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Introduction: The distinction between multiple primary lung cancer (MPLC) and

intrapulmonary metastasis (IPM) holds clinical significance in staging, therapeutic

intervention, and prognosis assessment for multiple lung cancer. Lineage tracing

by clinicopathologic features alone remains a clinical challenge; thus, we aimed

to develop a multi-omics analysis method delineating spatiotemporal

heterogeneity based on tumor genomic profiling.

Methods: Between 2012 and 2022, 11 specimens were collected from two

patients diagnosed with multiple lung cancer (LU1 and LU2) with synchronous/

metachronous tumors. A novel multi-omics analysis method based on whole-

exome sequencing, transcriptome sequencing (RNA-Seq), and tumor

neoantigen prediction was developed to define the lineage. Traditional

clinicopathologic reviews and an imaging-based algorithm were performed to

verify the results.

Results: Seven tissue biopsies were collected from LU1. Themulti-omics analysis

method demonstrated that three synchronous tumors observed in 2018 (LU1B/

C/D) had strong molecular heterogeneity, various RNA expression and immune

microenvironment characteristics, and unique neoantigens. These results

suggested that LU1B, LU1C, and LU1D were MPLC, consistent with traditional

lineage tracing approaches. The high mutational landscape similarity score

(75.1%), similar RNA expression features, and considerable shared neoantigens

(n = 241) revealed the IPM relationship between LU1F and LU1G which were two

samples detected simultaneously in 2021. Although the multi-omics analysis

method aligned with the imaging-based algorithm, pathology and
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clinicopathologic approaches suggested MPLC owing to different histological

types of LU1F/G. Moreover, controversial lineage or misclassification of LU2’s

synchronous/metachronous samples (LU2B/D and LU2C/E) traced by traditional

approaches might be corrected by the multi-omics analysis method.

Spatiotemporal heterogeneity profiled by the multi-omics analysis method

suggested that LU2D possibly had the same lineage as LU2B (similarity score,

12.9%; shared neoantigens, n = 71); gefitinib treatment and EGFR, TP53, and RB1

mutations suggested the possibility that LU2E might result from histology

transformation of LU2C despite the lack of LU2C biopsy and its histology. By

contrast, histological interpretation was indeterminate for LU2D, and LU2E was

defined as a primary or progression lesion of LU2C by histological,

clinicopathologic, or imaging-based approaches.

Conclusion: This novel multi-omics analysis method improves the accuracy of

lineage tracing by tracking the spatiotemporal heterogeneity of serial samples.

Further validation is required for its clinical application in accurate diagnosis,

disease management, and improving prognosis.
KEYWORDS

lineage tracing, multiple lung cancer, spatiotemporal heterogeneity, multi-omics
analysis method, multiple primary lung cancer (MPLC), intrapulmonary metastasis (IPM)
1 Introduction

Up to 20% of patients in screening populations are diagnosed

with multiple lung cancer with synchronous or metachronous lung

tumors, compared to a previous estimation that only 0.8%–4% of

patients had multiple lesions (1). The identification of multiple

pulmonary nodules raises a crucial clinical issue of whether multiple

pulmonary nodules represent intrapulmonary metastasis (IPM)

with a common origin or multiple primary lung cancer (MPLC)

with independent lineages. Chest computed tomography (CT) for

high-risk individuals has been endorsed with the increased

awareness of clinicians regarding MPLC screening (2). MPLC is

more likely to develop in the upper lobes of both lungs, with

approximately 50%–70% of patients with multiple lesions having

the same pathological types (3). Given that MPLC patients have

better prognoses than IPM patients, distinguishing between MPLC

and IPM holds clinical significance in staging, prognosis prediction,

and therapeutic intervention development (4). For instance, MPLC

patients are generally treated with aggressive curative therapy,

whereas palliative therapy is typically employed for IPM cases (5).

However, differentiating between MPLC and IPM remains a

significant challenge, particularly for common histological

subtypes and lesions undergoing radiotherapy, leading to

ambiguous diagnoses and patient management (6).

Pathological evaluation plays a vital role in the determination of

MPLC versus IPM (7). The first clinicopathologic criteria proposed

by Martini and Melamed (MM criteria) in 1975 have been proven to

be insufficient for distinguishing MPLC (8–10) owing to only taking

lung cancer histological types into consideration and the overlap of
02
major histological subtypes. As a result, the International Association

for the Study of Lung Cancer proposed a staging category, in which

pathologic criteria based on comprehensive histological assessment

were supplemented by radiographic appearance, rates of growth, and

biomarkers (6, 7, 11). In addition, the eighth edition American Joint

Committee on Cancer staging manual incorporated clinical,

histopathological, and molecular diagnoses (12). Furthermore, a

novel image-based algorithm was developed to identify IPM by

imaging and clinical features. For example, solid lesions without

spiculation or air bronchogram suggest IPM (13). Nevertheless, both

comprehensive histological assessment and imaging algorithms

have limitations resulting from inter-observer variability and the

expertise of specialists, leading to indeterminate classifications

and misclassifications.

Integrating multiple molecular features provides a powerful

approach for lineage tracing leveraging spatiotemporal

heterogeneity. Mutations in proto-oncogenes, such as EGFR,

KRAS, BRAF, and ALK, can be used as molecular markers with a

concordance of 70% between morphologic and molecular

classifications (9). However, relying solely on common driver

mutations as the lineage indicators might raise issues due to their

relatively high prevalence (14). Array comparative genomic

hybridization has been used to define recurrences in MPLC (15),

and the implementation of next-generation sequencing (NGS)

enables more comprehensive profiling from genome to

transcriptome, thereby enhancing the accuracy of lineage tracing

by molecular features (16). For instance, Murphy et al. conducted a

diagnostic lineage test based on genomic rearrangements through

mate‐pair sequencing in which the unique signatures of somatic
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junctions presented ideal markers to distinguish MPLC (16, 17).

