
Coherent errors and readout errors in the surface code
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We consider the combined effect of read-
out errors and coherent errors, i.e., de-
terministic phase rotations, on the surface
code. We use a recently developed nu-
merical approach, via a mapping of the
physical qubits to Majorana fermions. We
show how to use this approach in the
presence of readout errors, treated on the
phenomenological level: perfect projective
measurements with potentially incorrectly
recorded outcomes, and multiple repeated
measurement rounds. We find a thresh-
old for this combination of errors, with an
error rate close to the threshold of the cor-
responding incoherent error channel (ran-
dom Pauli-Z and readout errors). The
value of the threshold error rate, using
the worst case fidelity as the measure of
logical errors, is 2.6%. Below the thresh-
old, scaling up the code leads to the rapid
loss of coherence in the logical-level er-
rors, but error rates that are greater than
those of the corresponding incoherent er-
ror channel. We also vary the coherent
and readout error rates independently, and
find that the surface code is more sensi-
tive to coherent errors than to readout er-
rors. Our work extends the recent results
on coherent errors with perfect readout to
the experimentally more realistic situation
where readout errors also occur.

1 Introduction

The surface code[1, 2] is one of the most promis-
ing candidates for quantum error correction. For
a code patch of distance d, the collective quantum
state of d2 physical qubits is used to store a single
logical qubit. Incoherent errors (from entangle-
ment of the physical qubits with a memoryless
environment) can be modeled as random Pauli

operators on the physical qubits. Repeated mea-
surements of the parity check operators (a.k.a.
stabilizer generators, to obtain the so-called syn-
drome) can be used to localize and correct such
errors, with a success probability that increases
as the code distance increases, d→∞, as long as
the error rates are below the so-called threshold.

For incoherent errors, the value of the thresh-
old depends on the details of the error model, of
the error correction (decoding) procedure, and on
the level of detail in which the measurements are
modeled (circuit-level or not). For simple cases,
the threshold is known from mappings between
the correction of incoherent errors on the sur-
face code and phase transitions in classical Ising
models[1, 3]: it is around 10% with perfect and
around 3% with imperfect measurements. This
mapping can be extended to some other error
models and codes as well[4, 5]. For more compli-
cated error models and circuit-level modeling the
threshold can be obtained numerically, using ef-
ficient simulation in the Heisenberg picture[6, 7],
and is around 0.75%. These threshold values
not very far from current experimental reality:
below 1% for quantum gates, and a few % for
readout[8, 9].

The effect of coherent errors on the surface
code is less well understood. These are errors
modeled by nonrandom unitary operators act-
ing on each physical qubit separately at each
timestep. In the simplest case – the one we
will also consider – these are phase rotations

of the qubits with a fixed angle θ, i.e., eiθẐ .
Such errors model the effect of components be-
coming miscalibrated, inevitable in long calcu-
lations. Since coherent errors are not Clifford
operations, their effects cannot be simulated effi-
ciently in the Heisenberg picture[6]. Brute-force
simulations[10, 11], tensor network methods[12]
or other efficient approximations[13], and the
standard mappings to statistical physics mod-
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els also break down (but note a recent exten-
sion of the mappings to a Majorana scattering
network[14]).

One of the ways in which coherent errors are
more complicated than incoherent errors is that
they lead to coherent errors on the logical level
as well. With coherent errors, the parity check
measurements project the surface code into a ran-
dom state, which even after error correction dif-
fers from the original state. For codes with an
odd distance, this difference corresponds to a co-
herent rotation on the logical level. This logical-
level coherence also makes the quantitative in-
vestigation of a quantum memory more compli-
cated. Note, however, that scaling up the sur-
face code leads to a ”washing out” of coherence
from the errors on the logical level. As shown
analytically[15, 16], the random logical-level ro-
tations correspond more and more to random
Pauli noise as the code size is increasing. Note
also, however, that the rate of this logical-level
Pauli noise has not been computed analytically,
and it can be considerably higher than what one
would get by simply replacing coherent errors
with their Pauli twirled counterparts[17, 11].

Coherent errors also seem to have a threshold,
as shown numerically by Bravyi et al[18]. They
have simulated relatively large code sizes using
a mapping to Majorana fermions. They have
seen the ”washing out of the coherence”, and
found that the rate of the logical-level Z error is
significantly higher than that obtained by Pauli
twirling the physical-level errors. Nevertheless,
their numerics revealed an error threshold for co-
herent errors too: for θ < θth ≈ 0.08π − 0.1π,
the logical-level error rates decrease as the code
is scaled up. This value of the threshold is very
close to that of the Pauli twirled physical error
channel: sin(θth)2 ≈ 0.09.

In this paper we bring the results on coherent
errors closer to experimentally relevant setting
by considering them together with measurement
errors. We consider the simplest kind of measure-
ment errors, the so-called phenomenological error
model: perfect projective von Neumann measure-
ments of the parity check operators, with possibly
incorrectly recorded measurement results. We
use the numerical simulation approach based on
the mapping to Majorana fermions[18, 19], but
combine this with readout errors, and a corre-
sponding 3D decoding.

This paper is structured as follows. In Sec. 2
we briefly introduce the most important concepts
of the surface code, including error correction by
minimum weight perfect matching on a 3D syn-
drome graph. In Sec. 3 we introduce the key
points of the simulation method using fermionic
linear optics, as pioneered by Bravyi et al[18]. In
Sec. 4 we present our results on the combined
effects of coherent and readout errors on the sur-
face code. In Sec. 5 we conclude the paper with
a discussion of our results.

2 Surface code

We briefly introduce the surface code as a quan-
tum memory, storing a single logical qubit, in the
rotated basis[10], with the patch encoding[20].

2.1 Definition of the code space

A distance-d patch of the surface code (we always
take d odd) consists of n = d2 physical (data)
qubits arranged in a square grid. An example
with d = 5 is shown in Fig. 1. The faces of
the grid are colored in a checkerboard pattern,
light (brown) and dark (blue). Extra boundary
faces are also included, on all the edges, to ensure
that top and bottom edges consist of only blue
faces, while left and right edges of only light faces
(smooth/rough boundaries[2]).

Figure 1: A patch of a surface code with code distance
d = 5.

