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Nephrolithiasis is one of the most common urinary disorders in dogs. Although a

majority of kidney calculi are non-obstructive and are likely to be asymptomatic,

they can lead to parenchymal loss and obstruction as they progress. Thus,

early diagnosis of kidney calculi is important for patient monitoring and better

prognosis. However, detecting kidney calculi and monitoring changes in the sizes

of the calculi from computed tomography (CT) images is time-consuming for

clinicians. This study, in a first of its kind, aims to develop a deep learningmodel for

automatic kidney calculi detection using pre-contrast CT images of dogs. A total of

34,655 transverseimage slices obtained from76 dogswith kidney calculi were used

to develop the deep learning model. Because of the di�erences in kidney location

and calculi sizes in dogs compared to humans, several processing methods were

used. The first stage of the models, based on the Attention U-Net (AttUNet),

was designed to detect the kidney for the coarse feature map. Five di�erent

models–AttUNet, UTNet, TransUNet, SwinUNet, and RBCANet–were used in the

second stage to detect the calculi in the kidneys, and the performance of the

models was evaluated. Compared with a previously developed model, all the

models developed in this study yielded better dice similarity coe�cients (DSCs)

for the automatic segmentation of the kidney. To detect kidney calculi, RBCANet

and SwinUNet yielded the best DSC, which was 0.74. In conclusion, the deep

learning model developed in this study can be useful for the automated detection

of kidney calculi.
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1. Introduction

Urinary calculi in the kidneys and upper and lower urinary tracts are among the

most common abnormal findings in canine urinary disorders. According to a recent study,

prevalence of upper urinary tract and lower urinary tract uroliths were reported to be 19 and

41%, respectively (1). In dogs, most urinary calculi are reported to be in the lower urinary

tract, for example, the bladder and urethra, or are voided in the urine (2). Less than 3–4% of

all urinary calculi in dogs are located in the renal pelvis (2, 3), while most human patients

with urinary calculi are reported to have nephroliths (3).
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Renal calculi can be asymptomatic in many dogs; however,

when the size or location of the calculi change, they are no

longer silent, and can lead to clinical problems such as partial or

complete ureteropelvic junction obstruction, hydronephrosis, renal

parenchymal loss due to growing calculi, hematuria, and urinary

tract infection due to infected calculi (4). In addition, a study in

human medicine has also reported that the renal calculi can be

associated with the increasing risk of chronic kidney diseases (5–8).

Therefore, early detection and size quantification of urinary

calculi are important to prevent severe kidney diseases associated

with calculi, and to provide better and timely treatment. Owing to

their importance, several diagnostic imaging modalities, including

X-rays, ultrasound, and computed tomography (CT), have been

used to detect urinary calculi in both veterinary and human

medicine. Among these methods, CT is reported to be the most

accurate for detecting calculi with high sensitivity and specificity

(9). However, the limitation of these methods lies in the time-

consuming nature of evaluation and size quantification of renal

calculi in clinical field, as it is performed by manually measuring

the size and the number of calculi.

Of late, numerous studies in human medicine have shown

that deep learning models can be successfully applied to medical

imaging fields for aspects such as classification, segmentation,

and lesion detection (10–13). Convolutional neural networks, a

recent advancement in deep learning-based analysis methods,

have shown promising performance in these tasks (14). To date,

several novel architectures have been proposed for training using

medical images. Attention U-Net (AttUNet), which integrates an

attention gate into the U-Net model, consistently improves the

prediction performance of U-Net on abdominal CT datasets for

multiclass image segmentation (15). Recently, a hybrid transformer

architecture called UTNet was proposed. UTNet integrates self-

attention into a convolutional neural network that allows the

initialization of transformer models without the need for a pre-

training weight, while transformers require a large amount of data

to learn vision inductive bias (16). In addition, TransUNet, an

architecture using Transformer as an encoder in combination with

U-Net aims to enhance the finer details, and has yielded promising

performance on medical images for multi-organ segmentation and

cardiac segmentation (17).

