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Recently, the growth of blockchain technology and the economic benefits of
cryptocurrencies have led to a proliferation ofmalicious cryptomining activities on
the internet, resulting in significant losses for companies and institutions.
Therefore, accurately detecting and identifying these behaviors has become
essential. To address low accuracy in detecting and identifying cryptomining
behaviors in encrypted traffic, a technique for identifying cryptomining
behavior traffic is proposed. This technique is based on the time series
characteristics of network traffic and introduces the feature of long-range
dependence, and the recognition effect is not easily affected by the encryption
algorithm. First, 48-dimensional features are extracted from the network traffic
using statistical methods and the rescaled range method, of which 47 dimensions
are statistical features and 1 dimension is a long-range dependence feature.
Second, because there is much less cryptomining traffic information than
normal network traffic information in the dataset, the dataset is processed
using oversampling to make the two types of traffic data balanced. Finally, a
random forest model is used to identify the type of traffic based on its features.
Experiments demonstrate that this approach achieves good detection
performance and provides an effective solution for identifying encrypted
network traffic with malicious cryptomining behavior. The long-range
dependence features introduced therein together with the statistical features
describe amore comprehensive flow characteristics, and the preprocessing of the
dataset improves the performance of the identification model.
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1 Introduction

Recently, cryptocurrencies have been appreciating in value, and the trading market of
cryptocurrencies has been growing. This results in increasingly negative impacts caused by
cryptocurrencies. The high-performance computing resources required by cryptomining
lead to large amounts of power consumption and environmental pollution [1–3].
Furthermore, many attackers hijack high-performance computers in networks to help
them make illegal profits; malicious cryptomining has become one of the most common
forms of cyberattacks [4].

A range of methods for identifying cryptomining activities exists, with the majority
focusing on host-side detection [5–9]. This approach necessitates the manipulation of the
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host to achieve detection. The technique introduced by Carlin et al.
[5] demands direct access to information concerning the host
program’s operating environment for effective detection. In
contrast, the method proposed by Azmoodeh et al. [10] involves
accessing the hardware device’s operations, resulting in elevated
deployment expenses and limited application possibilities.
Conversely, network-based detection [11–13] offers advantages in
terms of reduced deployment complexity and expanded application
scenarios. Carprolu et al. [11] focus solely on basic statistical
features, thereby creating challenges in achieving a
comprehensive characterization of network traffic. In
comparison, Veselý et al. [13] employ a blend of passive and
active techniques for traffic identification, broadening the range
of usage scenarios but concurrently introducing additional overhead
to the identification process.

Cryptocurrency mining practices have shifted from centralized
mining using much computing power to distributed mining using a
distributed architecture with free computing power frommany users
on the internet, so malicious mining practices often require
connecting to mining pools [14]. In addition, network companies
and government agencies are currently fighting against malicious
mining, so Stratum protocols using TLS (Transport Layer Security)
encryption have been proposed in the cryptocurrency space to
protect the communication between mining pools and miners.
This makes it difficult for current malicious traffic detection
systems using deep packet inspection technology to effectively
identify malicious cryptomining behavior, so we need to use
other characteristics of network traffic to effectively do so.

The analysis of the Stratum communication protocol shows that the
communication process specified by this protocol has behavioral
characteristics such as long connection time, small data volume, and
frequent data exchange. These characteristics are different from the
current major business traffic on the internet, such as file downloads
and video browsing, and thus, the network traffic generated by the
Stratum communication protocol used by the mining pool exhibits
detectable differences in the temporal statistical characteristics. The
method proposed in this paper is based on this understanding and
detects and identifies network traffic by extracting temporal statistical
features of network traffic that are not affected by encryption. It has
been shown that traffic in real networks is long-range dependent [15,
16] and that the long-range dependence of the network is affected by
abnormal traffic in normal network traffic [17, 18], so the Hurst
exponent of this traffic is added to the temporal statistical
characteristics of network traffic to indicate the long-range
dependence characteristics of the traffic. Based on the above features
of network traffic, network traffic generated by crypto mining behavior
can be effectively identified.

In this paper, based on the network traffic characteristics of the
communication protocols mentioned previously, we use the
statistical properties of network traffic and long-range
dependence (LRD) to identify cryptomining behavior.

The main contributions of this paper are as follows:

1) We create a dataset containing mining network traffic for
different cryptocurrencies using different computational
methods based on the CPUs and GPUs included. Moreover,
the imbalance in the dataset is addressed using a Mahalanobis
distance-based oversampling method.