All faces of the grid correspond to parity check
operators, which are the stabilizer generators of
the code. These are products of Pauli operators
on the qubits at the corners of the corresponding
face. For each light (dark) face, Ẑ (X̂) operators
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are used, i.e.,

Âf =
∏

j∈∂f

X̂j ; B̂f =
∏

j∈∂f

Ẑj ; (1)

Ŝf = Âf if f dark; Ŝf = B̂f if f light. (2)

They have eigenvalues ±1, which correspond to
even/odd parity of the corresponding group of
qubits (in X or Z basis). Since any dark face
shares either no corners or two corners with any
light face, all of these stabilizer operators com-
mute.

The code space (”quiescent state”[2]) of the
surface code is defined as the +1 eigenspace of all
the stabilizers. This is a two-dimensional space
spanned by the logical basis states,

|0L⟩ = Nd

∏
f∈blue

1
2(1 + Âf ) |0⟩⊗n ; (3)

|1L⟩ = Nd

∏
f∈blue

1
2(1 + Âf ) |1⟩⊗n , (4)

where |0⟩⊗n and |1⟩⊗n are the states where all
physical qubits are |0⟩ and |1⟩ respectively, and
Nd = 2(d2−1)/4 is a normalizing factor. Both logi-
cal basis states are highly entangled states of the
physical qubits, and are locally indistinguishable
from each other (all physical qubits have com-
pletely mixed reduced density matrices). The
encoding of a logical qubit is a mapping from a
Hilbert space of dimension 2 to one of dimension
2n,

|ψ⟩ = α |0⟩+ β |1⟩ → |ψL⟩ = α |0L⟩+ β |1L⟩ .
(5)

The logical (or ”encoded”) operators X̂L and
ẐL must fulfil X̂L |0L⟩ = |1L⟩, X̂L |1L⟩ = |0L⟩,
ẐL |0L⟩ = |0L⟩, ẐL |1L⟩ = − |1L⟩. One possible
choice of such logical operators is products of X̂,
(Ẑ) on qubits along the left (top) edge,

X̂L =
∏

j∈LEFT

X̂j ; ẐL =
∏

j∈TOP

Ẑj , (6)

as shown in Fig. 1.

2.2 Coherent errors and their detection
Of the various error processes by which the en-
vironment can affect the states of the physical
qubits, we focus on coherent errors[18]. Here each
physical qubit undergoes a fixed SU(2) unitary

operation in every timestep, resulting from e.g.
calibration errors in a quantum computer. For
simplicity, we take this unitary to be the same
for every qubit, specifically, a rotation about the
Z axis through an angle θ (noise parameter)[18].
Thus the unitary operator representing the effect
of noise reads,

Û =
n∏

j=1
eiθẐj . (7)

The noise parameter θ can be converted to a
physical error rate p, as

p = sin2(θ). (8)

This is the parameter of the dephasing channel
obtained by Pauli twirling the coherent errors.

To detect and correct the coherent errors, we
use the standard procedure of repeated measure-
ments of the parity check operators. Each mea-
surement results in a measurement outcome and
a post-measurement quantum state. The string
s of measurement outcomes is the syndrome,

syndrome s = (s1, . . . , sn−1), (9)

with all elements sf ∈ {+1,−1}. The (unnormal-
ized) post-measurement state of the code can be
obtained by a projection of the pre-measurement
state,

Π̂s =
∏
∀f

1
2(1 + sf Ŝf ); |Φs⟩ = Π̂s |Φ⟩ . (10)

Note that since we consider only coherent errors
that are Z-rotations, only the X-parity check
measurements can return with a −1 value.

2.3 Error correction with perfect readout

Before we discuss readout errors, we need to
briefly summarize how the errors would be cor-
rected if readout was perfect.

If some of the parity check measurements have
resulted in an outcome of -1, a correction oper-
ation Ĉs is needed to bring the state back into
the code space. Since the coherent errors only
contain Ẑ, this correction involves flipping some
qubits in the X basis by Ẑ, i.e.,

Ĉs =
∏
j∈l

Ẑj . (11)

Accepted in Quantum 2023-09-07, click title to verify. Published under CC-BY 4.0. 3



The set l of qubit indices is in a properly defined
sense a 1-chain that connects the error locations
with each other or with the left or right edge [1],
i.e., whose boundary (in a homological sense) is
the set of faces where the measured parity check
operators are −1.
Deciding on the correction operator for a given

syndrome is the decoding problem. There are
many possible correction operators for any given
syndrome, which fall into two homological equiv-
alence classes: when multiplying any two cor-
rection operators, if they are in the same class,
we obtain a product of stabilizers, if they are in
different classes, we obtain a logical ẐL times
a product of stabilizers. In principle, the like-
lihoods of the two classes (based on the error
model) should be compared and any correction
operator from the more likely class should be cho-
sen. However, given the computational cost of
the likelihood calculation, various approximate
approaches, so-called decoders, have been devel-
oped [21, 22, 23]. We will discuss this in more
detail after the introduction of readout errors.
The collective quantum state of n qubits after

we measured syndrome s, and applied the corre-
sponding correction operator, reads

|Φs⟩ = 1√
P (s)

ĈsΠ̂sÛ |ψL⟩ . (12)

This state is in the logical subspace. Moreover it
can be written as a rotation around the logical Z
axis[18] with the logical rotation angle θL(s),

|Φs⟩ = eiθL(s)ẐL |ψL⟩ . (13)

Here both the probability P (s) and the angle
θL(s) are independent of the initial state |ΨL⟩.
These are unique properties of the rotated sur-
face code, and are not necessarily true for sur-
face codes on general lattices[19]. To obtain these
properties all the X-stabilizers need to have even
weight, while logical Z-operators should have odd
weight. If this is not fulfilled, Eq. (12) can not
be written as a logical rotation around the Z-
axis, furthermore, the syndrome measurement is
a weak measurement of the initial logical state
|ΨL⟩, resulting in an information ”leak”[24].

2.4 Quantifying logical errors
To characterize the effectiveness of error cor-
rection, we use two quantitative measures, the

diamond-norm distance of a channel to the iden-
tity, and the maximum infidelity of the result-
ing state with the initial state[25]. These show
how different the state of the encoded qubit is af-
ter the error correction process from the original
state. In our case the average over syndromes of
the diamond-norm distance can be expressed as
[18]:

pd
L = 2

∑
s

P (s)| sin(θL(s))|, (14)

and the average over the syndromes of the max-
imum infidelity as

pi
L =

∑
s

P (s) sin2(θL(s)). (15)

Of these two measures, we prefer the maximum
infidelity, since it is a more natural generalization
of the logical error rate for coherent errors. How-
ever, we have also calculated the diamond-norm
distance, and used it for the numerics - please
find the corresponding analysis in Appendix A.