In human medicine, many studies have proposed various

deep learning models for the segmentation and detection of

kidneys (18–20) and kidney tumors (21–23). Many recent human

medicine studies have proposed deep learning models with several

architectures for automatic kidney stone detection on CT images

(24–27). In veterinary medicine, a recent study proposed a deep

learningmodel based on theUNet Transformer to detect the kidney

and automatically estimate its volume from the pre- and post-

contrast CT images of dogs (28). However, no deep learning model

has yet been proposed for the automated detection of kidney calculi

from CT images in veterinary medicine.

Abbreviations: CT, computed tomography; HU, Hounsfield Unit; AttUNet,

Attention U-Net; DSC, dice similarity coe�cient; TP, true positive; TN, true

negative; FP, false positive; FN, false negative; ROC, Receiver Operating

Characteristic; AUC, area under the curve; BW, body weight.

In this study, we aimed to develop deep learning models for

the automatic detection of kidney calculi and kidneys from non-

contrast CT scans in dogs, and to evaluate the performance of

these models.

2. Materials and methods

2.1. Dataset for CT scans

A total of 167 pre-contrast CT scans (instruments used

were as follows: Alexion, TSX-034A, Canon Medical System

Europe B.V. and Zoetermeer, Netherlands; Revolution ACT,

GE Healthcare, Milwaukee, WI, USA; and Brivo CT385, GE

Healthcare, Milwaukee, WI, USA) of 167 dogs were randomly

collected from multiple centers. Among the 167 pre-contrast CT

scans, 34,655 transverseimages from 76 CT scans included kidney

calculi, and were used for training and validation. The imaging

protocols were as follows; 120 kVp, 150 mAs, 512 × 512 matrix

and 0.75 rotation time (Alexion); 120 kVp, 84 mAs, 512 × 512

matrix, and 1 rotation time (Revolution ACT); and 120 kVp, 69

mAs, 512 × 512 matrix, and 1 rotation time (Brivo CT385). The

slice thickness of the CT scans included in the study varied from

0.75mm to 2.5mm. Postcontrast CT scans were not included in

the present study.

The precontrast CT images included in this study were divided

into training and validation data at a ratio of 80 to 20. Therefore, a

total of 61 CT scans were randomly chosen as the training data and

15 CT scans were used as the validation data. The CT scans of dogs

without medical records were excluded from the study. In addition,

scans with motion artifacts, without volume information, or with

an axis smaller than a certain size were excluded.

2.2. Patient dataset

In this study, 76 CT scans from 76 dogs with kidney calculi

who underwent CT scans were included. The medical records of

the dogs, including data on age, sex, neutering status, body weight,

and laboratory examination results, were collected.

2.3. Manual segmentation

The pre-contrast CT scans of the dogs included in the

study were manually segmented by 10 clinicians (residents at

the Veterinary Medical Imaging Department of the Teaching

Hospital of Jeonbuk National University) using the Medilabel

software (Ingradient, Inc., Seoul, South Korea). From the images,

all kidneys were segmented into the following three classes: (1)

renal parenchyma; (2) renal pelvis and surrounding fat; and (3)

calculi (Figure 1). The renal pelvis and the fat around it were

labeled separately to prevent false training results wherein the

model recognizes the fat around the pelvis as the kidney.
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FIGURE 1

Examples of manual segmentation; original CT images at the level

of kidney (A) and the example of manual segmentation (B). The

kidneys in the pre-contrast images were manually segmented using

a segmentation tool (Medilabel software). In the pre-contrast

images, the kidneys were segmented into three classes:

parenchyma (Class 1, light blue color in the labeled image), renal

pelvis, and surrounding fat (Class 2, orange color in the labeled

image). Calculi in the kidneys were segmented into Class 3 (light

pink color in the labeled image).

2.4. Pre-processing

The training data were converted into a numpy array and

pre-processed using the following steps: data resampling, intensity

normalization, and non-zero region cropping, using Python and

Pytorch framework.

A non-zero crop is a process used for exclusively obtaining the

actual region of interest (RoI) by cropping out the background.

External structures, such as fixation frames for fixing animals

on the CT table during scans, were masked, and voxels with

certain values (under−1000 Hounsfield Unit) were considered

as the background, and cropped. Data were resized to 512 ×

512 pixels.

Intensity normalization was performed to clip the minimum

and maximum to Hounsfield Unit (HU) values of −155 and

195, respectively.