The partnering of molecular testing and clinicopathologic data can

also increase the accuracy of lineage tracing (4, 18). To enhance the

reliability of distinguishing MPLC from IPM, a multidisciplinary

approach is required to overcome the limitations of using a single

criterion-based approach.

In this study, we aimed to develop a multi-omics analysis

method, integrating whole-exome sequencing (WES) data,

transcriptome sequencing (RNA-Seq) data, and neoantigen

prediction, to improve lineage tracing accuracy. We defined the

lineage of tumors collected at multiple time points from two

patients with multiple lung cancer using genetic mutational

profiles, RNA expression levels, and tumor neoantigens.

Furthermore, we compared the results of this novel multi-omics

analysis method with those of conventional clinicopathologic

approaches and a novel imaging-based approach.
2 Materials and methods

2.1 Patient inclusion

A male lung cancer patient (LU1) diagnosed with

adenocarcinoma in November 2015 was enrolled. After initial

diagnosis, six tumor tissue samples were serially collected between

2015 and 2021, including two adenocarcinoma samples, two

minimally invasive adenocarcinoma (MIA) samples, one small

ce l l lung cancer (SCLC) sample, and one large ce l l

neuroendocrine carcinoma (LCNEC) sample. Additionally, one

potential tumor biopsy, which was ultimately identified as a

benign sample, was also collected. Another female lung cancer

patient (LU2) diagnosed with adenocarcinoma in January 2012 was

enrolled. Between 2012 and 2021, four tumor tissue samples were

collected, including three adenocarcinomas and one SCLC sample.

A total of 11 formalin-fixed and paraffin-embedded (FFPE) tissue

samples were subject to WES and RNA-Seq. The study was

approved by the Ethics Committee of Zhongshan Hospital Fudan

University (approval number: B2017-142R) and in accordance with

international standards of good clinical practice. Two patients

provided signed written informed consent to participate in

this study.
2.2 Lineage tracing by multiple approaches

The multi-omics analysis method integrated the genomic,

transcriptomic, and tumor neoantigen features based on WES

and RNA-Seq data. Two experienced pathologists blindly

performed independent histological reviews on tumor samples

according to the WHO classification (8). Based on histological

criteria suggested by Girard and Detterbeck et al., samples were

classified as primary if either of the paired nodules was

adenocarcinoma in situ or MIA or if the predominant

histopathologic pattern was different between paired nodules.

Samples with similar histological appearance to a primary cancer

were classified as metastasis if they were not judged to be primary or
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multiple foci of lepidic predominant adenocarcinoma,

adenocarcinoma in situ, or MIA (6, 7). In addition to the

pathology method, lineage tracing was independently performed

according to the MM criteria (10) and an imaging algorithm based

on lesion types and morphology (13).
2.3 WES, mutation calling, and RNA-Seq
data processing

DNA from tissue samples and white blood cells (normal

control) were isolated using the QIAamp DNA FFPE Tissue Kit

and DNeasy Blood kit (Qiagen, Valencia, CA, USA), separately.

DNA was quantified using the Qubit 2.0 Fluorometer (Life

Technologies, Carlsbad, CA, USA) followed by qualification using

Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).

Genomic DNA was sheared into approximately 250-bp fragments

by M220 Focused-ultrasonicator (Covaris, Woburn, MA, USA). A

whole-genome library was prepared using the KAPA Hyper Prep

Kit (KAPA Biosystems, Inc., Woburn, MA, USA). Whole-exome

capture was performed using the xGen™ Exome Hybridization

Panel (Integrated DNA Technologies, Coralville, IA, United States)

according to the manufacturer’s protocol. Captured libraries were

amplified using Illumina p5 and p7 primers in KAPA HiFi HotStart

ReadyMix (KAPA Biosystems) and purified using Agencourt

AMPure XP beads. Enriched libraries were sequenced using the

Illumina HiSeq 4000 platform as paired-end 150-bp reads

according to the manufacturer’s instructions. The targeted

sequencing depth was 300×.

Mutation calling was performed as previously described (19–

21). In brief, Trimmomatic (v0.36) was used for FASTQ file quality

control (22). High-quality reads were aligned to the reference

human genome (hg19, GRCh37) through Burrows-Wheeler

aligner v0.7.12 (23). Duplication was removed with Picard, and

local realignment around indels and base quality score recalibration

was performed with the Genome Analysis Toolkit (GATK v3.2)

(24). Somatic single-nucleotide variants (SNVs) and short

insertions/deletions (indels) were identified by VarScan2 (25).

SNVs and indels were retained according to the following criteria:

1) ≥4 variant supporting reads and ≥2% variant allele frequency

supporting the variant, 2) filtered if present in >1% population

frequency in the 1000g or ExAC database, and 3) filtered through an

internally collected list of recurrent sequencing errors on the same

sequencing platform. The final list of mutations was annotated

using vcf2maf.

Total RNA from FFPE samples was extracted using Rneasy

FFPE kit (QIAGEN, Valencia, CA, USA), and ribosomal RNA was

depleted using Rnase H followed by library preparation using

KAPA Stranded RNA-Seq Kit with RiboErase (KAPA

Biosystems). Library concentration and quality were assessed

using the KAPA Library Quantification Kit (KAPA Biosystems)

and the Agilent High Sensitivity DNA kit on Bioanalyzer 2100

(Agilent Technologies), respectively. The library was then

sequenced on Illumina HiSeq NGS platforms (Illumina, San

Diego, CA, USA). Base calling was performed on bcl2fastq

v2.16.0.10 (Illumina) to generate sequence reads in FASTQ
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format. Quality control was performed with Trimmomatic (22).

