Bonifacino, 2002;
Bonifacino, 2014; Li et al., 2016; Guardia et al., 2018). GGA proteins
act as monomeric clathrin adaptors (Bonifacino, 2004). Arf small G
proteins in an active GTP-bound, membrane-associated state
mediate the membrane recruitment of AP complexes and GGAs
(Traub et al., 1993; Austin et al., 2000; Collins et al., 2003; Ren et al.,

2013). Then, AP complexes can bind to the cytoplasmic tails of cargo
proteins and recruit coat proteins (i.e., clathrin) and accessory
proteins to drive vesicle formation (Bonnemaison et al., 2013;
Tan and Gleeson, 2019). Upon the release of secretory vesicles
from the TGNmembrane, coat proteins are dissociated and recycled
for additional rounds of vesicle formation (Tan and Gleeson, 2019).

4.3 Sorting domains and motifs

The motifs and domains on RSPs that are responsible for their
proper sorting into SGs remain enigmatic and not uniform. In
general, sorting signals facilitate the aggregation of cargo proteins or
piggyback anchoring through association with membrane domains
and other proteins (Figure 5).

Within the TGN lumen, proteins targeted to SGs tend to
aggregate, not only promoting formation of the dense core of the
SGs but also enabling their own sorting to the regulated secretion
pathway (Figure 5) (Burgess and Kelly, 1987). Several motifs and
domains within RSPs promote aggregation and sorting to SGs. In
the case of CHGA, several glutamic acid repeats interact with Ca2+

and promote aggregation at the TGN and in SGs (Parmer et al.,
1993). Small disulfide (CC) loops also act as SG sorting signals by
promoting self-aggregation at the TGN (Reck et al., 2022). These CC
loops are present frequently at the very N- or C-terminus of proteins
or close to processing sites and thus potentially exposed (Reck et al.,
2022). For example, in POMC, an N-terminal 13-residue CC loop is
necessary and sufficient for granule sorting (Tam et al., 1993; Cool
et al., 1995; Loh et al., 2002). Longer disulfide loops in CHGA and
CHGB are also involved in their sorting to SGs (Kang and Yoo, 1997;
Kromer et al., 1998; Glombik et al., 1999; Taupenot et al., 2002). In
addition, di-basic processing sites and acidic motifs in prohormones
were shown to promote granule sorting, likely via interaction with
PCs or CPE (Brechler et al., 1996; Lou et al., 2005). The sorting signal
motif for CPE recognition was first identified as two acidic residues
and two aliphatic hydrophobic residues in POMC (Cool et al., 1995),
and similar sorting motifs were subsequently found in proinsulin
(Dhanvantari et al., 2003), BDNF (Lou et al., 2005), and
proenkephalin (Normant and Loh, 1998; Cawley et al., 2016).

Amphipathic helices enable interaction with the granule
membrane and are important for the incorporation of RSPs and
enzymes, like PCs and CPE, into SGs. Besides a disulfide-bonded
hydrophobic loop that interacts with SG membrane (Kang and Yoo,
1997), the N-terminal region of CHGA also contains an
amphipathic α-helix that may be necessary for sorting CHGA/
hormone aggregates into SGs (Thiele and Huttner, 1998a;
Taupenot et al., 2002; Laguerre et al., 2020). Similarly,
proglucagon is sorted by α-helices present in the mature
hormone domains rather than in the typical prohormone domain
(McGirr et al., 2013; Guizzetti et al., 2014). Tissue-specific
processing of proglucagon by PCs yields glucagon in pancreatic α
cells (Furuta et al., 2001) or glucagon-like peptide 1 (GLP-1) and
GLP-2 in intestinal L cells and hypothalamic neurons (Dhanvantari
et al., 1996; Damholt et al., 1999; Holt et al., 2019). Although each of
these products contains α-helices, only the non-amphipathic,
dipolar α-helices on glucagon and GLP-1 efficiently target them
to the regulated secretory pathway (Guizzetti et al., 2014). In
contrast, GLP-2 has a more uniform negative charge distribution
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along the length of its α-helix (Guizzetti et al., 2014). PC1/3, PC2,
and PC5/6A also contain α-helices in their C-termini that form
electrostatic interactions and help sort proteins into the regulated
secretion pathway (Assadi et al., 2004; Dikeakos et al., 2007b;
Dikeakos et al., 2009). There seems to be no correlation between
the helix length or the isoelectric point and sorting efficiency, but
helices with a positive or negative charge and a hydrophobic
segment seem the most effective in sorting (Dikeakos et al.,
2007a), suggesting electrostatic interactions also play a role in
aggregation, either inter- or intra-molecularly (Zhang et al.,
2010). Indeed, Ma et al. (2008) identified four to five residues,
two of which are charged, as the elementary sorting unit for
protachykinin targeting to SGs. Clustering of these charged
elementary units improved aggregation, leading to an additive
and graduated effect that also improved sorting (Ma et al., 2008).
In summary, charged amphipathic helices or non-amphipathic
helices that have segregated charges and a hydrophobic patch are
sufficient for targeting to secretory granules (Dikeakos et al., 2007a).