2.5 Readout errors, 3D syndrome

We take into account not only coherent errors
on the physical qubits, but also readout errors
distorting the result of the syndrome measure-
ments. We consider the simplest, phenomeno-
logical noise model for the readout [26]: perfect
syndrome measurements, whose outcome is unre-
liably recorded, with a readout error probability
q, i.e.,

P (1→ 0) = P (0→ 1) = q, (16)

and correspondingly, P (1 → 1) = P (0 → 0) =
1− q. The obtained noisy syndrome is

noisy syndrome: s→ s′. (17)

To solve the decoding problem in the presence
of readout errors, we need to consider d con-
secutive rounds of syndrome measurements[2, 1].
Since errors occur between the rounds of syn-
drome measurements, the rounds of measure-
ment outcomes differ from each other even if the
measurements are perfect. The d rounds of syn-
dromes constitute a 3D syndrome, which with-
out/with readout errors is

s = {s1, s2, ..., sd} → s′ = {s′
1, s

′
2, ..., s

′
d}. (18)
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For error correction we have to solve the de-
coding of this 3D syndrome with some decoding
technique, obtaining a correction operator Ĉs′ .
We will detail the decoding in the next Section.
We can express the final state of the code for a

measured 3D syndrome s′, where the correspond-
ing 3D syndrome without readout error was s, as

|Φs,s′⟩ = 1√
P (s)

Ĉs′Π̂sd
Û . . . Π̂s1Û |ψL⟩ . (19)

Using Û =
∏n

j=1 exp(iθẐj), this can be rewritten
(more details in the next section) as

|Φs,s′⟩ = Ĉs′Ĉsd
eiθ∗(s)ẐL |ψL⟩ . (20)

Here the rotation angle θ∗(s) only depends on the
noiseless 3D syndrome s, but not on the readout
errors, nor on the initial state |ψL⟩.

2.6 Error correction with readout errors
To correct errors based on the noisy 3D syn-
drome contaminated with readout errors we used
the 3D version of the minimum weight perfect
matching (MWPM) decoder[23], as implemented
in PyMatching[27]. In this 3D case, like in the
case with perfect measurements, errors are asso-
ciated with marked vertices on a grid, we need to
find the set of edges on the grid with the smallest
weight that pair the vertices up or connect them
to the right/left boundaries.
The grid here is 3-dimensional, with ”space”

coordinates (d × d grid) giving the position of
the measured stabilizer operator and ”time” co-
ordinates (running from 2 to d) corresponding
to the measurement round. Those vertices are
marked where the measured stabilizer value dif-
fers from that measured in the previous round.
”Spacelike” and ”timelike” edges on the grid cor-
respond to readout errors and physical errors.
These carry different weights (ws and wt), since
the rate p of coherent errors can differ from the
rate q of readout errors,

ws = log
(1− p

p

)
; wt = log

(1− q
q

)
. (21)

The MWPM decoder finds the set of edges
with the smallest overall weight, which perfectly
connect the marked vertices (with each other, or
with the left or right boundaries). The set of
edges with the minimum weight is used to define
the correction operator, which consists of a string

of Ẑ operators. Spacelike edges correspond to Ẑ
operators, however timelike edges have no phys-
ical meaning, they are just virtual corrections of
readout errors. A technical note: to ensure the
correction operator brings the state back to the
code space, the last measurement round is as-
sumed to be free of readout errors. This is a com-
mon way of eliminating a source of error that is
not compounded when the quantum code is used
in a fault-tolerant quantum computation.

(a) (b)

(c) (d)

Figure 2: Specific example of MWPM decoding method
on a code patch with d = 3. Stabilizer measurement
outcomes are represented on a 3D grid, ±1 outcomes as
white/grey circles. Vertices, where the measured value
differs from the previous round, are marked with red cir-
cles. The minimum weight set of edges, which perfectly
connects the marked vertices denoted by green color.
This set of edges force the correction including 2 Ẑ op-
erators.

The final state, after the error correction oper-
ator has been applied, cf. Eq. (20), reads

|Φs,s′⟩ = eiθL(s,s′)ẐL |ψL⟩ . (22)

The logical rotation angle θL(s, s′) depends on
perfect and noisy 3D syndrome too, as

θL = θ∗ ← Ĉs′Ĉsd
|ψL⟩ = |ψL⟩ ;

θL = θ∗ + π

2 ← Ĉs′Ĉsd
|ψL⟩ = ẐL |ψL⟩ .

(23)

Here the property that the operator Ĉs′Ĉsd
acts

like a logical Z-operator or an identity is guaran-
teed by the constraint of perfect measurements
in the last round of error correction.
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The average diamond-norm distance and max-
imum infidelity can be expressed as:

P d
L = 2

∑
s,s′

P (s)P (s→ s′)| sin(θL(s, s′))|; (24)

P i
L =

∑
s,s′

P (s)P (s→ s′) sin2(θL(s, s′)). (25)

3 Fermionic Linear Optics Simulation
We simulate quantum error correction by sam-
pling the random outcomes of the syndrome mea-
surements, and the final state of the logical qubit
after the error correction. This can be summa-
rized in the following steps:

1. Generate a sample of the 3D syndrome s - a
sequence of d syndrome measurement rounds
- from the probability distribution P (s).

2. Calculate the corresponding rotation angle
of the logical qubit, θ∗(s).

3. Generate readout errors, i.e., noisy syn-
drome s′ from probability distribution
P (s→ s′).

4. Calculate whether the rotation angle of the
logical qubit is changed as a result of the
readout errors, i.e., whether θL = θ∗ + π/2
or θL = θ∗, according to Eq. (23)

Steps 3. and 4. here are straightforward, they
involve changing measured values of stabilizers
with readout error probability q, and decoding
using MWPM. Steps 1. and 2., however, can
only be computed efficiently using Fermionic Lin-
ear Optics tools, and subtle tricks, as recently
introduced by Bravyi et al [18]. We only intro-
duce some of the main concepts of the method of
Bravyi et al. here, and give a brief summary in
an Appendix; see [18, 19] for more details. We
describe how the method can be extended to the
sampling of repeated syndrome measurements.