To address variations in the spatial spacing and slice thickness

of the CT scans used in this study, resampling was performed

to adjust the various pixel dimensions and standardize the

data to an isotropic voxel spacing of x = 0.5, y = 0.5, and

z = 1.4 (mm). To preprocess the training data, which only

included pre-contrast CT scans, the window width and level

were set to 350 and 30 HU, respectively, and the minimum

and maximum HUvalues were clipped to −155 and 195,

respectively, before applying min-max normalization (Minimum

= Window level - Window width
2 , Maximum = Window level +

Window width
2 ).

This technique ensured that the intensity values of the images

were consistent and comparable across different scans.

2.5. Model architecture

In this study, several model architectures previously employed

for various image segmentation tasks were utilized, including

Attention U-Net (AttUNet) (15), UTNet (16), TransUNet (17),

SwinUNet (29), and RBCANet (21); these have previously

been used for various image segmentation tasks. The overall

block diagram of the model architecture is shown in Figure 2.

Five different models based on transformer and CNN were

selected based on the reliability and efficiency from previous

studies which showed high accuracy and stability on medical

images such as CT and Magnetic Resonance Imaging (MRI) in

human medicine.

The AttUNet model extends the original U-Net architecture by

incorporating attention gates into the skip connections (15). The

architecture maintains the encoder-decoder structure of the U-Net,

with downsampling layers in the encoder and upsampling layers

in the decoder. Attention gates are added to the skip connections,

allowing the model to focus selectively on the most relevant

features in the input image. The attention gates learn spatial

dependencies and feature importance using attention mechanisms

that are often implemented through additive or multiplicative

approaches. This selective focus on relevant features leads to

improved segmentation performance.

UTNet has a U-shaped architecture, similar to the original

U-Net, with an encoder-decoder structure and skip connections

(16). The main difference lies in the encoder part, which consists

of transformer-based layers instead of standard convolutional

layers. These layers capture both local and global features from

the input image, while the decoder uses convolutional layers to

upsample the feature maps and generate the final segmentation

map. The combination of transformers and convolutions allows

UTNet to effectively segment images with complex structures, such

as ultrathin endoscope images.

TransUNet combines the U-Net architecture with a vision

transformer to create a hybrid model (17). The vision transformer

is used as an encoder, replacing the standard convolutional

layers of the U-Net architecture. The vision transformer divides

the input image into non-overlapping patches and processes

them using self-attention and positional encoding, allowing it

to effectively capture global contextual information. The decoder

part of TransUNet remains similar to that of the original U-

Net, using upsampling layers and skip connections to generate

the final segmentation map. This combination of the vision

transformer and U-Net architecture enables TransUNet to capture

both local and global context information, resulting in improved

segmentation performance.

SwinUNet incorporates the Swin transformer as its encoder,

replacing the standard convolutional layers of the U-Net

architecture (29). The swin transformer is a hierarchical

transformer-based architecture that uses shifted windows to

process input images, capturing both local and global context

information while maintaining relatively low computational

complexity. The decoder part of SwinUNet retains the original U-

Net design, and consists of upsampling layers and skip connections.

By combining the strengths of both the swin transformer and the

U-Net architecture, SwinUNet achieves improved performance in

various image segmentation tasks.
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FIGURE 2

Schematic illustration of the model architectures used in this study. For the stage 1, AttUNet, a convolution-based model integrated with attention

gate was used. For the stage 2, five di�erent models were used and compared. UTNet (A), TransUNet (B), nd SwinUNet (C) are architectures based on

transformer models. AttUNet (D) and RBCANet (E) are based on convolution models.

The RBCANet architecture utilizes a pre-trained DenseNet-

161 encoder and U-Net’s encoder–decoder structure to effectively

capture hierarchical features (21). The atrous spatial pyramid

pooling module, integrated within the skip connections, processes

input features at various scales, capturing both local and global

contextual information that is crucial for accurate segmentation.

Working in conjunction with the Reverse Boundary Attention and

Channel Attention modules, RBCANet improves the segmentation

performance by emphasizing accurate boundary predictions and

focusing on the most informative channels.