On the cytosolic side, specific motifs in the cytoplasmic domains
of SG membrane proteins enable binding to adaptor proteins
(Figure 5). The acidic-cluster-dileucine motif (DXXLL, where X
is any amino acid) found in MPRs and sortilin, for example, is
recognized by GGA proteins (Johnson and Kornfeld, 1992a; b; Chen
et al., 1997; Nielsen et al., 2001; Puertollano et al., 2001). Serine and
threonine residues embedded within cytosolic acidic clusters serve as
substrates for casein kinase II (CKII) phosphorylation that enhances
the sorting of proteins, like PAM, CI-MPR, and furin (Meresse et al.,
1990; Jones et al., 1995; Chen et al., 1997; Steveson et al., 2001). In
addition, VAMP4, phogrin, MPRs, and lysosomal proteins contain
tyrosine-based (YXXΦ, where Φ is a bulky hydrophobic residue)
and dileucine [(D/E)XXXL(L/I)] sorting motifs that are recognized
by AP complexes (Glickman et al., 1989; Honing et al., 1997; Peden
et al., 2001; Ghosh and Kornfeld, 2004; Torii et al., 2005; Wasmeier
et al., 2005; Braulke and Bonifacino, 2009). These interactions
between sorting motifs and adaptor proteins directs MPRs and
their cargo proteins into TGN-derived, clathrin-coated vesicles that
fuse with endosomes (Doray et al., 2002; Waguri et al., 2003; Braulke
and Bonifacino, 2009).

In summary, several years of research uncovered how cells
control the secretion of proteins and proposed two major
models, sorting-at-entry and sorting by retention, to describe
how proteins are sorted into the proper pathway at the TGN.
Both models incorporate several sorting mechanisms that
promote protein aggregation and binding to unique membrane
lipids, leading to SG formation. After budding from the TGN,
both constitutive and regulated secretory vesicles are transported
to secretion sites at the plasma membrane via microtubule-based
transport systems (Park and Loh, 2008).

4.4 Cytoskeletal filaments in the sorting and
trafficking of regulated proteins

Kinesin, dynein, and myosin are molecular motors that
transport SeVs and SGs along microtubule or actin tracks. In
general, SeVs and SGs use the same type of microtubule motor,
such as kinesin, for anterograde transport to the secretion sites, and
cytoplasmic dynein for retrograde transport back to the cell body

(van den Berg and Hoogenraad, 2012). Tight regulation of the
transport machinery is critically important to ensure that
proteins are picked up and delivered to the right place at the
right time. At the end of microtubule-based transport, SGs are
transferred to the actin cortex close to the plasma membrane with
the help of myosin V and the F-actin motor proteins (Rose et al.,
2003; Rudolf et al., 2003). Actin and myosin have established
themselves as key players in regulated secretion by providing
tracks to target SGs to fusion sites, actively squeezing cargoes
from fused vesicles, and following fusion, retrieving excess
membrane to maintain cell surface area and recycle several SG-
resident proteins (Rudolf et al., 2003; Rojo Pulido et al., 2011; Li
et al., 2018; Miklavc and Frick, 2020). Besides its role as the transport
platform for myosin motors, F-actin acts as a physical barrier for SG
exocytosis and is also involved in the regulation of sorting at the
TGN (Park and Loh, 2008; Gutierrez and Villanueva, 2018). During
SG biogenesis, F-actin is recruited to the budding granule by actin-
related protein-2/3 (ARP2/3) and myosin 1b (Delestre-Delacour
et al., 2017). ARP2/3 complex binds to actin and exerts an active role
in SG formation through its nucleation and branching activities that
provide a structural or force-generating scaffold (Goley and Welch,
2006). The nucleation core activity of ARP2/3 is activated by
nucleation promoting factors, such as members of the Wiskott-
Aldrich syndrome family (WASP, N-WASP, WAVE, and WASH
proteins) (Welch and Mullins, 2002; Alekhina et al., 2017).

