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Introduction: The immune-related lncRNAs (IRLs) are critical for the development
of cervical cancer (CC), but it is still unclear how exactly ILRs contribute to CC. In
this study, we aimed to examine the relationship between IRL and CC in detail.

Methods: First, the RNAseq data and clinical data of CC patients were collected
from The Cancer Genome Atlas (TCGA) database, along with the immune genes
from the Import database. We used univariate cox and least absolute shrinkage
and selection operator (lasso) to obtain IRLs for prediction after screening the
variables. According to the expression levels and risk coefficients of IRLs, the
riskscore were calculated. We analyzed the relationship between the model and
oxidative stress. We stratified the risk model into two as the high and low-risk
groups. We also evaluated the survival differences, immune cell differences,
immunotherapeutic response differences, and drug sensitivity differences
between the risk groups. Finally, the genes in the model were experimentally
validated.

Results: Based on the above analyses, we further selected four IRLs (TFAP2A.AS1,
AP000911.1, AL133215.2, and LINC02078) to construct the risk model. The model
was associated with oxidative-stress-related genes, especially SOD2 and OGG1.
Patients in the high-risk group had a lower overall survival than those in the low-
risk group. Riskscore was positively correlated with resting mast cells, neutrophils,
and CD8+ T-cells. Patients in the low-risk group showed a greater sensitivity to
immunosuppression therapy. In addition, we found that patients with the PIK3CA
mutation were more sensitive to chemotherapeutic agents such as dasatinib,
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afatinib, dinaciclib and pelitinib. The function of AL133215.2 was verified, which was
consistent with previous findings, and AL133215.2 exerted a pro-tumorigenic
effect. We also found that AL133215.2 was closely associated with oxidative-
stress-related pathways.

Discussion: The results suggested that risk modeling might be useful for
prognosticating patients with CC and opening up new routes for immunotherapy.
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Introduction

Globally, CC is the fourth leading cause of cancer-related
deaths among women (Sawaya et al., 2019; Wen et al., 2020).
Although the screening for CC and human papillomavirus (HPV)
vaccination programs has been developed, the number of newly-
diagnosed CC cases is on the rise, implying that CC remains a
major public health concern (Arbyn et al., 2020). Surgery,
radiotherapy and chemotherapy are the three common
treatments for patients with CC, however, its 5-year survival
rate remains unsatisfactory, owing to recurrence, metastasis and
drug resistance (Sol et al., 2009; Kumar et al., 2018; Marquina et al.,
2018). The progression and treatment of CC are influenced by the
immune system (Chen et al., 2019); hence, immunotherapy is an
effective treatment option for patients with CC. With the use of
immune checkpoint inhibitors for cancers, great progress has been
made in immune-targeted therapies for CC. Immunotherapies
comprising anti-CTLA4 and anti-PD1 drugs are effective
against CC(Drews et al., 2019). However, the consistently-low
positive immunotherapeutic response limits the development
and application of immunotherapies for patients with CC
(Chung et al., 2019). It is therefore crucial to identify new
therapeutic targets and biomarkers for the early diagnosis and
prognosis of CC. Non-coding RNAs with more than
200 nucleotides are called long-stranded non-coding RNAs
(lncRNAs), which can be involved in post-transcriptional
modifications (Kung et al., 2013)and play a key role in
processes such as antigen presentation, cancer immunity as well
as immune cell infiltration (Denaro et al., 2019; Zhang L. et al.,
2020). The lncRNA CamK-A, for example, is highly expressed in
several human cancer types and can regulate the Ca2+-signaling-
mediated remodeling of the tumor microenvironment (Sang et al.,
2018). In addition, the overexpression of HLA-F-AS1 in colorectal
cancer cells suppresses miR-375 and promotes the expression of
PFN1, thereby exacerbating tumorigenesis (Zhang et al., 2021).
LncRNAs can influence the response of patients with cancers to
immunotherapies and the tumor microenvironment (Zhang Y.
et al., 2020). However, little has been reported about the action
mechanism of IRLs in patients with CC. Oxidative stress is
involved in the development and progression of many diseases,
including cancers (Valko et al., 2007), which is mainly because it
can cause inflammation and thus affect cancer development
(Reuter et al., 2010). Oxidative stress also plays an important
role in CC. It has been shown that triflavin can induce apoptosis by
regulating oxidative stress, thereby inhibiting cervical
carcinogenesis (Zhu et al., 2021). In addition, oxidative stress is
critical in lipid peroxidation, which has a positive effect on the