2) To obtain more feature information with recognizable features, we
introduce long-range dependence in the traffic characterization and
combine it with temporal statistical features to represent the
complete characterization of encrypted traffic.

3) We design a traffic identification method by extracting 48-
dimensional feature data based on TCP (Transmission Control
Protocol) flows, which represent the statistical characteristics and
long-range dependence of the flows, and finally feeding the features
into a random forest model for traffic identification.

The paper is structured as follows. In Section 2, we introduce
related work in cryptomining detection. In Section 3, we analyze the
characteristics of the communication patterns and protocol used for
cryptocurrency mining. Section 4 describes the proposed feature
extraction model and data preprocessing methods. Section 5 shows
the experimental results. We present the conclusions of this paper in
Section 6.

2 Related work

Many current scholars have conducted research on the
identification of mining behavior. This research is mainly divided
into host-based identification techniques and network-based
identification techniques.

Carlin et al. [5] proposed a cryptomining detection method by
analyzing dynamic opcodes, which can effectively detect fileless
malicious cryptomining behavior based on browsers. Karn et al. [6]
studied cryptomining identification in container clouds using system
calls as features, which enables the detection of cryptomining behavior
based on the aforementioned features because applications in
containers are able to run hardware using system calls. Darabian
et al. [7] used system calls and opcodes as features for detecting
cryptomining behavior; they also used attention-based long short-
term memory as a detection model. Gangwal et al. [8] used features
in the processor and hardware performance counters for cryptomining
behavior detection, and they used random forests and support vector
machines as detectionmodels. Zheng et al. [9] integrated different layers
of features, such as byte features, PE structure features and mining
operation execution features, into the detectionmodel for cryptomining
behavior detection. Azmoodeh et al. [10] used energy consumption for
the detection of cryptomining behavior, using the fact that
cryptomining behavior consumes more energy than other traffic
because it requires a large amount of computational resources.

Such host-based identification methods are difficult to deploy
for detecting and identifying the behavior of many network users.
They are also costly, inefficient, and difficult to use on a large scale to
govern cryptomining behavior. Researchers have therefore turned to
network-based detection methods. Carprolu et al. [11] extracted a
small number of statistical features from network traffic to detect
cryptomining behavior. Pastor et al. [12] extracted more traffic
features, such as the total number of packets, min–max survival
time, and data bytes, to use as features and validated the effectiveness
of this method on the generated traffic using models. Veselý et al.
[13] created and maintained a database of fingerprint information,
such as domain names and IPs of cryptomining pools, and extracted
some data about network traffic features to passively detect network
traffic and correct the detection results by active detection using the
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Stratum protocol. The network traffic features used in this method
have difficulty fully characterizing the cryptomining behavior, and
active detection, which requires high resource consumption, is
needed to correct the detection results.

3 Mining communication protocol
analysis

To delineate the nature of encrypted mining traffic, this section
begins with a comprehensive depiction of the communication
dynamics between the mining pool and the mining machine.
Subsequently, we expound upon the methodology underlying the
computation of the long-range dependency metric, along with the
calculation of the Hurst exponent for network traffic generated
during the mining of two distinct cryptocurrencies. Ultimately, our
findings demonstrate the viability of utilizing temporal statistical
attributes of traffic, coupled with the Hurst exponent, as discerning
features for the purpose of traffic identification.

3.1 Analysis of the protocol communication
process

Current mining pools for major currencies such as Bitcoin,
Litecoin, and Ethereum typically use the Stratum protocol as the
communication protocol between miners and mining pools. The
protocol encapsulates message data based on the JSON (JavaScript
Object Notation) format and sets up several different commands to
make data exchange between the client and server efficient and
reliable. Most mining pools currently support the use of TLS for data
encryption in the Stratum protocol to improve data security and
disguise encrypted mining of normal network traffic to avoid
regulation.

As shown in Figure 1, miners, pools, and users have different
responsibilities in the mining process. The role of the mining pool is
to collect transaction data from blockchain users and encapsulate it

into new blocks. This information is then provided to the miners,
who utilize their computing resources to determine the necessary
target values. Once the calculations are complete, these results are
transmitted back to the mining pool’s servers for a share of the
reward. To understand the behavioral characteristics of the mining
process, we analyze the interactions marked by the red boxes in
Figure 1.

The communication behaviors of pool-based mining using the
Stratum protocol are task subscription, task assignment, miner

FIGURE 1
Main process of cryptocurrency mining.