The fine-tuned control of actin polymerization on endosomes is
fundamental for the retrieval and recycling of several cargoes
(Puthenveedu et al., 2010; Simonetti and Cullen, 2019). Retrieval
and recycling are orchestrated by several multi-protein complexes,
including retromer, commander/CCC/retriever, sorting nexins, and
the ARP2/3-activatingWASH complex (Simonetti and Cullen, 2019;
MacDonald et al., 2020; Placidi and Campa, 2021). Recently,
MAGEL2 regulation of the WASH complex and ARP2/
3 activation was shown to prevent lysosomal degradation of SG-
resident proteins and enable the proper neuroendocrine function of
the hypothalamus, suggesting a tissue-specific regulation of
compensatory endocytosis in regulated secretion (Figure 6)
(Chen et al., 2020). In the next paragraphs, we will briefly
summarize retromer-dependent retrograde recycling and its
regulation.

5 Endocytic recycling of proteins in the
regulated secretory pathway

In the secretory pathway, the anterograde trafficking of
membranes is compensated by the retrograde transport of lipids
and proteins to maintain membrane homeostasis and recycle
various proteins and lipids. Endocytic recycling contributes to
membrane receptor abundance, cell resensitization, and
downstream signaling (Sannerud et al., 2003; Lucas and Hierro,
2017). Protein recycling is also important in the regulated secretion
of hormones and neuropeptides (Ferraro et al., 2005; Chen et al.,
2020; Neuman et al., 2021).

Endocytosis, occurring through clathrin-dependent and
-independent mechanisms, internalizes lipids and proteins from
the plasma membrane into early/sorting endosomes (Cullen and
Steinberg, 2018; MacDonald et al., 2020). From the sorting
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endosome, cargo can be recycled back to the plasma membrane or
retrograde trafficked to the TGN; both pathways prevent the
lysosomal degradation of these recycled proteins (Chamberland
and Ritter, 2017; Ma and Burd, 2020; Placidi and Campa, 2021).
Ubiquitinated endosomal cargo is directed to lysosomes for
degradation by ESCRT (endosomal sorting complex required for
transport) complexes (Placidi and Campa, 2021).

Cargo recycling was historically thought of as a passive process,
but the recent identification and characterization of specialized
recycling complexes (i.e., retromer and commander/CCC/
retriever complexes) that recognize specific signals in cytoplasmic
domains of cargo proteins revealed the complexity of retrograde
sorting machinery (Cullen and Steinberg, 2018; Singla et al., 2019;
MacDonald et al., 2020; Placidi and Campa, 2021; Yong et al., 2022).
The discovery that several transmembrane proteins, like CI-MPR
and β2-adrenergic receptor, travel specific recycling routes first
suggested the existence of active sorting to direct cargo into a
non-degradative endosomal pathway to its correct cellular
destination, such as the plasma membrane or TGN (Duncan and
Kornfeld, 1988; Cao et al., 1999; MacDonald et al., 2020; Placidi and

Campa, 2021). The subsequent discovery of the trimeric retromer
complex (VPS26, VPS29, VPS35) (Arighi et al., 2004; Seaman,
2004), other retromer-like complexes (i.e., retriever) (McNally
et al., 2017), and the WASH complex (composed of WASH,
FAM21, CCDC53, SWIP/KIAA1033, and Strumpellin) (Derivery
et al., 2009; Gomez and Billadeau, 2009; Harbour et al., 2010)
confirmed that sequence-dependent recycling actively opposes
degradation (Gershlick and Lucas, 2017; MacDonald et al., 2020;
Placidi and Campa, 2021). The WASH complex is the major
endosomal actin polymerization-promoting complex that
stimulates the activity of the ubiquitously expressed ARP2/
3 F-actin nucleation complex and the formation of branched
actin patches (Derivery et al., 2009; Gomez and Billadeau, 2009;
Liu et al., 2009; Seaman et al., 2013). As in anterograde transport,
actin and regulation of its polymerization are key components of
retrograde transport (Puthenveedu et al., 2010; Seaman et al., 2013;
Simonetti and Cullen, 2019; Miklavc and Frick, 2020). Furthermore,
the mammalian-specific MAGEL2 has emerged as a tissue-specific
regulator of WASH activation and actin nucleation in the
hypothalamus (Figure 6) (Chen et al., 2020).