elimination of HPV-related cancers (Cruz-Gregorio et al., 2021).
Therefore, it is necessary to discover a new IRL as a potential
marker of CC and explore its associations with oxidative stress.

Using the TCGA database and RNA sequencing data, we
identified IRLs and established a 4-IRL risk model through the
Lasso method. We also explored the potential links between the risk
model and oxidative stress. Subsequently, we examined several
clinical characteristics of patients with CC that were associated
with the model. Additionally, the correlations of the IPS with
single nucleotide polymorphism (SNP) mutations, copy number
variations (CNVs) and immune cell infiltration were also analyzed.
An analysis of drug sensitivity was conducted to improve drug
treatment. Overall, these findings may provide a strategy for the
prognostic prediction of patients with CC, along with the
identification and development of immune-related treatment
targets.

Materials and methods

The acquisition of data and the screening of
immune-related lncRNAs

The transcriptomic and clinical data (detailed information about
the demographic characteristics of the patients in Supplementary Table
S3) on CC (normal = 3,tumor = 306) was obtained from the TCGA
database (https://tcga-data.nci.nih.gov/), and the immune-related genes
were accessed from the Import database (https://www.immport.org/).
Count values of raw data were converted to transcripts per kilobase
million (TPM) values for subsequent analyses; count values were used
only to identify the differential genes. To identify differentially-
expressed lncRNAs, we compared different gene expressions
between normal and tumor samples with a threshold of |log2 FC
(Log2 Fold Change)| > 2 and FDR (false discovery rate) < 0.01. IRLs
were obtained based on the relationship between the expression of
lncRNAs and immune genes using the Person correlation test
(correlation coefficients >0.6). By taking the intersections of
DElncRNAs and IRLs, the relevant IRLs were obtained.

The construction and validation of risk
model

Machine learning is widely used in applications such as nearest
neighbour search in large-scale data (Yan et al., 2021), dimensionality
reduction of features, etc., We filtered the significant prognostic
lncRNAs with p < 0.05 through univariate Cox analysis and
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identified the final lncRNAs using lasso regression analysis. In order to
create a prognostic risk model, we used the coefficients obtained from
the lasso to calculate the riskscore of each patient with CC. The
calculation was as follows:

riskScore � ∑
n

i�1Coef i p xi

The coefficient is Coefi, while xi is the count value of each
DElncRNA. Based on the median riskscore (The advantages of the
median are that it makes full use of all data information to reflect the
centralized trend of a group of data, is not affected by extreme data,
and is easy to find. It can clarify the middle level and is less affected
by extreme data. Disadvantages: It is easily affected by extreme
values), patients were divided into two groups, namely, the high-risk
and the low-risk group. Furthermore, based on the survival duration
of patients, a Kaplan-Meier analysis was performed to evaluate their
prognostic value. Model-based receiver operating characteristic
(ROC) curves were plotted for the first, third and fifth year;
based on the survival time of patients, Kaplan-Meier analyses
were performed, and survival curves were used to display the risk
model results.

The acquisition of oxidative-stress-related
genes

We collected several common oxidative-stress-related genes from
published studies, including SOD1, SOD2 (Zelko et al., 2002),
PON1(Teranishi et al., 2012), NOS3(Katkam et al., 2018),
UCP2(Hu et al., 2019), GSR (Couto et al., 2016), GPX1 (Teranishi
et al., 2012) and GSTM1(Cadoni et al., 2006). 8-hydroxy-
2 deoxyguanosine (8-OHDG) is known as a key marker of
oxidative stress (Reuter et al., 2010) and we collected 8-OHDG-
related genes from GeneCards (https://www.genecards.org/) and
obtained gene enrichment pathways using ClueGO. A protein-
protein interaction network was then obtained through the String
website (https://cn.string-db.org/). Four methods based on the
naximal clique centrality (MCC), the density of maximum
neighborhood component (DMNC), the maximum neighborhood
component (MNC) and degree of cytoHubba were used to screen key
genes, the top 10 of which were crossed. Correlations between the risk
model and oxidative-stress-related genes were analyzed using the
Spearman test.