3.1 Defining Majoranas for the qubits
To make use of the tools of fermionic linear
optics, we introduce a four-dimensional Hilbert
space for each qubit, and four Majorana oper-
ators (Majoranas) acting in this Hilbert space.
The Majoranas for the m-th qubit are denoted

by ĉ
(m)
j , with j = 1, 2, 3, 4. They are similar to

fermionic operators, in that different Majoranas

anticommute; however, all Majoranas square to

the identity, ĉ
(m)
j ĉ

(m′)
l + ĉ(m′)

l ĉ
(m)
j = 2δjlδm′m. Us-

ing the so-called C4 code [18, 28], the Pauli op-
erators acting on the qubit are represented using
Majoranas as

X̂m = iĉ
(m)
1 ĉ

(m)
2 ; Ẑm = iĉ

(m)
2 ĉ

(m)
3 ;

Ŷm = iĉ
(m)
3 ĉ

(m)
1 . (26)

These operators fulfil the commutation relations
expected of the Pauli operators.

The Majoranas require a Hilbert space that
is larger than that of the qubit itself. In fact,
since above the Pauli operators were represented
by products of two Majoranas, all states of the
qubit are represented in so-called fixed-parity
subspaces. We work on the subspace defined as
+1 eigenspace of the C4 stabilizer,

Ŝ(m) = −ĉ(m)
1 ĉ

(m)
2 ĉ

(m)
3 ĉ

(m)
4 . (27)

The advantage of introducing Majoranas is
that initialization of the code, coherent errors,
and sampling the measurement statistics of the
stabilizers can all be mapped to the time evolu-
tion of a noninteracting fermionic system.

The main idea of the fermionic linear optics ap-
proach is that we can work with the covariance
matrix of the Majorana operators. Therefore in-
stead of simulating the state vector of d2 qubits,
with 2d2

elements, it is enough to keep track of
the covariance matrix with (2d)4 elements. With
proper transformations of the covariance matrix,
corresponding to free fermionic time evolution
and measurement of Majorana pairs, we are able
to sample θ∗(s) from the distribution P (s) in
O(d4) time.

We have extended the original simulation
method for coherent errors [18], to the case of
simultaneous coherent and readout errors. The
key observation is that multiple rounds of co-
herent errors and stabilizer measurements can be
decomposed into single rounds of inhomogeneous
coherent errors, , i.e., where the physical rotation
angle θ can be different for each physical qubit.

Starting from Eq. (19), we are able to write it
a slightly different way by inserting identities in
the form Ĉsj Ĉsj ,

|Φs,s′⟩ = 1√
P (s)

Ĉs′Ĉsd
Ĉsd

Π̂sd
Û Ĉsd−1

Ĉsd−1Π̂sd−1Û ...Ĉs1Ĉs1Π̂s1Û |ψL⟩ .
(28)
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Furthermore each round can be written in the
form of Eq. (12), with Û replaced by inhomo-
geneous error operators Ûj = Û Ĉsj−1 , and the

normalization factor by 1/
√
P (sj). Based on

Eq. (13), we can express each round as a rota-
tion about the Z axis,

1√
P (sj)

Ĉsj Π̂sj Û Ĉsj−1︸ ︷︷ ︸
Ûj

|ψL⟩= eiθL
j ẐL

|ψL⟩ , (29)

where the logical rotation angle θL
j depends on all

the previously measured syndromes (s1, s2, .., sj).
Finally one can write the final state for perfect

syndrome s, and noisy syndrome s′ as

|Φs,s′⟩ = Ĉs′Ĉsd
eiθ∗(s)ẐL |ψL⟩ , (30)

where the rotation angle θ∗(s) can be calculated
from sampling single rounds of error correction
with perfect syndromes and inhomogeneous co-
herent errors,

θ∗(s) =
d∑

j=1
θL

j (s1, s2, ..., sj). (31)

4 Numerical results
We used the fermionic linear optics method to
simulate the surface code under coherent and
readout errors, for code sizes up to d = 19. As
detailed below, we sampled the logical rotation
angle distribution, from which we computed –
for the most susceptible initial states – the ex-
pectation value of the infidelity, which we call
logical error rate. As code sizes were scaled up,
we found threshold behaviour . In case the rates
of coherent and readout errors were equal, p = q,
we found that the threshold is close to the corre-
sponding threshold of random Pauli Z + readout
errors. Our results here are similar to those with
perfect measurements by Bravyi et al[18].
We also investigated how, below the threshold,

the logical error rates compare to those of the
random Pauli Z + readout errors, and how the
residual coherence in the logical error decreases
as the code size is scaled up. As detailed below,
we again find similar results to those with perfect
measurements by Bravyi et al.[18]. Varying the
rates of the two error processes independently,
we mapped out the threshold on the (p, q) plane,
and found that coherent errors are more critical
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Figure 3: Error threshold as the code size is scaled up
with coherent and readout error rates equal (p = q is the
”physical error rate”). Logical error rates for different
code distances show threshold behaviour as functions of
the physical error rate. For the fitted curves we used
a finite size scaling ansatz[3], based on the statistical
mechanical mapping of the surface code. Every point
results from 5000× d× 100 rounds of simulation.

than readout errors: to achieve scalable error cor-
rection it is easier to compensate a high value of
readout errors (at or above 10%) by reducing the
rate of coherent errors than vice versa.

4.1 Threshold with equal coherent and readout
errors

We ran extensive simulations to estimate the er-
ror threshold when the readout error rate q is set
equal to the coherent error rate p. For every odd
value of code distance d, up to d = 19, to obtain
the numerical distribution of logical rotation an-
gles, we sampled the noiseless 3D syndrome mea-
surements 5000 times (5000 d rounds), and then
sampled 100 noisy syndromes from each of these.
In Fig. 3, we show the resulting average logical
error rate, calculated via Eqs. (24). We observe
that for errors below a threshold, scaling up the
code size decreases the logical errors, while above
the threshold, scaling up only makes things worse
by increasing the logical errors.

To obtain a precise value of the threshold, we
fitted the numerical values using a finite size scal-
ing ansatz[3], based on mapping of the surface
code to statistical physics models[1]. Although
the ansatz is strictly expected to work for random
Pauli+readout errors, it also fits our numerics
(coherent+readout errors). The threshold value
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Figure 4: Pauli twirl ratio (for maximum infidelity) as
functions of physical error rate (equal to readout error
rate), for different code distances. Results obtained from
the same data as in Fig. 3 and Monte Carlo simulations
of incoherent noise.

is

pi
th = 2.62%± 0.02%. (32)

This is relatively close to the threshold of random
Pauli + readout errors[3], which for the toric code
is pth = 2.93% ± 0.02%. Using the diamond-
norm distance, our numerics paints a somewhat
different picture, as discussed in Appendix A.