FIGURE 6
MAGEL2 functions in regulated secretion of the hypothalamus. (A) Within hypothalamic neurosecretory cells, MAGEL2 plays a critical role in the
retromer-mediated transport of SG components (i.e., PC1/3, PC2, CHGA, CHGB, and CPE) and the lysosomal CI-MPR from the sorting endosome to the
TGN. MAGEL2-TRIM27-mediated ubiquitination leads to WASH activation and actin nucleation. (B) The loss ofMAGEL2 leads to decreased abundance of
SGs, SG-resident proteins, and neuropeptides in the hypothalamus, thus impairing hypothalamic neuroendocrine function.
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More than 150 membrane proteins rely on the retromer
complex for their localization on the cell surface (Steinberg
et al., 2013), and neurons are particularly susceptible to any
changes in endosomal trafficking due to their long axons and
branched dendrites (Chamberland and Ritter, 2017). Retromer
dysfunction has been linked to neurodegenerative diseases, such
as Parkinson’s disease, Alzheimer’s disease, and frontotemporal
lobar degeneration (Harrison et al., 2014; Seaman and Freeman,
2014; Reitz, 2018; Zhang et al., 2018). The loss of MAGEL2 in
neurons leads to aberrant endosomal protein trafficking and
reduces the abundance of SG proteins, contributing to the
etiology of Prader-Willi syndrome (PWS) (Chen et al., 2020).
In addition to neuronal and neuroendocrine functions, several
other physiological processes depend on retromer (Burd and
Cullen, 2014). Furthermore, pathogens like Chlamydia
trachomatis and Legionella pneumophila hijack the retromer
complex for successful infection (Elwell et al., 2017; Elwell and
Engel, 2018).

To summarize, the retrograde recycling of proteins is important
for maintaining a plethora of physiological functions. The proper
sorting of cargo proteins is critical for returning proteins to their
proper place for reuse and preventing their lysosomal degradation.
Retromer is at the very center of this retrograde sorting that happens
at the early endosome, soon after the cargo is endocytosed.

5.1 Retromer evolution and function

Retromer is an evolutionarily conserved complex that
regulates the retrograde pathway across all eukaryotes
(Koumandou et al., 2011; McGough and Cullen, 2011;
Chamberland and Ritter, 2017). In Saccharomyces cerevisiae,
where retromer was first discovered, five vacuolar protein
sorting (VPS) proteins compose the two retromer
subcomplexes: the cargo-selective complex and the tubulation
complex, both of which are conserved in higher eukaryotes
(Seaman et al., 1998; Neuman et al., 2021). The cargo-selective
complex is a trimer of Vps26, Vps29, and Vps35, which recruits
cargo via an association between Vps35 and a sorting motif
located within the cytoplasmic tail of cargo (Seaman et al.,
1998). Retromer is recruited to the endosomal membrane by
the sorting nexin (SNX) proteins Vps5 and Vps17 that form the
tubulation complex and contain C-terminal Bin/amphysin/Rvs
(BAR) domains that promote membrane tubulation and cargo
vesicle formation (Horazdovsky et al., 1997; Nothwehr and
Hindes, 1997; Seaman et al., 1998; Chamberland and Ritter,
2017).

Compared to the yeast retromer, the mammalian retromer is
more complex and allows for more cargo specificity and transport
regulation (Chen et al., 2019). In addition, the interactions
between the retromer subcomplexes are more transitional and
may not always occur in mammalian cells (Harbour and Seaman,
2011; Cullen and Steinberg, 2018). For example, both
subcomplexes are needed to facilitate recycling of CI-MPR
and other cargo in yeast cells (Yong et al., 2022), whereas the
SNX-BAR dimer and not the VPS trimer is required for CI-MPR
recycling in mammalian cells (Kvainickas et al., 2017; Simonetti
et al., 2017), implying functional segregation of the two

subcomplexes (Chamberland and Ritter, 2017). The
acquisition of new binding partners in mammals that are not
found in yeast provides further evidence of the functional
divergence between the subcomplexes (Chamberland and
Ritter, 2017). From now on in this manuscript, retromer will
refer to the VPS26-VPS29-VPS35 heterotrimer core that is found
in mammals (VPS26 has two isoforms in mammals).