The correlation between the risk model and
clinical characteristics

The correlations between the model and the age, grade, clinical
stage as well as TNM stage of patients with CC were assessed using
the Chi-square test.

The correlation between targeted
therapeutic markers and the risk model

Microsatellite instability (MSI), tumor mutational burden
(TMB) and homologous recombination deficiency (HRD) are

common molecular characteristics of genomic instability, which
are validated biomarkers for targeted therapies (26).We performed a
Kaplan-Meier analysis for TMB, MSI and HRD to assess their
prognostic values. A Chi-square test was also used to evaluate
their associations with the risk model.

Gene mutations and copy number variants

We downloaded the data on SNPs and CNVs of patients with
CC from TCGA and UCSC databases. The SNPs and CNVs were
visualized using circos (http://circos.ca) and R. The focus was on the
demonstration of their locations on the chromosomes where the
genes were present in the model. Significantly-mutated genes (p < 0.
05) and gene mutation interactions between the high- and low-risk
group were analyzed using the MAFTOOLS software. In both
analyses, only the genes mutating more than 10 times in at least
one group were considered, whose expression was probed using
GEPIA. A statistical test for significant mutation rates was
performed using a one-sided z-test. Copy number alterations
among patients with CC were analyzed with GISTIC 2.0
(Mermel et al., 2011). The copy number gistic score, together
with the percentage of patients in both risk groups, was also
analyzed.

The infiltration of immune cells

We obtained most of our immune cell data from XCELL (Aran
et al., 2017), EPIC(Racle et al., 2017) and CIBERSORT (Newman
et al., 2015). Next, the immune cell infiltration was quantified using
ssGSEA for subsequent analyses (Barbie et al., 2009; Bindea et al.,
2013). Further analyses were conducted on the correlations between
immune cell types and immune cell content of the risk groups. Based
on a Pearson correlation analysis, we analyzed how immune cells
and IRLs interacted.

The prediction of immunotherapeutic
response

We used unsupervised subclass mapping methods (https://
cloud.genepattern.org/gp) to predict the responses of different
risk groups to immunotherapies (Lu et al., 2019).

Drugs with differential sensitivities in high-
and low-risk groups

PIK3CA mutations are more common in CC (Xiang et al.,
2015). As a result, mutations in the PIK3CA gene can be used as
a target biomarker for patients with CC. We segregated the
patients with CC carrying PIK3CA mutations. After
downloading data on drug sensitivity AUC value from the
Cancer Therapeutics Response Portal (CTRP2.0), Profiling
Relative Inhibition Simultaneously in Mixtures (PRISM)
repurposing dataset and the Cancer Cell Line Encyclopedia
(CCLE) expression profile, we performed a differential drug
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response analysis on patients in both risk groups. Spearman
correlation analysis (r < −0.30 for CTRP; r < −0.35 for PRISM)
was used to screen compounds with negative correlation
coefficients (Yang et al., 2021).

Experimental verification

A total of 22 pairs of cancerous and non-tumorous tissues
were collected from patients with CC at the First Affiliated