4.2 Sub-threshold comparison with random
Pauli+readout errors

We next compare the performance of the surface
code under coherent+readout errors with its per-
formance under random Pauli+readout errors,
when error rates are below threshold. We use the
same parameter p = sin2(θ) for the two channels,
with the random Pauli channel being the Pauli
twirled version of the coherent error channel,

εtwirl
θ (ρ̂) = cos2(θ)ρ̂+ sin2(θ)Ẑρ̂Ẑ. (33)

The Pauli twirl ratio is the ratio of logical error
rate in case of coherent errors+readout errors,
and the logical error rate when the coherent er-
rors are replaced by their Pauli twirled version
at the physical level. Therefore Pauli twirl ratio
can be written as:

P i(εθ)
P i(εtwirl

θ )
; P d(εθ)

P d(εtwirl
θ )

, (34)

for the maximum infidelity and for the diamond-
norm distance.

The numerically obtained values of the twirl
ratio, shown in Fig. 4, indicate that below the
threshold, coherent errors + readout errors lead
to higher logical error rates than random Pauli
+ readout errors (high Pauli twirl ratio). More-
over, this difference grows as we scale up the size
of the code. Note that in the limit of vanish-
ing error rates, p → 0, we expect the Pauli twirl
ratio to reach a finite, code distance dependent
value. The reason is that we expect the logical
error rate for small p to scale as PL ≈ Ndp

(d+1)/2

for incoherent, and P i
L ≈ N2

d (sin2(θ))(d+1)/2 for
coherent errors. Here Nd is the number of the
shortest errors strings that cause a logical error,
and it should be roughly the coherence ratio in
the p → 0 limit. Numerical investigation of the
p → 0 limit is, however, expensive due to the
small error rates.
Interestingly, there is a threshold-like behavior

of the Pauli twirl ratio, which is independent of
code distance for p ≈ 3.3%, and decreases with
code distance for p above. However, the value
3.3% is not the threshold of the code.

One of the key findings of Bravyi et al [18] is
that quantum error correction ”washes out” co-
herence in the logical level in the coherent errors
(without readout errors). As the code distance
increases, the distribution of logical rotation
angles becomes more and more highly peaked
around 0 and π/2, thus, the logical noise is better
and better approximated by random Pauli pro-
cesses. This property of quantum error correc-
tion has also been studied analytically[15, 16]. A
practical quantity to study this effect is the co-
herence ratio[18], defined as

P d
L

P d,twirl
L

=
∑

s,s′ p(s)p(s→ s′)| sin(θL)|∑
s,s′ p(s)p(s→ s′) sin2(θL)

, (35)

where P d,twirl
L is just the diamond-norm distance

for the twirled logical error channel (which is just
the maximum infidelity up to a factor of 2). The
coherence ratio is always greater than or equal
to one, equality holds if θL only takes values
{0, π/2}, i.e., if the logical noise is fully incoher-
ent (probabilistic logical Z errors).
One would expect that this ”washing out” of

coherence is, if anything, made even stronger by
the readout errors. Our numerics confirms this
intuition. In Fig. 5 we show the coherence ratio of
different code sizes with physical error rate and
readout error rate set equal. We find that the
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Figure 5: Coherence ratio as a function of error rate
(p = q) with different code distances. Each point results
from 5000× d× 100 rounds of simulation.

coherence ratio decreases as the code is scaled up,
even above the threshold. Around the threshold,
p = q ≈ 3%, practically all coherence is lost on
the logical level, for code sizes d = 17 and above.
Interestingly though, the coherence ratio appears
to increase as the physical error rate is decreased
from the threshold. Without readout errors[18],
all of these qualitative trends are there, but the
coherence ratio is 1.1 at the threshold even for a
code size d = 37.

4.3 Independent coherent and readout errors

We have also investigated how varying the rate
p of coherent errors and q of readout errors in-
dependently affects the threshold of the surface
code. For many pairs of p and q we numerically
ascertained whether scaling up the surface code
decreases logical error rates (scalable QEC) or it
increases them (unscalable QEC). The threshold
should be in between these regions. We could not
determine the threshold values more precisely,
since the fitting ansatz we used for p = q turned
out to be a poor fit in many of the cases with
asymmetric noise.

Our results, shown as a 2D map in Fig. 6, show
that the surface code is more sensitive to coherent
errors than to readout errors. If the coherent
error rate is on the percent level, the surface code
is quite robust against readout errors, scalable
even with relatively high q ≈ 7%. However, if
the readout error rate is on the percent level, the
surface code still requires the coherent error rate
to be below 3%.
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Figure 6: Threshold lines on the (p, q) plane for max-
imum infidelity (logical error rate). For a fix q value
we run the simulation for 16 different θ values, and de-
termined a lower and an upper bound for thresholds in
each cases. The lower bound is the last point where the
maximum infidelity is decreasing as the code distance is
increasing. The upper bound however is the first point
where the logical error rate is increasing as the distance
is increasing. We numerically investigated the incoher-
ent case via Monte Carlo simulations, and determined
the threshold values for asymmetric p, q values with the
fitting ansatz[3].

5 Discussion and outlook

We investigated numerically how well the surface
code works as a quantum memory when there are
coherent errors on the physical qubits as well as
readout errors (phenomenological readout error
model). We focused on a restricted class of coher-

ent errors, namely, unitary phase rotations, eiθẐj .
This allowed us to use the theoretical tools of
Fermionic Linear Optics, as applied to the surface
code by Bravyi et al[18]. We extended that work
by including readout errors as well, on a phe-
nomenological level (perfect measurements, noisy
recording of measurement results). The python
source code for our numerical work is available
on GitHub[29].

Our results show that the findings of Bravyi
et al[18] on the effects of coherent errors on the
surface code mostly carry over to when read-
out errors also occur. Namely, the surface code
with coherent+readout errors has a threshold,
which is close to that of the corresponding Pauli
twirled error channel (random Pauli+readout er-
rors). However, for error rates below the thresh-
old, its logical error rates are significantly higher
than that of the Pauli twirled error channel. Scal-
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ing up the code size, coherence is washed out
from the logical error. Moreover, we found that
having a low value of the coherent errors is more
important than a low value of readout errors
(high readout error rates can be compensated by
low coherent error rates, but less so vice versa).