One of the main impediment factors of this study was the

variation of data source owing to the relatively small size of calculi

in the full CT images, various size of dogs and the fact that the

data included in this study were collected from multicenter. To

overcome this problem, our approach involved two stages and

employed five architectures. In Stage 1, we utilized an AttUNet-

based model to obtain an approximate RoI of the kidney through

coarse feature maps. This step involved automatic segmentation of

the kidney from the input CT image, followed by extraction of the

RoI by cropping a non-zero region that excludes the kidney. The

extracted RoI was then resized to 128× 128 pixels and used as input

for Stage 2.

In Stage 2, the RoI obtained from Stage 1 was used

as input. We evaluated the performance of five models for

kidney stone segmentation: UTNet (Figure 2A), TransUNet

(Figure 2B), SwinUNet (Figure 2C), Attention U-Net (Figure 2D),

and RBCANet (Figure 2E). The performance of each model

was compared across different architectures to determine the

most effective approach for kidney stone segmentation in

CT images.

2.6. Implementation details

The input channel 1 and the output channel 3 were utilized.

The PyTorch framework was used to construct the models. The

combined loss function, including the weight addition of the cross-

entropy and the dice loss function, is known to improve the

performance of the segmentation network (30–33). In this study,

a combined loss function including generalized dice loss and focal

loss was used to improve the performance of the models (even with

data imbalance). The loss function used in this study was as follows:

Loss function = α ∗ Generalized DiceLoss

+ β ∗ Focal Loss (α = 1, β = 0.5)

Generalized Dice Loss = 1− 2

∑2
l=1 wl

∑

n rlnpln
∑2

l=1 wl

∑

n rln + pln

(pn, predicted map of foreground label of number of image

elements; rn, ground truth of kidney and calculi; l, foreground label;

wl,

(

1
∑N

n=1 rln

)2

, weight addition for the number of label pixels)

Focal loss = −
(

1− pt
)γ

log(pt) (pt =

{

p if y = 1

1− p otherwise
, γ = 2)
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To improve the model training performance, data

augmentation was performed using ShiftScaleRotate,

GridDistortion, Opticaldistortion, ElasticTransform,

CoarseDropout, and GaussNoise from the albumentations

library (34). The parameters for each step were as follows: scale

limit (−0.2, 0.2) and rotate limit (−180, 180) were used for

ShiftScaleRotate; the number of grid cells was five for each side,

and the distort limit was set to (−0.03, 0.03); the distort limit for

the optical distortion was set to (−0.05, 0.05); ElasticTransform

was performed by displacement fields to convert pixels, and α and

σ were set to 1.1 and 0.5, respectively; the maximum height and

minimum width were set to 8 for CoarseDropout; and GaussNoise

was assigned a value of gaussian noise (0, 0.001) and an average of

0. In this study, data augmentation was applied only to the training

process and not to the validation process.

Deep learning model training was conducted for 100 epochs

using an NVIDIA RTX 3090, Python, and PyTorch framework

graphics processing unit. For the training, exponentially learning

rate scheduler was applied and each random data augmentation

was performed with a probability of 0.5, and a learning rate of 0.01.

SGD optimizer was used for the training with a batch size of 32,

momentum of 0.9, and weight decay of 1e-4.

2.7. Model metrics and statistical evaluation

Several evaluation metrics were used to evaluate model

performance. Dice Similarity coefficient (DSC) measures the

relative voxel overlap between the ground truth and the predicted

segmentation to evaluate the similarity between segmentations

using an automated model and the ground truth. A DSC close

to one implies high similarity. The DSC was measured using the

following formula: DSC =
2|Sg∩Sp|
|Sg |+|Sp|

(Sp, predicted pixel value; Sg ,

segmentation pixel value of ground truth).

Intersection over Union, which is similar to DSC but penalizes

under-segmentation and over-segmentation more than the DSC,

was also used. The formula for Intersection over Union is as follows:
|Sg∩Sp|
|Sg

⋃

Sp|
(Sp, predicted pixel value; Sg , segmentation pixel value of

ground truth).

As sensitivity and specificity are recognized as standard metrics

for performance evaluation in the medical field, both of the above

were used in this study (35, 36). They were calculated as below:

Sensitivity = TP
TP+FN (TP, true positive; FN, false negative);

Specificity= TN
TN+FP (TN, true negative; FP, false positive).