FIGURE 1
Establishment and verification of the risk model (A) Forest map for univariate Cox analysis. (B) LASSO coefficient distributions for four lncRNAs (C)
Partial likelihood deviation of the LASSO coefficient distribution. Vertical dashed lines indicate lambda values. (D) Volcanic map of DEirlncRNAs. (E) The 3-
and 5-year ROC curves for the risk model. (F) Patients in the low-risk group show longer survival as indicated by the Kaplan-Meier test. (G–I)Distribution
of risk score, survival status, and molecular expression.
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Hospital of Zhengzhou University. This study was approved by
the Ethics Committee of the First Affiliated Hospital of
Zhengzhou University (Ethics Number: 2022-KY-0093-002),
and an informed consent was obtained from patients. qRT-
PCR was used to determine the expression of lncRNAs
through the risk model. Primers for TFAP2A-AS1,
AP000911.1, AL133215.2 and LINC02078 were designed using
primer 5.0 (Supplementary Table S1). Total RNA was extracted
with a trizol (CWBIO, China), and the first strand of cDNA was
synthesized using a reverse transcription kit (Takara, Kyoto,
Japan). Finally, cDNA was quantified through qRT-PCR using
SYBR green master mix (Vazyme, China). GAPDH was used as
an internal reference for calibration. The 2−ΔΔCT method was
chosen to calculate the relative expression of lncRNAs. Cellular
functional assays were performed for AL133215.2, which was
knocked down in the HeLa and SiHa cell line via transfection.
Cells transfected with siRNA and controls were stained with an
Annexin V-FITC apoptosis detection kit (Beyotime, Shanghai,
China). The stained cells were then analyzed through flow
cytometry. Relative cell viability was monitored 24, 48, 72, and
96 h after transfection using cell counting kit-8 (CCK-8,
Beyotime, Shanghai, China).

Gene set variation analysis (GSVA) and gene
set enrichment analysis (GSEA)

We used GSVA to analyze the 50 hallmark pathways
described in the molecular signature database (Subramanian
et al., 2005; Hänzelmann et al., 2013). Next, we used a limma
package to obtain pathways that differed significantly between
patients in the high- and low-risk group. A GSEA (Subramanian
et al., 2005) was conducted for both risk groups, and we selected
significantly-enriched pathways based on p-values and FDR
q-values that were below 0.05 and 0.25 respectively. We
obtained the previously-reported gene sets related to
immunotherapy from Hu et al. (2021). In addition to the
immune-related gene sets we collected, gene ontology (GO)
pathways associated with oxidative stress were also enriched
using GSVA. Finally, we examined the associations between
genes in the model and the enrichment scores.

Developing a predictive nomogram

The nomogram-integrated factors including the risk score, T, N,
MSI. calibration curves and ROC were used to evaluate the accuracy
and predictive ability of the nomogram; decision curve analysis
(DCA) was used to evaluate the clinical effectiveness of the
nomogram.

Statistical methods

R version 4.4.1 was used to perform all statistical tests in this
manuscript. The χ2 test was used for appropriate categorical data,
and the two-sample Wilcoxon test was used for continuous data.
Survival analyses were performed using the R package “survival”.

Correlation analysis was performed using the Pearson correlation
test. Statistical significance was defined as a p-value of less than
0.05 for all statistical analyses.

Results

The construction and validation of the risk
assessment model

We obtained a total of 493 differentially-expressed lncRNAs;
among them, 96 were immune-related lncRNAs (Supplementary
Table S2). A total of four IRLs were identified and selected for risk
modeling through univariate cox analysis (Figure 1A) and lasso analysis
(Figures 1B, C); among them, TFAP2A-AS1 and AL133215.2 showed a
significantly high expression, while LINC02078 and AP000911.1 had a
significantly low expression in cancer tissues (Figure 1D). The risk score
of each patient was computed as follows:

Riskscore � TFAP2A − AS1* −0.207( ) + AP000911.1* −0.214( )
+AL133215.2* −0.229( ) + LINC02078* −0.308( )

The risk model had a good clinical predictive power, with a ROC
value of 0.763, 0.645 and 0.678 for 1-, 3- and 5-year survival respectively
(Figure 1E). The C-index and IBS of the risk model were 0.918 and
0.035, respectively, which also show that the risk model had a good
predictive performance (details of the calculation process were in
Supplementary Material S1). Patients in the low-risk group had a
higher overall survival rate (Figure 1F). Furthermore, we determined
the distribution of risk scores, the survival statistics of patients in
different risk categories and the expression characteristics of the four
IRLs (Figures 1G–I). As is shown in the graph, the low-risk patients
showed an overexpression of these four protective lncRNAs.