FIGURE 2
Stratum protocol communication flow.
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login, result submission, and difficulty adjustment, as shown in
Figure 2.

The above communication flow shows that in the mining
behavior of a miner, there will be frequent data exchanges
between the miner and the pool. First, the miner’s parameters
and information will be authorized by the pool, and then the
pool will continuously send mining computation tasks to the
miner, and the miner will complete the tasks and submit the
results. We can extract temporal statistics from network traffic
and extract key features as a basis for determining whether the
traffic is mining behavior, such as the number of bits transmitted per
second, the size of transmitted packets, the number of payload
packets, the transmission idle time, and the transmission activity
time. Therefore, this paper proposes a series of feature data that
characterize network traffic. Since the feature data of the traffic
generated by mining behaviors are not accurately judged based on
individual statistical features, we extracted the behavioral feature
data of network traffic exhibited in the time domain. Since network
traffic has a long-term nature and exhibits certain temporal
characteristics, the proposed feature extraction model can
effectively extract the behavioral characteristics of network traffic
for malicious mining behavior and identify that traffic.

3.2 Long-range dependence of the network
traffic

In this section, we introduce the computation of the long-range
dependence metric and compute the long-range dependence feature
of the mining network traffic, which prepares for the subsequent
proposal of the feature extraction method and provides
experimental support for the introduction of the long-range
dependence of the mining traffic.

3.2.1 Calculation of the long-range dependence
metric

The long-range dependence of network traffic describes the
correlation properties of network traffic, it is generally defined in
terms of the autocorrelation function of a process.

Actual network traffic with long-range dependence is caused by
many factors, such as network file characteristics and TCP
congestion control. Meanwhile, actual network traffic with
abnormal traffic usually affects the long-range dependence of
network traffic [17, 18]; that is, the Hurst exponent can be used
as the basis for abnormal traffic detection. Therefore, we use these
data as feature data.

In practical calculations, obtaining accurate estimates of the
Hurst exponent is more complicated. In real applications, we usually
use the method of analyzing the data obtained in a limited time to
estimate the Hurst exponent. We use the rescaled range (R/S)
method to calculate the Hurst exponent of network traffic.

In this method, the time series is divided into N subseries of
length M, where �Xn denotes the mean of the nth series and Sn
denotes the standard deviation of the nth series. The ratio of the
fluctuation range to the standard deviation is calculated as follows:

Rn

Sn
� max 0,Δ1,Δ2, . . . ,Δn( ) −min 0,Δ1,Δ2, . . . ,Δn( )

Sn
(1)

where Δi denotes ∑M

k�1Xk − �Xi, i.e., the cumulative value of the
difference of the distance means in the subsequence, and for the self-
similar process, the relationship between Rn/Sn and n conforms to
the power law property.

Rn

Sn
∝ nH (2)

Therefore, the slope of the curve obtained by fitting the
calculated series of Rn/Sn values logarithmically is the value of
the final Hurst exponent H.

3.2.2 Long-range dependence of communication
traffic

We analyze and calculate the mining behavior traffic of
Ethereum and Monero based on our discarded traffic and obtain
the overall long-range dependence they present. Figures 3, 4 show
the traffic generated when cryptomining is performed for the two
different cryptocurrencies.

We calculate the Hurst exponent for these two traffic flows by
using Eqs 1, 2 from the previous section, i.e., R/S analysis. We obtain
a Hurst exponent of 0.7072 for Monero coin mining traffic and
0.9121 for Ethereum mining traffic. From these data, we are able to
determine that the traffic generated by mining behavior has
significant long-range dependence, and we are also able to
determine the characteristics of the overall behavior in the
temporal features.

Cryptomining behavior generates network traffic with
distinctive patterns due to its repetitive and consistent nature.
The computational process involved in mining results in periodic
spikes in traffic. These periodic spikes contribute a high degree of
self-similarity in the traffic data. Therefore, the Hurst exponent of
the mining traffic tends to be greater than 0.5. Normal traffic
generated by regular network activities such as web browsing or
file downloads typically does not exhibit the same level of regularity
as cryptomining traffic. They tend to have more random and
transient patterns. Consequently, the calculated Hurst exponent
for normal traffic is different from the calculated Hurst exponent
for cryptomining traffic. Therefore, we can use the Hurst exponent
of the traffic as a dimension of the features in our identification
method.