The retromer complex serves as a hub for recruiting accessory
proteins and complexes, such as receptor-mediated endocytosis-8
(RME-8) (Freeman et al., 2014), Eps15 homology domain-
containing protein-1 (EHD1) (Gokool et al., 2007), TBC1D5
(Seaman et al., 2009), and the WASH complex (Kvainickas et al.,
2017; Simonetti et al., 2017), that regulate retromer’s role in
endosomal trafficking and endosomal tubule dynamics (Harbour
et al., 2010). For example, VPS35 binds to SNX3 and the GTPase
Rab7, leading to membrane recruitment of retromer (Burd and
Cullen, 2014; Harrison et al., 2014). While SNX3 directs retromer to
early endosomes by binding to phosphatidylinositol 3-phosphate
[PtdIns(3)P] (Harterink et al., 2011), Rab7-GTP recruits retromer to
late endosomes (Rojas et al., 2008; Progida et al., 2010; Harrison
et al., 2014). TBC1D5, which binds to VPS35 and VPS29, negatively
regulates membrane recruitment of retromer by acting as a GTPase-
activating protein for Rab7 (Seaman et al., 2009; Jia et al., 2016; Borg
Distefano et al., 2018). Another important accessory protein is the
WASH complex protein FAM21, which binds directly to
VPS35 through its C-terminal repeats of the LFa motif (Gomez
and Billadeau, 2009; Harbour et al., 2012; Jia et al., 2012; Helfer et al.,
2013; Chen et al., 2019).WASH, which is regulated byMAGEL2 and
USP7, then nucleates actin on the membrane (Hao et al., 2013; Hao
et al., 2015; Florke Gee et al., 2020). The interaction between WASH
and the Prader-Willi protein MAGEL2 will be discussed further in
the last section.

5.2 Retromer and the sorting nexin protein
family

Retromer functions as a coat complex that packages and delivers
its cargo via tubular or vesicular structures to the TGN or plasma
membrane (Lucas and Hierro, 2017; Wang et al., 2018). Vesicles
coated with retromer are defined as retromer-coated endosomal
tubular carriers (ETCs). Compared to other protein coats
(i.e., clathrin, COPI, and COPII), ETCs are much more
heterogeneous with a “loose” assembled coat, possibly an
adaptation to different membrane curvatures (Chen et al., 2019).
Retromer coat assembly depends on SNX proteins in mammals, as
retromer does not possess intrinsic membrane-binding properties
(Burd and Cullen, 2014; Chen et al., 2019). Different combinations
of SNX proteins and retromer are important for recycling specific
proteins (Gallon and Cullen, 2015; Chamberland and Ritter, 2017;
Yong et al., 2022).

The SNX protein family expanded from 10 proteins in yeast
to 33 in mammals and six of them (SNX1, SNX2, SNX3, SNX5,
SNX6, and SNX27) were shown to associate with the retromer
complex (Cullen, 2008; Burd and Cullen, 2014; Lucas and Hierro,
2017). SNX1 and SNX2 are Vps5 orthologs, and SNX5 and
SNX6 are Vps17 orthologs (McGough and Cullen, 2011). All
SNX proteins possess a Phox (PX) domain that binds to
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phospholipids, in particular PtdIns(3)P, found in endosomes
(Bugarcic et al., 2011; Chamberland and Ritter, 2017; Wang
et al., 2018). SNX proteins are divided into subfamilies based
on their domain architecture (Wang et al., 2018). SNX-PX
subfamily members, like SNX3, only possess a PX domain.
The SNX-FERM (4.1/ezrin/radixin/moesin) subfamily member
SNX27 contains a FERM domain, which can bind to PtdIns(3)P
and NPxY motifs, and a PDZ domain, which facilitates protein-
protein interactions (Zhang et al., 2018). The SNX-BAR
subfamily members contain a BAR domain that is capable of
sensing and inducing membrane curvature (Burd and Cullen,
2014). The retromer-interacting proteins from the SNX-BAR
subfamily include SNX1, SNX2, SNX5, and SNX6 (Lucas and
Hierro, 2017). Although most SNX proteins associate with early
endosome-enriched PtdIns(3)P, some also interact with late
endosome-enriched phosphatidylinositol 3,5-phosphate
[PtdIns(3,5)P]. SNX-PX-retromer and SNX-BAR-retromer
mediate retrograde transport to the TGN, and SNX27-
retromer mediates recycling to the plasma membrane through
its PDZ domain (Temkin et al., 2011; Steinberg et al., 2013; Lucas
and Hierro, 2017). Besides binding phosphatidylinositides,
SNXs also play a central role in cargo recognition (Wang
et al., 2018).