Precision and Accuracy were also used to evaluate the models.

The formulae for precision and accuracy are as follows: Precision

= TP
TP+FP (TP, true positive; FP, false positive); Accuracy =
TP+TN

TP+TN+FP+FN (TP, true positive; TN, true negative; FP, false

positive; FN, false negative).

Receiver Operating Characteristic (ROC) is a line plot that

depicts the diagnostic ability of a classifier based on its performance

with different thresholds. A ROC curve was established as a

standard metric for comparing multiple models, and was used to

evaluate the models (35). The area under the curve (AUC) shows

the performance of models across different thresholds and provide

an aggregate measure range from 0 to 1. The result near 1 implies

higher performance.

For the statistical evaluation of the characteristics of the dogs

included in the study, Kolmogorov–Smirnov test and Shapiro–

Wilk test were performed as tests for normal distribution. Mann–

Whitney tests were used to evaluate differences in age among dogs

with and without kidney calculi.

3. Results

3.1. Evaluation of five models for kidney
detection on pre-contrast CT scans

In Stage 1, SwinUNet showed the best DSC (0.943), followed

by RBCANet (0.942), UTNet (0.935), and AttUNet and TransUNet

(0.934). As the DSC measures the relative pixel overlap between

the manual segmentation and the prediction of the models, DSC

close to 1 is considered to have higher similarity between two

segmentations in this study.

The sensitivity and specificity at the Youden point of the

models were the highest for RBCANet (sensitivity 0.96, specificity

0.95), followed by TransUNet (sensitivity 0.95, specificity

0.94), SwinUNet (sensitivity 0.95, specificity 0.96), UTNet

(sensitivity 0.95, specificity 0.95), and AttUNet (sensitivity 0.94,

specificity 0.95).

The ROC curve for kidney detection for the five models on the

test set is shown in Figure 3A. The AUCfor detecting the kidney was

0.99 for TransUNet and SwinUNet, and 0.98 for UTNet, RBCANet,

and AttUNet. The AUC close to 1 is considered to have better

performance in this study.

The IOU and precision metrics of the models are summarized

in Table 1.

3.2. Evaluation and comparative analysis of
the models for kidney calculi detection on
pre-contrast CT scans

The performance of several models in detecting kidney

calculi was assessed in this study. AttUNet outperformed the

other models, with the highest DSC of 0.741, suggesting its

superior capability to accurately delineate the intricate structures

of kidney calculi. The DSCs of the other models were as follows:

SwinUNet, 0.736; RBCANet, 0.733; UTNet, 0.701; and TransUNet,

0.682.

In terms of sensitivity and specificity at the Youden point,

TransUNet topped the list with values of 0.89 and 0.99, respectively.

UTNet, SwinUNet, RBCANet, and AttUNet also exhibited

competitive sensitivity and specificity values, demonstrating their

ability to correctly identify true positive and true negative cases.

The sensitivity and specificity of the models are summarized in

Table 2.

Further comparisons were made based on the ROC curves

shown in Figure 3B. TransUNet yielded the highest AUC of 0.98

for calculi detection, indicating its superior ability to differentiate

between positive and negative cases of kidney calculi. The AUCs for

the other models (in decreasing order) were as follows: SwinUNet,

0.97; UTNet, 0.92; RBCANet, 0.91; and AttUNet, 0.90. Figure 4

shows the predictive performance of the models with reference
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FIGURE 3

Receiver Operator Characteristic (ROC) curves of the five models. (A) Shows the ROC curves of the models for automatic segmentation of the

kidneys. Area-under-the-curve (AUC) values for the models are as follows: 0.99 (TransUNet, SwinUNet), and 0.98 (UTNet, RBCANet, AttUNet). (B)

Shows the ROC curves of the models for the automatic detection of kidney calculi. The AUC values of the models are as follows: 0.98 (TransUNet),

0.97 (SwinUNet), 0.92 (UTNet), 0.91 (RBCANet), and 0.90 (AttUNet). The sensitivity and specificity at the Youden Point are shown in the graphs.