Because the two cryptocurrencies are computed using
different mining algorithms, we assume that the connection
characteristics to the server are different for both
cryptocurrencies. The dataset used in this paper contains data
generated by different mining algorithms using GPUs and CPUs,
so it can show the different characteristics generated by different
algorithms.

4 Network traffic identification method

4.1 Architecture

Figure 5 represents the overall flow of the proposed
identification method for mining network traffic in this paper.

First, suitable network traffic data are collected, categorized and
organized, and then each TCP flow is parsed individually by parsing
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the TCP data in the traffic packet to obtain its statistical feature data
in the time domain and the corresponding Hurst exponent and
finally exported to a feature data file. Then, a data oversampling
operation is performed on the original dataset to ensure that there is
no category imbalance in the final used dataset. Finally, the
generated dataset is divided, and the performance metrics of the
random forest classification model on the dataset are tested by the
ten-fold cross-validation method.

4.2 Feature data extraction

After collecting the required data samples, they have to be
converted from the PCAP file format of the network packets to
the digital input required by the classification algorithm, i.e., CSV
(Comma-Separated Values) files, which store the tabular data in
plain text and can be used very easily for analyzing, importing, and
exporting the data. Since the contents of network packets are traffic

FIGURE 3
Monero mining traffic.

FIGURE 4
Ethereum mining traffic.
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encrypted by TLS, classifying the traffic features by network traffic
payload is difficult. Extracting the statistical information of the
transport layer in the packets can help effectively eliminate
misleading information about TLS encryption on traffic
classification.

The specific extraction process is as follows:
A TCP flow is used as the basic unit, taking the FIN flag as the

end of the flow. The flow-related statistical features are extracted
with FlowID, which is composed of the source address, destination
address, protocol number, etc., as the flow flag. The extraction
process is presented in Figure 6.

The time series characteristics of network traffic generated by
mining behavior have some degree of difference from those of
normal network traffic, but detecting this difference by the time
series characteristics data of a particular network traffic alone is
difficult. Therefore, we need to include feature data that describe the
time series characteristics of network traffic as comprehensively as

possible in the detection algorithm. In the proposed feature data
extraction model, we extract data including the number of packets
transmitted per second in the network traffic, the bit rate in the
network stream, the Hurst exponent of the network traffic, the
packet size in different directions of the TCP connection, the packet
header size, the packet arrival interval, statistical data of idle time,
and the active time of the connection. The feature data we extracted
for identification are shown in Table 1.

4.3 Data preprocessing and model training

In this section, we first use the oversampling technique to
address the imbalanced dataset, and then we use the generated
dataset to train a random forest model for traffic identification.

Oversampling techniques are commonly used to address data
imbalance problems in machine learning. The malicious mining
behavior studied in this paper is much smaller than normal network
traffic; if the collected data are directly used to train a classification
model, the model can easily overfit the learning of most samples and
still obtain a single classification result due to the excessive number
of some samples as long as the classification model outputs a single
classification result.

In this paper, the Borderline SMOTE (Synthetic Minority Over
Sampling Technique) algorithm [19] is chosen to oversample the
processed feature data. The Borderline SMOTE algorithm is an
improved version of the SMOTE algorithm [20]. The SMOTE
algorithm is based on a few classes of sample points generating
new data points: first, the minority class sample points are found, its
k similar sample points are searched, and a new sample point is
generated randomly between the sample point and its immediate
neighbors. The Borderline SMOTE algorithm increases the sample
point selection strategy by classifying the minority class samples into
danger, safe and noise classes, where the danger class represents the
samples. The algorithm performs oversampling operations only on
sample points of the danger class, and the algorithm assumes that
samples of this type of edge can provide more effective information
for the classification model to obtain better classification results.

FIGURE 5
Identification model construction architecture.

FIGURE 6
Extraction process.
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The Borderline-SMOTE algorithm usually uses Euclidean
distance to calculate the nearest neighbors of sample points.
However, in the network traffic feature data studied in this
paper, the feature space has 48 dimensions, and accurately
expressing the Euclidean distance between sample points in a
high-dimensional space is difficult. Therefore, we choose the
Mahalanobis distance to measure the distance between sample
points. This distance is calculated based on the overall sample

and performs better on high-dimensional features than Euclidean
distance does. The formula for calculating the Mahalanobis distance
is as follows:

D �
�����������������
X − Y( )TS−1 X − Y( )

√
(3)

D represents the Mahalanobis distance, S is the covariance
matrix of the dataset, and (X-Y) represents the difference
between two points. The Mahalanobis distance can effectively
identify abnormal points in the dataset, so it is suitable for the
characteristics of the dataset studied in this paper.