Retromer cargo selection is facilitated directly by VPS35 and
VPS26 and/or by adaptor proteins, like SNXs, AP-1, and GGAs
(Burd and Cullen, 2014; Cullen and Steinberg, 2018). The cargo
proteins CI-MPR, sortilin, Wntless, and polymeric
immunoglobulin (pIg) receptor possess a ΦX(L/M/V), where Φ
is F/Y/W, consensus sequence that facilitates direct binding to
SNX3-retromer (Verges et al., 2004; Seaman, 2007; Canuel et al.,
2008; Harterink et al., 2011; Harrison et al., 2014; Lucas and
Hierro, 2017; Cui et al., 2019; Yong et al., 2022). In general, at
least a hydrophobic (F/W)L(M/V) motif that is commonly present
in cargo proteins is needed for retromer-mediated sorting
(Seaman, 2007; Cullen and Steinberg, 2018). This direct
retromer interaction pathway is likely conserved in all
eukaryotes. In contrast, metazoan-specific adaptor-dependent
sorting allowed for the evolution of a plethora of sorting signals
to finetune retrograde trafficking (Cullen and Steinberg, 2018). For
example, a bipartite motif in VPS10, the functional homolog of CI-
MPR in yeast, is needed for precise recognition by yeast retromer
subunits Vps26 and Vps35 but not Vps17 (Suzuki et al., 2019).
However, mammalian SNX5/SNX6 (yeast orthologs of Vps17)
may function as the cargo-selecting module that recognizes a
bipartite motif in CI-MPR and many other cargo proteins
(Kvainickas et al., 2017; Simonetti et al., 2017; Simonetti et al.,
2019; Yong et al., 2020). As another example, metazoan-specific
SNX27 acts as an adaptor protein to select cargo through its FERM
and PDZ domains (Cullen and Steinberg, 2018; Chen et al., 2019).
Examples of SNX27 cargo containing a PDZ-binding motif [i.e., (S/
T)xΦ] include β2-adrenergic receptor, parathyroid hormone
receptor 1 (PTHR), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor, and the N-methyl-D-
aspartate (NMDA) receptor, which are all important in
neuroendocrine tissues (Temkin et al., 2011; Steinberg et al.,
2013; Lucas and Hierro, 2017). Some of these proteins,
particularly their sorting motifs, must be phosphorylated to
facilitate high-affinity binding to SNX27, suggesting additional

complexity in regulation and finetuning of retrograde transport
(Clairfeuille et al., 2016; Lucas and Hierro, 2017).

5.3 Retromer, the WASH complex, and
F-actin in retrograde trafficking

An essential part of endosomal recycling is membrane
remodeling, which is mediated by patches of branched F-actin,
and requires membrane localization of the retromer, WASH, and
ARP2/3 complexes (Fokin and Gautreau, 2021). Endosomal
cargo proteins are recognized by specific combinations of
retromer and SNXs (Gallon and Cullen, 2015; Chamberland
and Ritter, 2017; Yong et al., 2022). SNX proteins localize the
retromer complex to the membrane, and FAM21 binds to
retromer’s VPS35 to facilitate membrane localization of the
WASH complex (Harbour et al., 2010; Bugarcic et al., 2011;
Harbour et al., 2012; Jia et al., 2012; Helfer et al., 2013; Seaman
and Freeman, 2014; Chamberland and Ritter, 2017). A recent
study indicates that SWIP/KIAA1033 can also recruit the WASH
complex to the endosomal membrane independently of the
FAM21-VPS35 interaction (Dostal et al., 2023). The
endosomal membrane recruitment of WASH complex may
also be mediated through interaction with SNX27 (Temkin
et al., 2011; Steinberg et al., 2013) or its own direct interaction
with endosomal lipids (Derivery et al., 2009).

The WASH complex functions as the major actin nucleation-
promoting factor in endosomal recycling and is required for the
recycling of several proteins, including CI-MPR, glucose
transporter 1 (GLUT1), α5β1 integrin, and major
histocompatibility complex II (MHC II) (Gomez and
Billadeau, 2009; Zech et al., 2011; Piotrowski et al., 2013;
Graham et al., 2014; Dostal et al., 2023). WASH possesses a
conserved C-terminal VCA (verprolin homologous or WASP-
homology-2, connector, and acidic) domain that binds actin
monomers and ARP2/3 to trigger actin filament nucleation
(Linardopoulou et al., 2007; Duleh and Welch, 2010). More
specifically, binding of ARP2/3 to WASH’s VCA domain
induces a conformational change in ARP2/3 that loads the
first actin monomer and allows further actin polymerization
through rapid ATP hydrolysis on ARP2 (Derivery et al., 2009;
Padrick et al., 2011; Espinoza-Sanchez et al., 2018). Prior to actin
nucleation, WASH’s VCA domain is autoinhibited by intra- and
intermolecular interactions (Hao et al., 2013). Small GTPases and
PtdIns(4,5)P are some general regulators that may release VCA
motif inhibition, but tissue-specific machinery, like the MUST
complex (composed of MAGEL2, TRIM27 and USP7) might have
evolved to enable better adaptation to specific environmental
challenges (Figure 6) (Fon Tacer and Potts, 2017; Lee and Potts,
2017; Florke Gee et al., 2020).