A point that is worth further investigation is
the differences in our results when using the di-
amond norm or the fidelity as quantitative mea-
sures of the reliability of quantum memory. As
an example, these two measures gave quite dif-
ferent results regarding the threshold of coher-
ent+readout errors: we observed a clear thresh-
old using the fidelity, but less clear behavior using
the diamond norm (Appendix A).

It would also be interesting to consider broader
classes of coherent errors. A next step would be
to consider coherent error parameters θ that are
not constant, but vary from qubit to qubit or
even fluctuate (this latter case modeling the com-
bination of coherent and incoherent Z errors). A
numerically more challenging question is how our
results would be changed if even the axis of coher-
ent rotation varied from qubit to qubit (not Z for
all qubits as in our work) – unfortunately here the
tools Bravyi et al.[18] do not apply. Even more
challenging is to bring the error model closer to
experimental reality, by modeling coherent er-
rors on the circuit level. A step in this direction
was taken recently, with a coherent error model
that includes ancilla qubits, but uses a somewhat
unrealistic multiqubit gate [30] . For this error
model, a mapping to a three dimensional lattice
gauge theory seems to suggest that when com-
bined with incoherent errors, coherent errors ruin
the threshold: even with arbitrarily small error
rates, scaling the code size up beyond a certain
size will increase noise the logical level. A re-
lated point is that effects of coherent errors can
be mitigated in the surface code using extra an-
cilla qubits to realize code concatenation[31, 32],
or in variants of Shor’s code by other means[33].
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A Results for diamond-norm distance
We have omitted some of the results for diamond-
norm distance from the main part of our paper,
because we think that maximum infidelity is a
more convenient measure to use, but for the sake
of completeness here we show the diamond-norm
distance versions of Fig. 3, Fig. 4, and Fig. 6.

As far as the error threshold is concerned, we
did not find the same convincing numerical evi-
dence using the diamond-norm distance as we did
with the infidelity. As shown in Fig. 7, the plots
of the diamond-norm distance for different code
sizes (quadratic curves fitted individually) do not
intersect in the same point. Rather, the physi-
cal error rate where the curve of size d intersects
that of the curve for size d+2 is smaller for larger
code sizes. We try to estimate the threshold, i.e.,
a limit of the intersection points in the d → ∞

limit, by plotting in the inset of Fig. 7 the physi-
cal error rates of these intersection points as the
function of the inverse code size 1/d. The data
suggests a a threshold around p = 1.6%.

For the sake of completeness, we also include
here plots of the Pauli twirl ratio, evaluated us-
ing the diamond-norm distance, Fig. 8, and a 2D
map of how the finite-size threshold values de-
pend on the coherent error rate p and readout
error rate q, Fig. 9. These both show qualita-
tively and also quantitatively similar behavior to
their infidelity-based counterparts, Figs. 4 and 6,
respectively.
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Figure 7: Diamond-norm distance as the function of
physical error rate for several code distances. We fit-
ted second order polynomials for each code distance,
and plotted the intersections of these polynomials as the
function of the inverse code distance. (At 1/d we placed
the intersection of polynomials that correspond to code
distances d and d+2.) We fitted a linear function to the
first five data points, and read the 1/d = 0 value as the
threshold. Results obtained from the same data as in
Fig. 3

B Sampling Coherent Errors in the
Surface Code with Fermionic Linear Op-
tics
Here we summarize the technical details of our
simulations, which were based on the original
proposal by Bravyi et al [18]. Previously we
have shown Eq. (29) that the simulation of co-
herent+readout errors can be done by simulat-
ing error correction rounds with inhomogeneous
coherent errors. Therefore here we restrict our
description to single error correction rounds with
perfect readout.
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Figure 8: Pauli twirl ratio (for diamond-norm distances)
as the function of physical error rate. Results obtained
from the same data as in Fig. 4
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Figure 9: Threshold lines on the (p,q) plane for diamond-
norm distance. Results obtained from the same data as
in Fig. 6

First we introduce an exact mapping from the
surface code to a fermionic system which can
be described by Majorana operators. We show
the fermionic linear optics algorithms for trans-
forming the covariance matrix of the fermionic
system. Then we describe the exact steps for
sampling θL(s) from the probability distribution
P (s).
The aim of this Appendix is to help to under-

stand the details of the fermionic linear optics
algorithm[18]. For further details our code is also
available on GitHub[29].

B.1 Encoding qubits into fermionic systems

As we mentioned in Sec.(3.1) physical qubits of
the surface code can be represented as C4 codes.

However this mapping is not just a mathematical
transformation, but a physically well-motivated
thing.

The basic idea is to encode the physical qubits
into double quantum dots with 2 fermionic modes
described by creation and annihilation operators

â
(m)
1 , â

†(m)
1 , â

(m)
2 , â

†(m)
2 for the m-th qubit. With

these fermionic operators in hand we can define
the usual qubit basis states from the fermionic
vacuum for one C4 code,

|0⟩ = â†
2 |∅⟩ ; |1⟩ = â†

1 |∅⟩ . (36)

We can introduce Majorana operators in the fol-
lowing way:

ĉ1 = i(â2 − â†
2); ĉ2 = â1 + â†

1; (37)

ĉ3 = i(â1 − â†
1); ĉ4 = â2 + â†

2. (38)

As we define these Majorana operators for each
qubit we are able to express encoded Pauli oper-
ators X̂m, Ẑm, Ŷm and C4 stabilizers Ŝ(m), as we
did in Eqs. (26)(27).
It is important to note that Ŝ(m)X̂m, Ŝ(m)Ẑm

and Ŝ(m)Ŷm are also good Pauli operators, we
will take advantage of this later.

Figure 10: Visualization of one C4 code. Black dots rep-
resent Majorana fermions and arrows represent encoded
Pauli operators (first Majorana operator is the tail sec-
ond is the head). We have drawn the products of C4
stabilizer and Pauli operators too.