The relationship between the risk model and
oxidative stress-related genes

Among the eight common oxidative stress-related genes, the risk
model was positively correlated with SOD2 while negatively
correlated with UCP2 (Figure 2A). One of the four lncRNAs,
AL133215.2, correlated significantly positively with SOD2 while
negatively with UCP2; another was TFAP2A-AS1, which
correlated significantly positively with UCP2. (Figure 2B). There
was a significant positive correlation between SOD1 and
GPX1 among the eight genes related to oxidative stress
(Figure 2C). We obtained 62 8-OHDG-related genes from
GeneCards, and the protein interaction network showed more
interactions among TP53, OGG1, SOD2, CAT and other proteins
(Figure 2D). The pathway enrichment results showed that 8-
OHDG-related genes were significantly enriched in the negative
regulation of oxidative stress-induced intrinsic apoptotic signaling
pathways, responding to oxidative stress and other pathways
(Figure 2E). Five key 8-OHDG-related genes were obtained
through MCC, DMNC, MNC and Degree, namely, SOD2,
OGG1, TP53, NFE2L2 and CAT (Figure 2F). The risk model and
OGG1 were significantly negatively correlated (Figure 2G), and
AL133215.2, TFAP2A-AS1 as well as OGG1 were significantly
positively correlated (Figure 2H).

Frontiers in Pharmacology frontiersin.org05

Lv et al. 10.3389/fphar.2023.1234181

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1234181


Differences in clinical characteristics among
risk groups

Among all clinical characteristics, N and T stage were significantly
associated with the risk model (Figure 3). More patients in the low-risk
group were in Stage N0, more of whom in the high-risk group were in
Stage T3 and T4. Perhaps this is one of the reasons for the shorter
overall survival time of patients in the high-risk group.

The correlation between targeted
therapeutic markers and the model

Of the three markers, MSI and the risk groups were significantly
correlated (Figure 4A). The high-risk group had a higher MSI value
(Figure 4B). However, there was no significant difference between
the two groups for TMB (Figure 4C) or HRD (Figure 4D). In a
combined analysis onMSI and riskscore, highMSI-highRisk patients

FIGURE 2
Relationship between riskmodel and oxidative stress-related genes. (A)Correlation of riskmodels and oxidative stress-related genes. (B)Correlation
between the four IRLs and oxidative stress-related genes. (C)Correlation between oxidative stress-related genes. (D) Protein-protein interaction network
of 8- OHDG-related genes. (E) Enrichment pathways of 8- OHDG-related genes. (F) Intersection genes of MCC, DMNC, MNC, and Degree. (G)
Correlation of risk model and key genes (H) Correlation of 4 IRLs and key genes.
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had a significantly shorter survival duration than lowMSI-lowRisk
ones (Figure 4E). These results indicated that high-risk patients
tended to have a higher MSI value, which contributed to a poorer
prognosis.

The mutation status of groups at a high and
low risk

From the analysis, TTN, PIK3CA and KMT2C had a high
mutation frequency in both high- and low-risk group (Figure 5A,
B). There were two genes with a high frequency of mutations in
high-risk patients, namely, DNAH2 and AHNAK. There were
12 genes with a high mutation frequency in low-risk patients,
namely, DNAH2 and AHNAK (Figure 5C). These genes
exhibited a significant co-occurrence (Figure 5D). AHNKA,
DMD, CACAN1H, KINA1109 and BRCA1 were differentially
expressed between the CC and normal group (Figures 5E–I).
CNV results from patients with CC showed a greater significant
increase in gene copy number on chromosomes 1 and 3
(Figure 5J). The CNV of chromosomes 6, 10, 11, and 17,
where the four lncRNAs TFAP2A.AS1, AL133215.2,
AP000911.1, and LINC02078 were located respectively, are
shown in Figure 5K. As is shown in the figure, there was a
higher gene copy number loss in these chromosomes. A
significant similarity in the chromosomal aberrations of
patients in the high- and low-risk group was also observed
(Figure 5L).