After oversampling, we use this dataset for model training, as
shown in Figure 7. The random forest algorithm [21] is a commonly
used classification algorithm model that can effectively perform the
classification task even on unbalanced datasets, is not affected by
missing values in the data and has good generalization ability. We
use this algorithm to train the classification model after completing
feature extraction and data oversampling and to verify its performance.

To ensure the balance between the algorithm and the overhead
of the model, the random forest algorithm used in this paper is set to
use 100 decision tree models to form a random forest. To ensure that
the model can learn the complete data information for classification,
the number of features selected to generate decision trees is set to the
maximum number of features.

To validate the model performance, we use tenfold cross-
validation during training by dividing the entire dataset into ten
parts; nine of these parts are used for training the model, and one is
used to validate the model performance. We then replace the
validation set and repeat the training ten times. This validation
method can more accurately verify the model performance by using
all the data in the dataset for testing and training.

TABLE 1 Features list.

Features Description

flow_byts_s Number of bytes transmitted per second in flow

flow_pkts_s Number of packets transmitted per second in flow

fwd(bwd)_pkts_s Number of packets transmitted per second in the same (opposite) direction as the flow

fwd(bwd)_pkt_len_max, min, mean, std Maximum, minimum, average, standard deviation of packet length in the same (opposite) direction as the flow

pkt_len_max, min, mean, std Maximum, minimum, average, standard deviation of packet length in all direction as the flow

fwd(bwd)_header_len Length of the packet header in the same (opposite) direction as the flow

fwd_seg_size_min Minimum length in the same direction as the flow

fwd(bwd)_act_data_pkts Number of packets with a TCP data payload of at least 1 byte in the same (opposite) direction as the flow

flow_iat_max, min, mean, std Maximum, minimum, average, standard deviation of the time between two flows

fwd(bwd)_iat_tot, max, min, mean, std Maximum, minimum, average, standard deviation of the time between two packets in the same (opposite) direction as the flow

download_upload_ratio Forward-backward data ratio

pkt_size_avg Average value of the packet length

init_fwd(bwd)_win_byts Initial sliding window size in the same (opposite) direction as the flow

active_max, min, mean, std Maximum time, minimum time, average time, standard deviation time of flow before idle

idle_max, min, mean, std Maximum time, minimum time, average time, standard deviation time before the flow becomes active

Hurst_ exponent Hurst exponent of this flow

FIGURE 7
Data preprocessing and model training.
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5 Experiment

5.1 Data collection and preprocessing

Since no cryptomining traffic dataset is available on the internet
for experiments, we need to collect traffic data, extract features from
the collected data, extract time series features from traffic sequences,
clean the features and wait for them to be read by the detection
algorithm.

5.1.1 Data collection
The WSL2-based Ubuntu virtual machine environment was

built, and the CUDA onWSL2 driver support enabled the virtual
machine to call physical machine graphics resources to meet the
requirements of the mining software. The mining software was
used to connect to the online mining pool to collect encrypted
mining traffic based on the Stratum protocol, and Tcpdump and
Wireshark were used to capture the network traffic packets.

We use xmrig1 to collect Monero mining traffic and lolMiner2

to collect Ethereum mining traffic. For normal web surfing traffic,
we use the publicly available ISCXTor2016 dataset [22], in
particular the non-Tor portion of the network traffic, including
web browsing, chat, file transfer, etc. Table 2 shows the final
datasets we construct.

5.1.2 Data preprocessing
We first construct the KNN (K-Nearest Neighbor) [23] model

using the Mahalanobis distance as a metric. We then input the data
into the model, calculate the 5 nearest neighbors of the sample
points in the feature space, and divide the points into danger, safe,
and noise classes according to the number of sample point types
around the few sample points. Finally, we generate new sample
points based on the danger sample points to complete the data
oversampling.

Figures 8, 9 represent the results of data oversampling. The data
visualization uses the T-SNE dimensionality reduction algorithm,
which reduces the sample points in the 48-dimensional space to a 2-
dimensional space that can be directly observed through a
probabilistic model, consisting of two main features t-SNE X and
t-SNE Y. Due to the characteristics of the dimensionality reduction
algorithm, we can only use the results of its dimensionality reduction
for visual observation of the distribution characteristics of the data,
not as a basis for classification.