B.2 Majorana representation of surface code
With the help of encoded C4 codes now we can
build up the whole surface code, and identify the
Majorana representation of stabilizers and logi-
cal operators. First define some Majorana pairs,
which connect Majorana fermions belong two dif-
ferent C4 codes, we call them link operators,

L̂e = iĉpĉq. (39)
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Here we get rid of the superscript index of the
Majorana operators, and we use p, q indices in-
stead. These are at the ends of edge e. Link op-
erators assigned to every edge of the code patch,
but the order of the Majorana operators is not
well-defined (we have some freedom in the ori-
entation of arrows, which represents link opera-
tors). The only restriction is that the product of
link operators on the boundaries of faces have to
be equal to the stabilizers on these specific faces,∏

e∈∂f

L̂e = Ŝf (40)

We can fulfill this restriction by building up our
code patch from basic building blocks, see Fig 11.
Note that every other C4 code is rotated by 90◦,
so only ”proper” sides of C4 codes join to proper
faces (X/Z operators to X/Z stabilizers).

Figure 11: Basic building block of Majorana representa-
tion of the surface code. The orientation of link opera-
tors ensures Eq. (40). Bigger patches can be achieved by
obvious duplication and translation of this small block.

Next step is the expression of logical operators
with the Majorana fermions of C4 codes. First we
can observe that every Majorana fermion is part
of a link operator, expect 4 corner Majoranas (see
Fig. 12), from these Majoranas we can build up
the so-called logical C4 code with logical C4 Pauli
operators analogous to Eq. (26):

X̂L
C4 = iĉL

1 ĉ
L
2 ; ẐL

C4 = iĉL
2 ĉ

L
3 . (41)

Original logical operators of the surface code can
be expressed with the help of these logical C4 op-
erators and link operators based on the definition

Eq. (6):

X̂L = X̂L
C4

∏
e∈LEFT

L̂e ẐL = ẐL
C4

∏
e∈TOP

L̂e.

(42)

Figure 12: Logical operators and logical C4 code of the
Majorana representation of the surface code.

One of the most important thing for the simu-
lation is that we can express any logical state of
the surface code with the help of Majorana oper-
ators. First define the state stabilized by all link
operators,

L̂e |Φlink⟩ = |Φlink⟩ ∀e. (43)

Note this |Φlink⟩ state is not an eigenstate of C4
codes, and it does not determine the state of log-
ical Majoranas. The logically encoded version of
state |ψ⟩ can be expressed as

|ψL⟩ = 2(n−1)/2
n∏

j=1

1
2(1 + Ŝ(j)) |Φlink⟩ ⊗ |ψL

C4⟩ ,

(44)

where |ψL
C4⟩ is the encoded version of |ψ⟩ into the

logical C4 code.
One can easily check that this state is the +1

eigenstate of all the surface code stabilizers and
the logical operators of the surface code are act-
ing just as encoded logical C4 operators on |ψL

C4⟩.

B.3 Fermionic Linear Optics
Fermionic Linear Optics (FLO) [34, 35, 36] sim-
ulations based on the fact that some specific
fermionic states, consist of N fermions, can be
fully characterized by just a simple 2N×2N ma-
trix, these states are called pure Gaussian states,
and the matrix is the covariance matrix,

Mjk(|ψ⟩) = ⟨ψ| iĉj ĉk |ψ⟩ − iδjk. (45)
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Here Majorana operators (ĉ1, ĉ2, ..., ĉ2n) describe
the fermionic system of n fermions. Covariance
matrix can be written in every state, but in
pure Gaussian states it will be orthogonal. (It
can be an alternative definition, and it is also
easy to check). The most important fact is that
pure Gaussian states are fully characterized by
their covariance matrix [35], so simulation of pure
Gaussian states can be realized by just tracking
a matrix with O(n2) elements.

The limitation of fermionic linear optics simu-
lations is that we can only apply operations that
bring the state from a pure Gaussian state to an
other pure Gaussian state. During the simula-
tion of coherent errors in the surface code 3 kind
of enabled operations appear[18]:

• Initialization of states stabilized by Majo-
rana pairs iĉpĉq.

• Application of operator eθĉpĉq .

• Measurement of Majorana pair iĉpĉq.

For clarifying these operations we express the co-
variance matrices induced by them.
The covariance matrix of a pure Gaussian state
|GS⟩ stabilized by 2n (p, q) pairs,

iĉpĉq |GS⟩ = |GS⟩ ∀(p, q), (46)

can be expressed as:

Mjk =
∑
(p,q)

δjpδkq − δjqδkp. (47)

The covariance matrix of the pure Gaussian state
eθĉpĉq |GS⟩ can be written as:

Mjk = ⟨GS| e−θĉpĉq iĉj ĉke
θĉpĉq |GS⟩ − iδjk. (48)

Measurement of a Majorana pair can be realized
by a projective measurement (we only deal with
outcome +1 here, because −1 outcome can be
obtained by measuring iĉq ĉp instead of iĉpĉq). So
the covariance matrix of the post-measurement
state can be expressed as:

Mjk = ⟨GS| (1 + iĉpĉq)iĉj ĉk(1 + iĉpĉq) |GS⟩
2 ⟨GS| (1 + iĉpĉq) |GS⟩ ,

(49)

if j ̸= k, and 0 otherwise. For further progress
we need to express the transformed covariance
matrices from the initial ones. As far as we are

working with pure Gaussian states we can use
Wick’s theorem for this purpose,

ip⟨GS|ĉj1 ĉj2 ...ĉj2p |GS⟩ = Pf(M(|GS⟩)j1,j2,...,j2p).
(50)

Therefore we are able to express the expectation
value of any Majorana chain as the Pfaffian of a
sub-matrix of the covariance matrix.

Through lengthy, but quite straightforward
calculations one can derive the efficient algo-
rithms, which realize the transformations of the
covariance matrix expressed in Eqs. (48), (49).