STAR (26) is used for transcriptome mapping followed by isoform

and gene level quantification performed using RSEM (27). The

complex cellular heterogeneity in tumor tissues inferring immune

and stromal cells was analyzed using the xCell algorithm based on

RNA-Seq data. The immune and stroma scores were the

enrichment scores of all immune cell types and stromal cell types,

respectively. The microenvironment score was generated as the sum

of all 64 immune and stromal cell types included by the xCell

algorithm, which could be considered a novel measurement for

tumor microenvironment abundance (28).
2.4 Tumor neoantigen prediction,
mutational signature, phylogenetic tree,
and gene similarity score

Human leukocyte antigen (HLA) typing of paired peripheral

blood and tumor samples was performed using OptiType (29). All

non-synonymous mutations and indels were translated into 21-mer

peptide sequences using in-house software centered on mutated

amino acids, followed by creating a 9- to 11-mer peptide via a

sliding window approach to MHC class I binding affinity

prediction. NeoPredPipe was used to predict the binding strength

of mutated peptides to patient-specific HLA alleles (30). A peptide

with predicted binding affinity to any HLA allele with IC50 < 500

nM (strong binder) was selected. Several selected peptides generated

from the same mutation were counted as one neoantigen.

Phylogenetic trees were built using non-synonymous somatic
Frontiers in Oncology 04
mutations (31, 32). Gene similarity score was calculated to

present the relative probabilities of two samples having the same

clonal origin (33).
2.5 Statistical analysis

Principal component analysis (PCA) for RNA-Seq data was

performed on Fragments per Kilobase Million data using the

prcomp, complete, and hclust packages in R software (version 4.1.2).

The heatmap of stroma score, immune score, andmicroenvironment

score was obtained by GraphPad Prism (version 8.3.1).
3 Results

3.1 Patient overview and serial
sample collection

LU1, a 63-year-old male lung cancer patient, was a 30-pack-year

smoker with a medical history of cerebral infarction in the right

basal ganglia. In 2015, he presented with complaints of a non-

productive cough. Chest CT demonstrated a solitary pulmonary

nodule in the left upper lobe, which was defined as a well-

differentiated adenocarcinoma with acinar predominant after left

upper lobe lobectomy (LU1A, Figure 1A). LU1 presented with

synchronous multiple ground-glass nodules and part-solid nodules

in the right upper/lower lobe through CT scans in 2018.

Histological assessment after partial lobectomy revealed one
A B

FIGURE 1

Collection of serial samples and treatment history. (A) Patient LU1’s six tumor tissue samples and one benign stump sample were collected. The
treatment history of patient LU1 is shown below the position of tumor lesions. (B) Patient LU2’s four tumor tissue samples were collected. The
treatment history of patient LU2 is shown below the position of tumor lesions. Red arrows indicate tumor lesions.
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moderately differentiated adenocarcinoma with acinar

predominant (LU1B) and two separate foci of MIA (LU1C and

LU1D). In 2020, the patient refused a lung biopsy for another right

upper lobe solitary nodule (LU1E) and underwent stereotactic body

radiation therapy. Serial CT scans showed progression of one right

upper lobe mass enlarging from 11 mm to 41 mm with mediastinal

lymphadenopathy. The histological results of endobronchial

ultrasound-guided transbronchial needle aspiration and CT-

guided biopsy revealed an SCLC at the lymph node (LU1F), an

LCNEC in the right upper lobe (LU1G), and a left lobe stump

without detectable cancer cells (LU1H). Afterward, the patient was

treated with first-line chemotherapy [cisplatin and etoposide, best

response: stable disease (SD)], followed by second-line

chemotherapy (irinotecan, best response: SD) and third-line

anlotinib treatment (best response: SD).

LU2, a 72-year-old woman without a smoking history, was

accidentally found to have one 1.6-cm well-defined nodule in the

left lower lobe in 2012. The patient received a left lower lobectomy,

and the pathology disclosed acinar predominant adenocarcinoma

with visceral pleural elastic layer infiltration (LU2A, Figure 1B). In

2019, a CT scan demonstrated synchronous bilateral ground-glass

opacity and solid nodules, including an acinar predominant

adenocarcinoma (LU2B) and a failed biopsy of the left upper lobe

nodule (LU2C). The patient was treated with gefitinib due to

detectable EGFRL747_T751del mutation in LU2B and refusal to

surgical intervention, with the best response of SD. In 2021, the

pat ient underwent endobronchia l u l t rasound-guided

transbronchial lung biopsy and electromagnetic navigation

bronchoscope biopsy at the same locations as LU2B and LU2C,

respectively. An acinar predominant adenocarcinoma nodule

(LU2D) and an SCLC nodule (LU2E) were identified. The patient

received ablation, cisplatin, and etoposide plus gefitinib (best

response: SD) and radiotherapy (best response: SD) sequentially.

Due to the metastasis to the liver and bone in June 2022, she had

been treated with anlotinib by the end of the follow-up.
3.2 Lineage tracing by the multi-omics
analysis method

As two specimens were not eligible for the multi-omics analysis

method (LU1E and LU2C: refuse/failure to tumor tissue biopsy),

the lineage of the remaining 11 tumor tissue biopsies was traced.

WES data revealed no shared mutations in samples LU1B, LU1C,

and LU1D, which were multiple synchronous tumors observed in

2018, suggesting a high probability of MPLC (Figure 2A). When

compared to sample LU1A, these three samples also did not share

any mutations. In comparison with LU1F, LU1G had considerable

shared mutations (gene similarity score: 75.1%), which suggests a

potential for IPM. Of note, no somatic mutations were detected in

LU1H, which was also pathologically considered to be benign. The

WES data of LU2 also aided in lineage tracing (Figure 2B).