5.2 Experimental results

After collecting the experimental data and extracting the feature
values as described before, we use the random forest algorithm to
evaluate the feature data of the network traffic we obtained. We
compare the results of this evaluation with the network traffic
feature data obtained by other different feature extraction
methods after the same detection algorithm. These results
demonstrate that our network data feature extraction model is
feasible for the practical application of cryptomining traffic
detection.

5.2.1 Evaluation metrics
Before describing the evaluation metrics, four sample-

related data, TP, FP, FN, and TN, must be described.
Assuming a dichotomous classification problem with
positive and negative classification results, TP indicates a

TABLE 2 Dataset class.

Class Size (KB)

Mining traffic 4,654

Normal traffic 9,131,217

FIGURE 8
Data distribution before oversampling.

FIGURE 9
Data distribution after oversampling.

1 XMRig (2017). https://github.com/xmrig/xmrig (Accessed 24 Mar 2023).

2 lolMiner (2018). https://github.com/Lolliedieb/lolMiner-releases
(Accessed 28 Feb 2022).
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correct classification as positive; FP indicates a
misclassification as positive; FN indicates a misclassification
as negative; and TN indicates that the correct classification is
negative. This is shown in Table 3.

5.2.1.1 Accuracy
Accuracy, which indicates the percentage of the number of

correct classifications among all classification results, is
mathematically described as follows.

accuracy � TP + TN
TP + FP + TN + FN

(4)

5.2.1.2 Precision
Precision, which indicates the ratio of the number of samples

correctly classified as positive to the number of all samples classified
as positive, is mathematically described as follows.

precision � TP
TP + FP

(5)

5.2.1.3 Recall
Recall is similar to precision and is also a criterion for a

classification result. Recall, which generally refers to the ratio of
the number of samples correctly classified as positive to the total
number of samples that should be classified as positive, is
mathematically described as follows.

recall � TP
TP + FN

(6)

5.2.1.4 F1
Recall and precision are mutually influential. Ideally, we would

achieve a high value for both, but generally, when one of them is
high, the other will be low.When both need to be at a high value, this
is evaluated by F1, which is the summed average of precision and
recall, mathematically described as follows.

F1 � 2 × precision × recall
precision + recall

(7)

5.2.2 Feature model performance enhancement
experiments

We conducted a comparison experiment using the network
traffic features obtained from our feature extraction model and
the 9-dimensional network traffic features used in Veselý’s paper
[13]. Both models for the experiment used the random forest
classification model, the performance metrics in the experimental
results were obtained by the ten-fold cross-validation method, and
the final experimental results were shown by the performance
metrics with the error.

Figure 10 shows that the proposed feature extraction model
significantly improves the recall index along with other performance
metrics, and the error value in ten-fold cross-validation is also lower

TABLE 3 Confusion matrix.

Predict value
real value

Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

FIGURE 10
Model performance.

FIGURE 11
Resample performance. (A) Result without oversampling. (B) Result with oversampling.
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for our method. This is enough to prove that our proposed
recognition technique is effective and improves usability in traffic
detection mining based on network traffic features.

5.2.3 Performance enhancement experiments of
the oversampling method

After testing the improved performance of our feature extraction
model in detecting malicious mining behavior, we experimentally
tested the impact of oversampling the dataset on the performance of
the final classification model. We obtained the experimental results
by oversampling the current dataset before training the model using
the Borderline SMOTE algorithm based on the Mahalanobis
distance and finally using ten-fold cross validation.

The results in Figure 11 show that the classification stability of
the classification model can be effectively improved after
oversampling the dataset, but the large increase in the
performance of the feature model proposed in Veselý’s article
may be because the model produces a certain amount of
overfitting because of its small number of feature dimensions and
the small variation in the feature values, which produces many
similar data points after oversampling. This is because adding more
valid information to the training dataset enables the classification
model to learn more types of features, so the error values in the
experiment are reduced, reflecting the improved stability of the
classification model, but the size of the oversampling needs to be
carefully controlled as well as the method to avoid overfitting of the
model.

6 Conclusion

By extracting the statistical features of time series information in
network traffic and balancing the imbalanced data, we can effectively
determine the relationship between data points hidden in network
traffic and distinguish encrypted network traffic generated by
cryptomining practices from normal network traffic.

The identification performance can be further improved by
acquiring more kinds of cryptocurrencies and traffic generated by
normal network traffic and by reducing the computational
complexity of data preprocessing to cope with more low-computing
power edge devices. Moreover, communication protocols for
cryptomining are constantly modified and updated, requiring the
traffic data to be constantly updated tomaintain identification accuracy.
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