TABLE 1 Quantitative results of the models for detecting kidneys.

UTNet TransUNet SwinUNet AttUNet RBCANet

DSC 0.93446 0.93393 0.94318 0.93418 0.94176

IoU 0.87699 0.87605 0.89248 0.87649 0.88993

Sensitivity 0.92480 0.94072 0.93632 0.92298 0.92660

Specificity 0.96267 0.94944 0.96632 0.96368 0.97179

Precision 0.93985 0.91745 0.93958 0.93656 0.95007

Accuracy 0.95432 0.9506 0.95889 0.95583 0.95979

DSC, Dice Similarity Coefficient; IoU, Intersection over Union; Sensitivity and Specificity refers to that at the Youden point.

to absenteeism, and provides a comparative perspective on their

robustness and reliability across different predictive tasks.

3.3. Statistical evaluation of dogs included
in the study

Among the dogs with kidney calculi included in this study,

32 were neutered males, 3 were intact males, 32 were neutered

females, and 9 were intact female dogs. The mean age of dogs with

kidney calculi was 10.79 ± 4.00 years (mean ± SD), ranging from

7 months to 18 years. The mean body weight (BW) of the dogs was

5.25 ± 2.49 kg (mean ± SD), ranging from 1.7 kg to 14.85 kg. The

distribution of breeds among these dogs was as follow: 21 Malteses,

10 Poodles, 7 Shih Tzus, 6 Yorkshire terriers, 6 mixed breeds, 5

Pomeranians, 5 Schnauzers, 2 Cocker Spaniels, 2 Dachshunds, and

12 others.

Among the dogs without kidney calculi, 45 were neutered

males, 6 were intact males, 32 were neutered females, and 8 were

intact female dogs. The mean age of the dogs without kidney calculi

was 7.72 ± 4.08 years (mean ± SD), ranging from 4 months to

16 years. The mean BW of the dogs was 7.87 ± 7.52 kg (mean ±

SD), ranging from 1.75 kg to 41.5 kg. The breed distribution of these

dogs was as follows: 18Malteses, 15 Poodles, 7 Mixed breeds, 7 Shih

Tzus, 6 Pomeranians, 4 Cocker Spaniels, 4 Dachshunds, 3 Bichon

Frises, and 27 others.

Mann-Whitney tests for age (p < 0.001) and BW (p = 0.005)

showed statistically significant differences between dogs with and

without kidney calculi. Dogs with kidney calculi were significantly

older and smaller than those without calculi. The age and BW of

each group are depicted using a box plot in Figure 5.

4. Discussion

This is the first study in veterinary medicine to propose

deep learning models to detect kidney calculi on CT images

of dogs, and to evaluate their performance. All five models

developed in this study showed improved performance on

detecting kidney from pre-contrast CT images compared to

the previous study using UNETR (28). For the kidney calculi

detection, the models developed in this study showed promising
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TABLE 2 Quantitative results of the models for detecting kidney calculi.

UTNet TransUNet SwinUNet AttUNet RBCANet

DSC 0.70051 0.68243 0.73590 0.74108 0.73277

IoU 0.53907 0.51795 0.58215 0.58867 0.57825

Sensitivity 0.86189 0.88586 0.86326 0.84275 0.83546

Specificity 0.99078 0.98882 0.98086 0.99151 0.99015

Precision 0.66803 0.61981 0.73345 0.72945 0.72854

Accuracy 0.99876 0.99861 0.99896 0.99894 0.99896

DSC, Dice Similarity Coefficient; IoU, Intersection over Union; Sensitivity and Specificity refers to that the Youden point.

FIGURE 4

Manual visual analysis of segmented kidneys and kidney calculi (Ground Truth, Red) and the predictions (Predictions, Blue) generated by the

models dependently.

performance comparable to previous models developed in

human medicine.

In this study, detection of the kidney was considered essential

for the proper detection of kidney calculi; it was expected that

better performance in detecting the kidney would result in a

more accurate detection of kidney calculi. Therefore, we developed

models that could detect kidney calculi as well as the kidney itself

in the first stage of the analysis. Recently, several studies have

proposed deep learning models for the automatic segmentation

of kidneys on CT images in human medicine. da Cruz et al. (19)

reported a model with a DSC of 0.96. Another study reported

a model with a DSC of 0.95 and 0.93 for the left and right

kidneys, respectively, using ConvNet-Coarse, and 0.94 and 0.93 for

the left and right kidney, respectively, using ConvNet-Fine (20).