Here we show the algorithm for the coherent
rotation around the Z-axis Alg. 1, and the al-
gorithm for the measurement of Majorana pairs
Alg. 2

Algorithm 1: Rotation (M,θ,p,q)
M ′[p, :]←M [p, :] cos(2θ)−M [q, :] sin(2θ)
M ′[q, :]←M [q, :] cos(2θ) +M [p, :] sin(2θ)
M ′[:, p]←M [:, p] cos(2θ)−M [:, q] sin(2θ)
M ′[:, q]←M [:, q] cos(2θ) +M [:, p] sin(2θ)
M ′[p, p]← 0
M ′[q, q]← 0
M ′[p, q]←
M [p, q] cos2(2θ)−M [q, p] sin2(2θ)
M ′[q, p]←
−M [p, q] cos2(2θ) +M [q, p] sin2(2θ)

return M ′

Algorithm 2: Measurement (M,p,q)
probability ← (1/2)(1 +M [p, q])
if p ̸= 0 then

K←M [p, :]
L←M [q, :]
M ′ ←M + (1/2p)(LKT −KLT )
M ′[p, :]← 0
M ′[q, :]← 0
M ′[:, p]← 0
M ′[:, q]← 0
M ′[p, q]← 1
M ′[q, p]← −1

end
return (M ′, probability)

B.4 Simulating error correction
Now we will write a more detailed description
on how to perform the first two steps of our al-
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gorithm described in Sec. (3). In the spirit of
Eq. (29) it is enough to simulate one error cor-
rection round for inhomogeneous coherent errors.
However sampling from the probability distribu-
tion P (s), and calculation of the assigned logical
rotation angle θL(s) involve the previously intro-
duced fermionic linear optics operations Algs. 1,2

One of the most painful restriction is that we
can not simulate stabilizer measurements effi-
ciently because they involve the joint measure-
ment of 8 Majoranas. Therefore instead of mea-
suring X stabilizers we measure X operators of
individual C4 codes, and instead of sampling
from probability distribution of syndromes, we
are sampling from the distribution of X measure-
ment outcomes. We are allowed to do this, be-
cause X stabilizer measurements can be led back
to X measurements. For this purpose we intro-
duce the concept of m syndrome, which stores
the X measurement outcomes.

m ∈ {+1,−1}n (51)

We assign an s syndrome to every m syndrome
through the following function:

s = δ(m) : sf =
∏

j∈∂f

mj . (52)

We can sample from probability distribution of
m syndromes P (m), because

P (s) =
∑

m:δ(m)=s

P (m). (53)

It is important to note that this is allowed only,
because X measurements are commuting just like
stabilizer measurements. If we want to measure
both kind of (X and Z) stabilizers this simplifica-
tion to the measurement of individual Pauli op-
erators is prohibited, because of the non-trivial
commutation relation. This is the reason be-
hind our limitation of coherent errors to rotations
around Z-axis, because in this case Z stabilizer
measurements will be trivial, and we don’t have
to take them into account.

In the simulation we are sampling probabil-
ity distribution P (m) with a Monte Carlo al-
gorithm. We order the measurement outcomes
m1,m2, ...,mn, and draw mj based on its condi-
tional probability:

P (mj |m1,m2, ...,mj−1) = P (m1,m2, ...,mj)
P (m1,m2, ...,mj−1) .

(54)

We define the probability of a syndrome-partmA:

P (mA) = P (m1,m2, ...,mj), (55)

where A is the patch including the first j qubit
of the code.

We can express this probability P (mA) by con-
sidering the Majorana representation of the logi-
cal + state Eq. (44) (note P (s) is independent of
the initial state, so we can choose |+L⟩ safely).

P (mA) = ν ⟨Φlink| ⟨+L
C4| Ô

†
1, ..., Ô

†
j

Ôj , ..., Ô1 |Φlink⟩ |+L
C4⟩ ,

(56)

Where ν is just an A dependent normalization
factor, |+L

C4⟩ is the encoded |+⟩ state in the log-
ical C4 code and Ôj operation contains the pro-
jection to the C4 subspace of the j-th C4 code,
the coherent error on the j-th qubit and the mea-
surement of X̂j . This operator has the following
form:

Ôk = 1
2(1 +mkX̂k)eiθkẐk

1
2(1 + Ŝ(k)). (57)

|Φlink⟩ |+L
C4⟩ state is stabilized by all the link op-

erators, X̂L
C4 and ŜLX̂L

C4 operators of the logical
C4 code, so it is clearly a Gaussian state. Fur-
thermore we are able to write the operator Ôk as
it only contains enabled fermionic linear optics
operations (measurement of Majorana pairs, and
coherent Z rotations),

Ôk = 1
2(1 +mkŜ

(k)X̂k)1
2(1 +mkX̂k)eiθkẐk .

(58)
Now it is clear that we can sample from the

probability distribution P (m) through fermionic
linear optics simulations with a Monte Carlo al-
gorithm, but we need to calculate the final state
for a given syndrome, or at least the logical ro-
tation angle θL(s). For this purpose we write
tan2(θL(s)) in the following form:

tan2(θL(s)) =
∣∣∣∣∣⟨+L| ẐL |Φs⟩
⟨+L|Φs⟩

∣∣∣∣∣
2

. (59)

Starting from the product state |+⟩⊗n and mea-
sure all Z stabilizers we can get |+L⟩ state.
However since measuring Z stabilizers commute
with the measurement of X stabilizers, correc-
tion operator and coherent Z errors, we can write
Eq. (59) as,

tan2(θL) =
∣∣∣∣∣⟨+⊗n| ẐL |Φs⟩
⟨+⊗n|Φs⟩

∣∣∣∣∣
2

. (60)
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Finally one can observe that these expres-
sions are just special cases for P (m), because
|+⟩⊗n ⟨+|⊗n = Π̂m=0 is just the projection when
all mj = 1. So finally we can write

tan2(θL) =
⟨+L| Û †

−Π̂m=0Û− |+L⟩
⟨+L| Û †

+Π̂m=0Û+ |+L⟩
, (61)

where Û− = ẐLĈsÛ and Û+ = ĈsÛ , so these
are just special cases of inhomogeneous coherent
errors:

∏
j exp(iθjẐj).

One can also derive the following relation in a
similar way:

tan2(θL − π/4) =
⟨YL| Û †

−Π̂m=0Û− |YL⟩
⟨YL| Û †

+Π̂m=0Û+ |YL⟩
, (62)

where |YL⟩ is the logical +1 eigenstate of Ŷ L op-
erator. With Eqs. (61),(62) in hand we are able
to determine the logical rotation angle modulo π.

An additional thing which is not crucial, but
it can help you to reduce the cost of the sim-
ulation is the simulation only the active part
of the covariance matrix. This means that you
don’t need to store the whole covariance matrix,
only the non-trivial (Mjk ̸= 1, Mjk ̸= 0) sub-
matrix. This can be done due to the fact that the
measurements of Majorana pairs unbuckle rows
and columns from the active part of the covari-
ance matrix. Rotations are bringing in some new
rows and columns, but the size of the active sub-
matrix will be still notably smaller than the full
covariance matrix.
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