The WASH complex promotes retromer trafficking by
triggering actin polymerization via ARP2/3 complex
recruitment and activation. Actin polymerization combined
with the action of SNX-BAR proteins and motor proteins
ultimately leads to the formation of tubular structures (Fokin
and Gautreau, 2021). Subsequent actin polymerization and the
activity of the dynein-dynactin complex leads to the fission of
tubular vesicles that carry various cargo proteins to their final
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destinations (Hunt et al., 2013; Wang et al., 2018; Fokin et al.,
2021). This pathway is well-established for diverse constitutively
secreted receptors; however, recent evidence suggests that
essential SG membrane proteins and granins are recycled back
to the TGN for nascent granule formation by retromer-
dependent retrograde transport, though the mechanistic
details and sorting motifs are still more or less unknown
(Ferraro et al., 2005; Ma et al., 2020; Neuman et al., 2021).
Interestingly, Prader-Willi mouse models with depletion of
Magel2 suggested that, in the hypothalamus, SG-resident
proteins are the major targets of Magel2-retromer-dependent
protein recycling (Figure 6) (Fon Tacer and Potts, 2017; Lee and
Potts, 2017; Florke Gee et al., 2020).

6 MAGEL2 in regulated secretion of the
hypothalamus

MAGEL2 is a mammalian-specific member of the melanoma
antigen gene (MAGE) family that is specifically expressed in the
brain and highly enriched in the hypothalamus (Figure 3) (Hao
et al., 2015; Fon Tacer et al., 2019). Like many MAGE family
proteins, MAGEL2 functions as a regulator of an E3 ubiquitin
ligase (Doyle et al., 2010; Lee and Potts, 2017; Florke Gee et al.,
2020). In particular, MAGEL2 interacts with the RING E3 ligase
TRIM27 and VPS35 in the retromer complex, thus facilitating the
localization of TRIM27 to retromer-positive endosomes (Figure 6A)
(Hao et al., 2013). MAGEL2-TRIM27 promotes K63-linked
polyubiquitination of WASH K220 (Hao et al., 2013). Unlike
some other ubiquitin linkage types, K63-linked ubiquitination
generally acts as a signaling event rather than targeting a protein
for proteasomal degradation. Accordingly, MAGEL2-TRIM27-
mediated ubiquitination leads to WASH activation and actin
polymerization (Hao et al., 2013; Hao et al., 2015; Fon Tacer and
Potts, 2017). The deubiquitinase USP7 forms a complex with
MAGEL2-TRIM27 and preferentially cleaves K63-linked
ubiquitin chains (Hao et al., 2015). Thus, USP7 fine-tunes
F-actin levels in the endosome by counteracting TRIM27 activity
and preventing the overactivation of WASH (Hao et al., 2015).
Although retromer is the major player in endosomal retrieval and
recycling, other similar complexes also recycle proteins (McNally
and Cullen, 2018). Interestingly, the WASH complex can also
associate with commander/CCC/retriever complex (Phillips-
Krawczak et al., 2015; McNally et al., 2017; Chen et al., 2019);
however, the role of MAGEL2 in activating WASH in association
with this complex is not known and warrants future investigation.
Furthermore, why WASH needs finetuning by MAGEL2 in the
hypothalamic neurons is the subject of current research.

The hypothalamus is a region of the brain that integrates signals
from different sensory inputs to maintain homeostasis by reacting
and adapting to any changes or stressors in the environment. By
controlling the autonomic nervous system via neurons linking it to
both the parasympathetic and sympathetic systems, the
hypothalamus regulates body temperature, hormones (e.g.,
thyrotropin-releasing hormone, gonadotropin-releasing hormone,
somatostatin, and dopamine), and behavioral responses. Hormones
released from hypothalamic neurons travel through the hypophyseal
portal system to the pituitary gland, controlling the release of other

hormones that regulate various endocrine glands and organs. By
linking the nervous and endocrine systems, this hypothalamus-
pituitary axis acts as a major control center in the body (Nillni,
2007). Intriguingly, the diverse functions of the MAGE protein
family are unified in their physiological function of stress adaptation
(Fon Tacer et al., 2019; Florke Gee et al., 2020).MAGEL2 is uniquely
expressed in the hypothalamus, and the molecular understanding of
its function suggests its role as a tissue-specific regulator of the
retrograde recycling of SG components and neuroendocrine
function in the hypothalamus (Hao et al., 2015; Fon Tacer and
Potts, 2017).