Considering the location of biopsies as well as the multiple shared

mutations between LU2B and LU2D (gene similarity score: 12.9%),

especially the same driver mutation of EGFRL747_T751del, we

supposed that LU2D was a progression lesion derived from
Frontiers in Oncology 05
LU2B; however, neither LU2B nor LU2D might be the

recurrence/metastasis of LU2A owing to different EGFR drivers

(EGFRL747_T751del vs. EGFRL858R) as well as no detectable shared

mutations. Although both LU2A and LU2E were identified with the

same EGFRL858R driver mutation, other shared mutations were

rarely observed (gene similarity score: 0.4%), suggesting a low

possibility of LU2E being a recurrence/metastasis of LU2A.

However, due to the failure of the LU2C biopsy, we were not able

to directly determine the lineage of LU2C and LU2E. Considering

gefitinib treatment after the diagnosis of LU2B and LU2C, as well as

detectable EGFR, TP53, and RB1 mutations in LU2E, we supposed

that LU2E might result from the histological transformation related

to gefitinib resistance. Moreover, the lineage of two patients’

samples traced by mutational landscape was confirmed by the

phylogenetic trees (Figure 2C).

Next, the lineage tracing based on WES data was double-

checked using RNA-Seq data by PCA and unsupervised cluster

analyses. The position of each tumor sample in a 2D coordinate

system depended on the first and second components using PCAs.

For patient LU1’s six tumor samples, two adenocarcinoma samples

(LU1A and LU1B) clustered together; LU1C and LU1D, which were

two MIA samples, were close to each other (Figure 2D). These

results demonstrated that lung cancer samples of the same

histological type showed similar RNA expression. Notably, LU1F

and LU1G also clustered together, being significantly distant to the

other four adenocarcinoma or MIA samples even though LU1F and

LU1G were SCLC and LCNEC, respectively, suggesting the

possibility that LU1F had the same lineage as LU1G and the

likelihood of LCNEC transforming into SCLC during metastatic

invasion. The clustering analyses also revealed that LU1F and LU1G

had similar RNA expression patterns (Figure 2D). Patients LU2,

LU2B, and LU2D presented similar RNA expression features, with

relatively close locations when compared to LU2A and LU2E

(Figure 2E), which was consistent with the clustering analyses

(Figure 2E). The results of xCell demonstrated relatively low

scores of immune-related cells in multiple samples of LU1, such

as CD8+ T cells and NK cells (Supplementary Figure 1). Of note,

samples LU1B, LU1C, and LU1D appeared to have higher scores of

B cells, NK T cells, endothelial cells, and hematopoietic stem cells

than LU1F and LU1G. By contrast, LU1F and LU1G were more

likely to have relatively high scores of CD4+ Th1 and Th2 T cells

(Supplementary Figure 1). Additionally, the xCell algorithm

revealed that both LU1F and LU1G had relatively low stroma

scores, immune scores, and microenvironment scores in

comparison with patient LU1’s other four tissue samples

(Figure 2F). However, LU1B, LU1C, and LU1D showed

distinctive stroma scores, immune scores, and microenvironment

scores, suggesting that these three samples might be MPLC

(Figure 2F). For patient LU2’s samples, LU2A, LU2B, and LU2D

appeared to have similar tumor microenvironment landscape,

except for the higher hematopoietic stem cell score in LU2D than

in LU2A and LU2B (Supplementary Figure 2). The stroma,

immune, and microenvironment scores of four samples were low,

ranging from 0 to 0.05, whereas LU2E appeared to have a higher

stroma score and lower immune score when compared to the other

three samples even though the overall microenvironment score of
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LU2E was close to LU2B (Figure 2G). LU2B and LU2D displayed

similar stroma, immune, and microenvironment scores, suggesting

potentially similar tumor microenvironment abundance. Therefore,

RNA-Seq results revealed that LU1F and LU1G could possibly be

identified as IPM. However, due to the RNA expression similarity in

the same histology subtype and patient LU2’s samples, the lineage

of LU1C and LU1D as well as that of LU2A, LU2B, and LU2D

might not be identified clearly using RNA-Seq data alone.

As the RNA-Seq data indicated a potentially similar tumor

microenvironment between LU1F and LU1G, as well as LU2A,
Frontiers in Oncology 06
LU2B, and LU2D, the tumor neoantigens were further compared.

The same neoantigens were exclusively observed between LU1F and

LU1G in patient LU1’s samples, with 74.2% of neoantigens of LU1F

and 54.7% of neoantigens of LU1G being shared, which supported

that these two samples were IPM (Figure 2H). By contrast, all

LU1A, LU1B, LU1C, and LU1D were predicted with unique

neoantigens, suggesting that LU1B, LU1C, and LU1D might be

determined as MPLC without a high possibility of relapse of LU1A.