For automatic kidney detection, a previous study in veterinary

medicine based on UNet Transformer showed a DSC of 0.912 and

0.915 before and after post-processing, respectively (28). All the

models developed in this study showed improved performance for

automatic kidney detection compared to this previous study, but

showed a slightly lower DSC compared to the models developed

for application in human medicine. SwinUNet exhibited the

best DSC (0.943), followed by RBCANet (0.942), UTNet (0.935),

and AttUNet and TransUNet (0.934). Further studies with more

training data and novel architectures can help develop models

with DSCs comparable to the models developed in the human

medicine field.
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FIGURE 5

Boxplot of age (A) and body weight (B) in dogs with and without calculi. Statistically significant di�erence was found between the dogs with and

without calculi for both the parameters. The dogs with calculi were significantly older (p < 0.001) and smaller (p = 0.005) than the dogs without

calculi. The upper and lower edges of the box represent the 25th (Lower quartile, Q1) and 75th (Upper quartile, Q3) percentiles. The vertical line

(whiskers) between the lower and upper extremes on each box represents the distribution range of the data. The mild outliers (empty circles) are data

points located outside of the whiskers, below Q1 – 1.5 × Interquartile range (IQR) or above Q3 + 1.5 × IQR. The extreme outliers (asterisks) are data

points more extreme than Q1 – 3 × IQR or Q3 + 3 × IQR.

In addition, several studies have proposed deep learningmodels

for detecting kidney calculi on CT images in human medicine.

Elton et al. (24) reported a sensitivity of 0.88 and specificity of

0.91 on a validation set; Parakh et al. (37) reported a sensitivity

of 0.94 and specificity of 0.96 by GrayNet, and sensitivity of 0.90

and specificity of 0.92 by ImageNet. Li et al. (21) evaluated the

performances of five different models, and reported that Res U-Net

showed a sensitivity of 0.79 and specificity of 0.99, and 3D U-Net

showed a sensitivity of 0.80 and specificity of 0.99. The models

developed in this study showed a comparable performance to those

developed in the field of human medical imaging, with the highest

sensitivity value at 0.89 and specificity at 0.99 for TransUNet. Elton

et al. (24) reported an AUC of 0.95 on a validation set, while Parakh

et al. (37) reported an AUC of 0.954 by GrayNet, and 0.936 by

ImageNet on urinary stone detection. In this study, the models

using TransUNet, SwinUNet, UTNet, RBCANet, and AttUNet

achieved AUCs of 0.98, 0.97, 0.92, 0.91, and 0.90, respectively.

TransUNet and SwinUNet performed better than previous models

applied in human medicine. Therefore, the use of TransUNet-

and SwinUNet-based models for the detection of kidney calculi

is promising.

The evaluation of each model in this study reveals its

unique strengths and weaknesses. Despite the lower DSC of

SwinUNet for the detection of calculi, its high AUC underscores

its overall commendable performance. In contrast, UTNet, despite

its notable sensitivity and specificity, showed lower DSC and

AUC values for calculi detection, suggesting possible difficulties in

detecting intricate structures such as kidney stones. Interestingly,

AttUNet, despite having the highest DSC (which is indicative

of a strong ability to identify kidney calculi), had the lowest

AUC, suggesting potential limitations in its overall prediction

accuracy. TransUNet demonstrated a balanced performance with

the highest AUC but the lowest DSC for kidney calculi detection,

suggesting possible challenges for accurate structure delineation.

In addition, despite excelling in kidney detection, RBCANet

showed a lower DSC and AUC for calculi detection. This

suggests that while RBCANet is proficient at handling larger

structures (such as kidneys) owing to its effective hierarchical

feature capture, it may not be able to effectively identify smaller

structures such as kidney stones. Therefore, the selection of

an appropriate model should be tailored to the specific task,

and should consider the unique strengths and weaknesses of

each model.