Given that the hypothalamus plays a key role in regulating many
physiological processes, perturbations in the regulated secretion
pathway lead to improper hypothalamic development and
function that phenotypically manifests in syndromes, such as
PWS and Schaaf-Yang syndrome (SYS) (Hoyos Sanchez et al.,
2023). PWS is a complex neurogenetic disorder caused by
paternal loss of the maternally imprinted 15q11-q13
chromosomal region (called the Prader-Willi region) that
contains small nucleolar RNA genes and six protein-coding genes
(MKRN3, NDN, NPAP1, SNURF-SNRPN, and MAGEL2) (Butler
et al., 2019; Alves and Franco, 2020). While the loss of MAGEL2
affects regulated secretion in the hypothalamus (Figure 6B), loss of
the other Prader-Willi region genes also impacts the clinical
presentation of PWS (Cassidy and Driscoll, 2009; Fon Tacer and
Potts, 2017; Chen et al., 2020). Currently, PWS and SYS have no cure
or effective therapy, and treatment focuses on managing the
symptoms that arise from perturbations in the regulated
secretion pathway and the dysregulation of crucial hypothalamic
hormones (Alves and Franco, 2020; Hoyos Sanchez et al., 2023).
Given that PWS is relatively common and affects 1 in
15,000 children, there is a pressing need to find better treatment
options (Cassidy and Driscoll, 2009). The recent findings about
MAGEL2’s role in regulated secretion suggest that restoring this
pathway may alleviate multiple symptoms of PWS and other similar
neurodevelopmental disorders (Chen et al., 2020).

While the mechanisms of retrograde trafficking are extremely
complex, cargo sorting at the endosomes culminates in ARP2/
3 activation and, in turn, actin nucleation. Through facilitating
the activation of WASH, MAGEL2 functions as a tissue-specific
regulator of ARP2/3 activation in the hypothalamus (Hao et al.,
2013; Hao et al., 2015). The loss of MAGEL2 expression causes
deficits in SG abundance and bioactive neuropeptide production,
impacting hypothalamic neuroendocrine function and contributing
to the clinical presentation of PWS (Figure 6B) (Chen et al., 2020;
Hoyos Sanchez et al., 2023). In particular, reduced levels of the
neuropeptides vasopressin, galanin, oxytocin, proenkephalin,
somatostatin, and thyrotropin-releasing hormone and the SG
components involved in their processing and release (i.e., CHGB,
secretogranin II and III, PC1/3, PC2, and CPE) have been discovered
in PWS mouse models and patient-derived neuronal cell models
(Chen et al., 2020; Hoyos Sanchez et al., 2023).

7 Conclusion

Together, several decades of research provided important
insights into the complexity of vesicle trafficking and protein
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sorting in neuroendocrine cells. In the regulated secretory
pathway, the anterograde transport is compensated by the
retrograde movement of lipids and proteins to maintain
membrane homeostasis and recycle various proteins.
Intriguingly, the recycling of constitutive proteins of
secretory granules (e.g., PCs, CPE, and granins) that enable
hormone and neuropeptide maturation and cargo condensation,
emerged as critical for proper hypothalamic secretion.
Furthermore, actin polymerization at the site of protein
sorting and vesicle budding controls retrograde transport and
is regulated in a tissue-specific manner by WASH complex and
MAGEL2 in the hypothalamus. Intriguingly, the diverse
functions of the MAGE protein family are unified in their
physiological function of stress adaptation. Given that
MAGEL2 is uniquely expressed in the hypothalamus, the
molecular understanding of its function suggests its role to
enable better and faster adaptation to an ever-changing
environment. The loss of MAGEL2 ultimately leads to
insufficient F-actin nucleation and a decreased percentage of
SG proteins recycled, which manifests in a perturbation of the
hormonal secretion in patients with Prader-Willi and Schaaf-
Yang syndromes. Further uncovering of the tissue-specific
regulation of anterograde and retrograde transport thus offers
potential therapeutic opportunities for patients.
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