Similarly, 71 shared neoantigens were observed between LU2B

(30.9%) and LU2D (16.3%), which demonstrated the potential
A B

D E

F IH

C

G

FIGURE 2

Lineage tracing by the multi-omics analysis method. (A) The mutational landscape of patient LU1’s six tumor tissue samples profiled by whole-
exome sequencing. No somatic mutations were detected in the benign stump sample. Potential driver mutations, such as TP53V173L, TP53V216L,
TP53C238Y, and STK11G288W, are marked. (B) The mutational landscape of patient LU2’s four tumor tissue samples profiled by whole-exome
sequencing. Driver mutations, such as EGFRL858R and EGFRL747_T751del, are marked. (C) The lineage of two patients’ samples traced by the
phylogenetic trees. (D, E) Patients LU1’s and LU2’s RNA expression features by PCAs and unsupervised cluster analyses. (F) The tumor immune
microenvironment characterized by RNA-Seq data, including stroma scores (SS), immune scores (IS), and microenvironment scores (MS) of patient
LU1’s samples generated by the xCell algorithm. Both LU1F and LU1G had relatively low scores when compared to other four samples. (G) The
tumor immune microenvironment characterized by RNA-Seq data. LU2B and LU2D displayed similar scores, suggesting potentially similar tumor
microenvironment abundance. (H, I) Predicted tumor neoantigens were shared between LU1F and LU1G, as well as LU2B and LU2D, whereas no
common predicted tumor neoantigens were observed in other samples.
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that LU2D was a relapse of LU2B (Figure 2I). Considering no

neoantigens were shared between LU2D and LU2E, there was a low

possibility that LU2E was the intrapulmonary metastasis of LU2D.
3.3 Validation by clinicopathologic and
molecular criteria

The lineage determined using the multi-omics analysis method

is summarized in Table 1. To validate the accuracy of this novel

method, the findings were further confirmed through additional

validation strategies, including pathology, MM criteria, and imaging

algorithms. Histological review (Figure 3) and MM criteria reached

an agreement that tumors of LU1 were characterized as primaries

due to different histological types or physical separation, except for

LU1B, whose lineage was indeterminate by pathologists’ histological

review (Table 1). Immunohistochemical staining showed that LU1F

and LU1G were both positive for synaptophysin, chromogranin A,

and CD56 (Figure 3C). The imaging algorithm suggested that

LU1B–D were MPLC and that LU1F was a metastasis of

synchronous LU1G. The multi-omics analysis method also

identified LU1B–D as MPLC without an obvious relationship

with LU1A, and LU1F and LU1G were determined as IPM. For

patient LU2 (Figure 4), pathologic interpretation confirmed LU2A

and LU2E as primary, whereas the lineage of LU2B and LU2D

remained indeterminate when compared to that of sample LU2A

(Table 1). The histological review identified LU2E as an SCLC

sample, showing positive staining for chromogranin A,

synaptophysin, and CD56, but negative for NapsinA, whereas

LU2D was identified as an acinar predominant adenocarcinoma,

with negative staining for chromogranin A and synaptophysin

(Figure 4C). In contrast, the MM criteria identified LU2D as the
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progression of LU2B, and LU2E as the progression of LU2C. The

imaging algorithm demonstrated a diagnosis of MPLC for LU2B

and LU2C and progression for LU2D and LU2E from their original

lesions. The multi-omics analysis method revealed that LU2D was a

progression lesion derived from LU2B, whereas it suggested a

potential histological transformation from LU2C to LU2E.
4 Discussion

In this study, we developed a multi-omics analysis method

integrating WES, RNA-Seq, and tumor neoantigen data to aid in

lineage tracing for multiple lung cancer by spatiotemporal

heterogeneity. This molecular feature-based approach achieved

good performance in serial tissue samples of two patients with

complicated surgical and systemic treatment histories. Compared

with previous lineage tracing approaches based on histological

review, MM criteria, and imaging characteristics, the novel multi-

omics method was able to define MPLC and IPM with high

agreement and overcome the shortage of inter-observer variability.

Neither histological nor molecular features alone were perfect

classifiers for lineage tracing resulting in discordance of lineage (4),

and the combination of histological and molecular features

remained insufficient to predict lineage or determine the best

course of treatment, suggesting a need for a more objective and

comprehensive approach. The genomic profile-based algorithm

might be a promising method to define lineage in multiple lung

cancer, as two-thirds of patients would perform molecular analysis

to assess the genetic agreements of different lesions in a recent

global survey on the management of multiple lung cancer (34).

WES demonstrated comprehensive detection of shared and unique

mutations of multiple lung cancer. Our combined method, which
TABLE 1 Lineage tracing by the multi-omics analysis method and traditional approaches.

Patient Time point Sample
Lineage tracing approaches

Pathology MM criteria Imaging Multi-omics

LU1

Nov 2015 LU1A Primary Primary Primary Primary

Sep 2018

LU1B Indeterminate

MPLC MPLC MPLCLU1C
MPLC

LU1D

Sep 2020 LU1E NA NA Primary NA

Jul 2021

LU1F
MPLC MPLC IPM IPM

LU1G

LU1H Benign NA NA Benign

LU2

Jan 2012 LU2A Primary Primary Primary Primary

Oct 2019
LU2B Indeterminate Primary

MPLC
Primary

LU2C NA NA NA

Aug 2021
LU2D Indeterminate Progression of 2B Progression of 2B Progression of 2B

LU2E Primary Progression of 2C Progression of 2C 2C SCLC transformation
MM, Martini and Melamed; MPLC, multiple primary lung cancer; NA, not applicable; SCLC, small cell lung cancer.
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delineated spatiotemporal heterogeneity of series tumor tissue

samples through genomic, transcriptomic, and immune-related

tumor neoantigen, was an effective alternative in improving the

accuracy of tracing lineage and tracking the evolutionary process.
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Similar to the findings of our research, a previous study where both

genomic and transcriptomic features were used to generate a

combined classifier achieved a better performance than using one

feature alone (area under the curve for the combined classifier, 0.79;
A

B

C

FIGURE 3

Histological reviews for patient LU1’s biopsies. (A) Histological reviews for sample LU1A collected in November 2015. (B) Histological reviews for
samples LU1B, LU1C, and LU1D collected in September 2018. (C) Histological reviews for samples LU1F, LU1G, and LU1H collected in July 2021.
A B