Compared with the results of models developed in the human

medical field, the models developed in this study showed lower

DSC values for detecting kidneys. Compared to the current

study, a previous study in veterinary medicine using UNet

Transformer reported a lower DSC value; a wide range of

body sizes associated with various breeds was considered an

obstacle in the training process and a factor leading to the

lower DSC compared to other models developed for humans

(19–21, 28). This is consistent with the observations in the

current study.

The main reason for the lower DSC values for detecting kidney

calculi of our model compared to those developed in human

medicine was the smaller size of the kidneys and calculi. The size

of the calculi is reportedly associated with model performance. In

a previous study in human medicine, kidney calculi were classified

into small (0–6mm), medium (6–20mm), and large (above 20mm)

sizes (26). The DSC was highest in large size group, at 83.39

± 2.33; it was 76.08 ± 3.46 in the middle size group, and the

lowest in the small size group, at 60.11 ± 0.84. Among the

architectures studied in this previous study, SegNet showed the

highest difference in DSC between the large and small size groups

(80.86 ± 4.54 in the large group and 34.38 ± 1.67 in the small

group). DeepLabV3+ could not detect calculi in the small size
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group. Another study classified kidney calculi into five different

size groups results that were consistent with the above. The AUC

was highest in the largest calculi group (>125 mm3) and decreased

as the size decreased. The size of the kidney calculi included in

the current study varied, but the majority of the calculi were small

(<3mm), whichmeets the criteria of the small size group in human

medicine. Compared to the results of previous models in human

medicine, our present models showed promising performance

in detecting small calculi. Further studies, including more data

on larger kidney calculi, can help improve the performance of

the models.

In this study, the age of dogs with kidney calculi was

significantly higher than that of dogs without calculi, which

is consistent with the results of previous studies. In a human

medicine study, it was reported that the prevalence of kidney

calculi increased with age, and increasing age was considered a

risk factor (38). However, a limitation of the present study is that

we were not able to investigate and compare the ages at which

calculi first developed, as the relevant data were not available

due to the retrospective nature of the study. For consistency, the

age at which the CT scan was obtained was considered to be

the age of the dog, even if the dog had visited multiple times.

Therefore, the age used in this study may have been biased toward

older age.

The BW of the dogs with calculi was significantly lower

than that of the dogs without calculi. Similarly, a recent study

that investigated the prevalence and predictors of upper urinary

tract uroliths in dogs found that dogs with upper urinary tract

uroliths were significantly older and smaller than those without

urolithiasis, which is consistent with our results (1). Also, a previous

study showed that body height was inversely associated with the

prevalence of kidney calculi diseases in human (39). Several factors

have been considered as possible reasons for these results. If BW

correlates directly with the ureteral diameter or length, the calculi

are likely to spontaneously pass through the ureter more easily in

those with a higher BW; however, studies on this topic are lacking.

In addition, BW differs by breed and genetic factors might impact

urolithiasis risk (1).

One of the limitations of this study was the relatively small

size of the kidneys and kidney calculi in dogs compared to

those in humans, which acted as an impediment factor for

model development. Moreover, some calculi were smaller than the

minimum pixel of the labeling program. Therefore, the margins

of several calculi in the labeled image did not meet the actual

margins of the calculi, which could have resulted the lower DSC

values for small calculi in this study and could be considered

as false negative. Another limitation of this study was the small

number of CT scans included. Further studies with more CT

scans may result in a better model performance. In addition,

despite the result of this study, the lack of external validation in

this study can be considered as a limitation. External validation

using independent datasets from clinical fields with different image

conditions and qualities would help demonstrate the applicability

of the models in the context of practical approach. Another

limitation of this study is that the data used for the model

development were retrospectively collected from multicenter with

different CT scanners, which acted as a major impediment

factor of this study. Further prospective study with controlled

data could result in the development of models with advanced

performance.

In conclusion, the deep learning models proposed in this study

showed promising results for the detection of small kidney calculi

and highly encouraging results for the automatic segmentation

of kidneys from pre-contrast CT images in dogs. These models

can potentially assist clinicians in the detection of kidney calculi.

Further studies using models that can automatically provide

accurate volumes of calculi may have considerable clinical utility.
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