C

FIGURE 4

Histological reviews for patient LU2’s biopsies. (A) Histological reviews for sample LU2A collected in January 2012. (B) Histological reviews for
sample LU2B collected in October 2019. (C) Histological reviews for samples LU2D and LU2E collected in August 2021.
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WES alone, 0.69; RNA-Seq alone, 0.73) (35). Immune scores,

summarizing the density, type, and proportion of tumor-

infiltrating lymphocytes and reflecting the immune-related tumor

microenvironment, also assisted in lineage calling. These results

highlighted the clinical significance of the dynamic multi-omics

landscape in phenotype characterization, tumor staging, and

governing. Aligned with the similarities and differences revealed

by immune scores, the same tumor neoantigens predicted by

somatic mutations and indels were shared between samples with

similar immune-related microenvironments.

As an auxiliary tool to distinguish MPLC from IPM,

comprehensive histological subtyping and imaging characteristics

might reflect molecular characteristics instead of accurately

predicting the underlying genetic similarities and differences

between MPLC and IPM. The International Association for the

Study of Lung Cancer proposal mentioned that paired tumor

samples in which at least one lesion presented with ground-glass

opacity nodular features reflected multifocal lung adenocarcinoma

with ground glass/lepidic features (13). There was also a significant

association between KRAS mutations and MPLC development in

patients exposed to tobacco (36). The American Joint Committee

on Cancer (AJCC) staging demonstrated the positive status of

lymph nodes, which was associated with overall survival (p =

0.0001), as a symbol of IPM rather than MPLC (4, 9). However,

the positivity of the lymph node that was not able to predict

molecular similarity might lead to lineage misclassification. For

instance, when detected with LU1G and LU1F, which was a

potential metastasis of LU1G, patient LU1 might receive surgery

or stereotactic body radiation therapy if LU1G and LU1F were

histologically considered as MPLC without the aid of the multi-

omics analysis method. Although chemotherapy might not be

applied alternatively according to the molecular feature-based

algorithm, treatment was possibly changed toward limited

parenchymal resections or stereotactic body radiation therapy for

MPLC and solitary IPM in selected cases (37).

The discordance of lineage tracing for certain samples between

pathology/MM criteria and the multi-omics analysis method

resulted from different histological types of serial samples. For

example, LU1F and LU1G, which were SCLC and LCNEC,

respectively, were identified as primaries owing to completely

different histological types. However, the genomic and

transcriptomic landscapes suggested the two samples’ relationship

behind different histological types. This result reminded us that

spatiotemporal heterogeneity and the evolutionary relationship of

multiple lung cancer could be accurately unveiled by genomic and

transcriptomic features. The discordance of lineage determination

for LU2E might also be rationalized by different histological types,

in addition to the lack of LU2C biopsy. Integrating the EGFR driver

mutation, the contaminant TP53 and RB1 mutations (38, 39), and

the use of gefitinib, the multi-omics analysis method suggested that

LU2E, a SCLC sample, was likely to result from the histological

transformation rather than the development of a primary lesion,

even though there was no molecular feature information of LU2C.

Due to the failure of tissue biopsy of LU2C, neither pathology nor
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MM criteria were able to reveal the lineage between LU2C and

LU2E; however, the imaging algorithm, which did not rely on

successful biopsy, could also flag the potential relationship between

these two samples.

In our study, MPLC exhibited strong heterogeneity of

molecular characteristics, such as rarely shared mutations except

for common lung cancer driver mutations. Our findings were

consistent with a previous study indicating that the genomic

similarity among one lung cancer patient’s independent primaries

was not relatively high in comparison with a tumor randomly

selected from The Cancer Genome Atlas (TCGA) lung

adenocarcinoma database (40). Moreover, our RNA-Seq results

revealed that MPLC with various histological types had different

RNA expression patterns, consistent with the finding that RNA

expression could help differentiate lung cancer histology (41, 42).

Interestingly, two patients’ adenocarcinoma samples with few

shared mutations had similar RNA expression patterns, and

similar findings were observed in patient LU1’s two independent

MIA primary samples. Owing to the limited sample size, this

finding requires further investigation in a large study cohort

including more independent primary lesion samples of different

histological types.

Heterogeneous tumor cells with different gene expression,

tumor–host interactions, and potential biological behaviors were

influenced by tumor cell-intrinsic genetic and epigenetic

determinants (6). Currently, tumor heterogeneity is generally

interpreted using the trunk-branch model. Trunk gene mutations

drove tumor growth in subcloning and tumor regions, while the

branch ones induced tumor heterogeneity in primaries and

metastases (43). An analysis of the first 100 patients enrolled in

TRACERx based on WES analysis revealed pervasive genomic

heterogeneity (44). Given the pervasiveness and importance of

tumor heterogeneity in the relapse patterns and prognosis, WES

and RNA-Seq analyses were proposed to reveal significant

genomic–transcriptomic heterogeneity and complex evolutionary

process in identical tumors with different sampling time (LU2B/D)

or undergoing cancer treatment (LU2C/E) with or without the

retaining of core genome.

This study has limitations. Only two patients were enrolled in

this study, and there was a lack of key tumor tissue samples. For

example, sample LU2C, which could provide critical information

about the lineage determination, was not collected unsuccessfully,

leading to the failure to directly define the association between

LU2C and LU2E. Although only two patients were included, their

multiple samples spanned across different time points, and these

two patients underwent various treatment regimens. As a

preliminary investigation, this study demonstrated the feasibility

of utilizing multidimensional molecular features; however, future

studies with larger sample sizes are essential to validate the accuracy

of lineage calling by the multi-omics analysis method, including

sensitivity and specificity compared to conventional histological

assessment and imaging methods. Also, sample LU1F was obtained

through endobronchial ultrasound-guided transbronchial needle

aspiration from a lymph node, which might lead to inaccurate
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lineage tracing due to the small volume. Another limitation is that

some tumor tissue samples were collected several years ago, possibly

resulting in the accuracy issue of RNA-Seq results. Further well-

designed prospective studies are warranted to confirm the role of

RNA-Seq in helping lineage tracing. Additionally, the impact of the

multi-omics analysis method on treatment strategy development

remained incomprehensively investigated in this retrospective

study, even though the multi-omics analysis method was able to

predict the lineage more reasonably than the traditional pathology

approach and the MM criteria. Thus, further prospective studies are

required to assess its benefits in treatment plan modification and

prognosis by correcting potential lineage determination mistakes.

In summary, the multi-omics analysis method revealing

spatiotemporal heterogeneity by genomic, transcriptomic, and

immune-related characteristics may be an alternative approach to

accurate lineage tracing for multiple lung cancer, with a promise in

clinical application for disease management assistance and

prognosis improvement, while further validation in large cohorts

is warranted.
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SUPPLEMENTARY FIGURE 1

RNA-Seq results for patient LU1’s biopsies by the xCell algorithm. Relatively
low scores of immune-related cells were observed in multiple samples of

LU1, such as CD8+ T-cells and NK cells. Sample LU1B, LU1C, and LU1D
appeared to have higher scores of B cells, NK T-cells, endothelial cells, and

hematopoietic stem cells than LU1F and LU1G that were more likely to have

relatively high scores of CD4+ Th1 and Th2 T cells.

SUPPLEMENTARY FIGURE 2

RNA-Seq results for patient LU2’s biopsies by the xCell algorithm. LU2A, LU2B

and LU2D appeared to have similar tumormicroenvironment landscape, but a
higher hematopoietic stem cell score was observed in LU2D than in LU2A

and LU2B.&
frontiersin.org

https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004862
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004862
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237308/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237308/full#supplementary-material
https://doi.org/10.3389/fonc.2023.1237308
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2023.1237308
References
1. Murphy SJ, Aubry M-C, Harris FR, Halling GC, Johnson SH, Terra S, et al.
Identification of independent primary tumors and intrapulmonary metastases using
DNA rearrangements in non–small-cell lung cancer. J Clin Oncol (2014) 32(36):4050.
doi: 10.1200/JCO.2014.56.7644

2. Pei G, Li M, Min X, Liu Q, Li D, Yang Y, et al. Molecular identification and genetic
characterization of early-stage multiple primary lung cancer by large-panel next-
generation sequencing analysis. Front Oncol (2021) 11:653988. doi: 10.3389/
fonc.2021.653988

3. Chang YL, Wu CT, Lin SC, Hsiao CF, Jou YS, Lee YC. Clonality and prognostic
implications of P53 and epidermal growth factor receptor somatic aberrations in
multiple primary lung cancers. Clin Cancer Res (2007) 13(1):52–8. doi: 10.1158/1078-
0432.Ccr-06-1743

4. Mansuet-Lupo A, Barritault M, Alifano M, Janet-Vendroux A, Zarmaev M, Biton
J, et al. Proposal for a combined histomolecular algorithm to distinguish multiple
primary adenocarcinomas from intrapulmonary metastasis in patients with multiple
lung tumors. J Thorac Oncol (2019) 14(5):844–56. doi: 10.1016/j.jtho.2019.01.017

5. Jiang L, He J, Shi X, Shen J, Liang W, Yang C, et al. Prognosis of synchronous and
metachronous multiple primary lung cancers: systematic review and meta-analysis.
Lung Cancer (2015) 87(3):303–10. doi: 10.1016/j.lungcan.2014.12.013

6. Detterbeck FC, Franklin WA, Nicholson AG, Girard N, Arenberg DA, Travis
WD, et al. The iaslc lung cancer staging project: background data and proposed criteria
to distinguish separate primary lung cancers from metastatic foci in patients with two
lung tumors in the forthcoming eighth edition of the tnm classification for lung cancer.
J Thorac Oncol (2016) 11(5):651–65. doi: 10.1016/j.jtho.2016.01.025

7. Girard N, Deshpande C, Lau C, Finley D, Rusch V, Pao W, et al. Comprehensive
histologic assessment helps to differentiate multiple lung primary nonsmall cell
carcinomas from metastases. Am J Surg Pathol (2009) 33(12):1752–64. doi: 10.1097/
PAS.0b013e3181b8cf03

8. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al.
The 2015 world health organization classification of lung tumors: impact of genetic,
clinical and radiologic advances since the 2004 classification. J Thorac Oncol (2015) 10
(9):1243–60. doi: 10.1097/jto.0000000000000630

9. Asmar R, Sonett JR, Singh G, Mansukhani MM, Borczuk AC. Use of oncogenic
driver mutations in staging of multiple primary lung carcinomas: A single-center
experience. J Thorac Oncol (2017) 12(10):1524–35. doi: 10.1016/j.jtho.2017.06.012

10. Martini N, Melamed MR. Multiple primary lung cancers. J Thorac Cardiovasc
Surg (1975) 70(4):606–12. doi: 10.1016/S0022-5223(19)40289-4

11. Detterbeck FC, Nicholson AG, Franklin WA, Marom EM, Travis WD, Girard N,
et al. The iaslc lung cancer staging project: summary of proposals for revisions of the
classification of lung cancers with multiple pulmonary sites of involvement in the
forthcoming eighth edition of the tnm classification. J Thorac Oncol (2016) 11(5):639–
50. doi: 10.1016/j.jtho.2016.01.024

12. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK,
et al. The eighth edition ajcc cancer staging manual: continuing to build a bridge from a
population-based to a more "Personalized" Approach to cancer staging. CA Cancer J
Clin (2017) 67(2):93–9. doi: 10.3322/caac.21388

13. Suh YJ, Lee HJ, Sung P, Yoen H, Kim S, Han S, et al. A novel algorithm to
differentiate between multiple primary lung cancers and intrapulmonary metastasis in
multiple lung cancers with multiple pulmonary sites of involvement. J Thorac Oncol
(2020) 15(2):203–15. doi: 10.1016/j.jtho.2019.09.221

14. Murphy SJ, Harris FR, Kosari F, Barreto Siqueira Parrilha Terra S, Nasir A,
Johnson SH, et al. Using genomics to differentiate multiple primaries from metastatic
lung cancer. J Thorac Oncol (2019) 14(9):1567–82. doi: 10.1016/j.jtho.2019.05.008

15. Arai J, Tsuchiya T, Oikawa M, MoChinaga K, Hayashi T, Yoshiura K, et al.
Clinical and molecular analysis of synchronous double lung cancers. Lung Cancer
(2012) 77(2):281–7. doi: 10.1016/j.lungcan.2012.04.003

16. Yang R, Li P, Wang D, Wang L, Yin J, Yu B, et al. Genetic and immune
characteristics of multiple primary lung cancers and lung metastases. Thorac Cancer
(2021) 12(19):2544–50. doi: 10.1111/1759-7714.14134

17. Murphy SJ, Aubry MC, Harris FR, Halling GC, Johnson SH, Terra S, et al.
Identification of independent primary tumors and intrapulmonary metastases using
DNA rearrangements in non-small-cell lung cancer. J Clin Oncol (2014) 32(36):4050–8.
doi: 10.1200/jco.2014.56.7644

18. Chen X, Lu J, Wu Y, Jiang X, Gu Y, Li Y, et al. Genetic features and application
value of next generation sequencing in the diagnosis of synchronous multifocal lung
adenocarcinoma. Oncol Lett (2020) 20(3):2829–39. doi: 10.3892/ol.2020.11843

19. Tong L, Ding N, Tong X, Li J, Zhang Y, Wang X, et al. Tumor-derived DNA
from pleural effusion supernatant as a promising alternative to tumor tissue in genomic
profiling of advanced lung cancer. Theranostics (2019) 9(19):5532–41. doi: 10.7150/
thno.34070

20. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, et al. Investigating novel
resistance mechanisms to third-generation egfr tyrosine kinase inhibitor osimertinib in
non-small cell lung cancer patients. Clin Cancer Res (2018) 24(13):3097–107.
doi: 10.1158/1078-0432.CCR-17-2310
Frontiers in Oncology 11
21. Li RY, Liang ZY. Circulating tumor DNA in lung cancer: real-time monitoring of
disease evolution and treatment response. Chin Med J (Engl) (2020) 133(20):2476–85.
doi: 10.1097/CM9.0000000000001097

22. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for illumina
sequence data. Bioinformatics (2014) 30(15):2114–20. doi: 10.1093/bioinformatics/
btu170

23. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics (2009) 25(14):1754–60. doi: 10.1093/bioinformatics/btp324

24. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The genome analysis toolkit: A mapreduce framework for analyzing next-generation
DNA sequencing data. Genome Res (2010) 20(9):1297–303. doi: 10.1101/gr.107524.110

25. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. Varscan 2:
somatic mutation and copy number alteration discovery in cancer by exome
sequencing. Genome Res (2012) 22(3):568–76. doi: 10.1101/gr.129684.111

26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. Star:
ultrafast universal rna-seq aligner. Bioinformatics (2013) 29(1):15–21. doi: 10.1093/
bioinformatics/bts635

27. Li B, Dewey CN. Rsem: accurate transcript quantification from rna-seq data with or
without a reference genome. BMC Bioinf (2011) 12:323. doi: 10.1186/1471-2105-12-323

28. Aran D, Hu Z, Butte AJ. Xcell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol (2017) 18(1):220. doi: 10.1186/s13059-017-
1349-1

29. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. Optitype:
precision hla typing from next-generation sequencing data. Bioinformatics (2014) 30
(23):3310–6. doi: 10.1093/bioinformatics/btu548

30. Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson AR. Neopredpipe:
high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinf
(2019) 20(1):1–6. doi: 10.1186/s12859-019-2876-4

31. Xue R, Li R, Guo H, Guo L, Su Z, Ni X, et al. Variable intra-tumor genomic
heterogeneity of multiple lesions in patients with hepatocellular carcinoma.
Gastroenterology (2016) 150(4):998–1008. doi: 10.1053/j.gastro.2015.12.033

32. Duan Q, Tang C, Ma Z, Chen C, Shang X, Yue J, et al. Genomic heterogeneity
and clonal evolution in gastroesophageal junction cancer revealed by single cell DNA
sequencing. Front Oncol (2021) 11:672020. doi: 10.3389/fonc.2021.672020

33. Zhang X, Fan X, Sun C, Wang L, Miao Y, Wang L, et al. A novel ngs-based
diagnostic algorithm for classifying multifocal lung adenocarcinomas in pn0m0
patients. J Pathol: Clin Res (2023) 9(2):108–20. doi: 10.1002/cjp2.306

34. Leventakos K, Peikert T, Midthun DE, Molina JR, Blackmon S, Nichols FC, et al.
Management of multifocal lung cancer: results of a survey. J Thorac Oncol (2017) 12
(9):1398–402. doi: 10.1016/j.jtho.2017.05.013
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