A comparison of the immune landscapes of
high-risk and low-risk patients

Among the immune cell types, assessed by several methods, a
significant positive correlation was shown between neutrophils

and riskscore (Figure 6A). When ssGSEA was used to quantify
immune cells, most of them showed a strong positive relationship
with each other (Figure 6B). Neutrophils, NK cells and pDCs were
significantly different between the high- and low-risk group
(Figure 6C). Among the four lncRNAs in the risk model, the
expression of TFAP2A-AS1 and AL133215.2 was negatively
correlated with that of the majority of immune cells, while
LINC02078 and AP000911.1 showed opposite trends
(Figure 6D). We used the submap analysis to compare the gene
expression profiles of the defined high- and low-risk group with
another dataset containing 47 melanoma patients who showed
immunotherapeutic responses (Roh et al., 2017). Anti-PD-
1 therapies were more likely to be effective for low-risk patients
(Bonferroni corrected p = 0.015) (Figure 6E). We screened several
drugs that showed sensitivity among low-risk patients, including
bleomycin A2, dasatinib and afatinib in CTRP2.0 (Figure 6F) as
well as NVP-AUY922, dinaciclib, pelitinib, obatoclax,
echinomycin, dasatinib and dacomitinib in PRISM (Figure 6G).
Based on these studies, we could develop individualized treatment
plans for patients in different risk groups.

The experimental validation of molecules in
the model

The qRT-PCR assay indicated that TFAP2A-AS1 and
AL133215.2 showed a significantly high expression in cancer tissues,
while LINC02078 and AP000911.1 had a significantly low expression,
which were consistent with our previous predictions (Figures 7A–D).
Given the above analyses, we found a close association between
AL133215.2 and oxidative-stress-related genes, so AL133215.2 was
selected for experimental validation. CCK-8 assay showed that the
proliferation of CC cells could be significantly inhibited by knocking
down AL133215.2 (Figures 7E, F). We analyzed CC cells through flow
cytometry and showed that apoptosis was significantly accelerated in

FIGURE 3
Correlation between risk model and clinical characteristics. T-stage and N-stage are different in high- and low-risk groups.
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both Siha and Hela cells after AL133215.2 knockdown (Figures 7G–I).
These experimental results demonstrated the ability of AL133215.2 to
promote the progression of CC.

Pathway enrichment analysis

GSVA was performed on each patient to compare pathways
between high- and low-risk group. Among high-risk patients,
inflammatory response and oxidative phosphorylation were
significantly enriched (Figure 8A). According to GSEA results

of the HALLMARK and KEGG gene set, inflammatory response
and oxidative phosphorylation were significantly enriched in
high-risk individuals (Figures 8B–D). A positive correlation
was found between AL133215.2 and most immunotherapeutic
predictive pathways, while a negative one was seen in all immune
precursor pathways (Figure 8E). The AL133215.2 low-expression
group had a higher enrichment score in terms of the oxidative
stress pathways (Figure 8F). This was consistent with our
previous study, where the high-risk group corresponded to a
lower expression of AL133215.2 and a more pronounced
oxidative stress.

FIGURE 4
Differences in immunotherapy markers between the risk groups. (A) Heat maps for the distributions of MSI, TMB, and HRD in high- and low-risk
groups. (B–D) The Violin plot for differences in expressions of MSI, TMB, and HRD between high- and low-risk groups. (E)MSI combined risk model was
used to plot the survival curve.

Frontiers in Pharmacology frontiersin.org08

Lv et al. 10.3389/fphar.2023.1234181

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1234181


FIGURE 5
Mutations in high- and low-risk groups (A,B)Genemutationwaterfall map for low-risk group and high-risk group. (C) Forest map of the differentially
mutated genes in the low-risk group and high-risk group. (D) Interaction of differentially mutated genes between the low-risk group and high-risk
group. (E–I) Mutant genes showing expression differences between normal and CC patients. (J) Heat map of CNVs (K) Circle map of CNVs for the
chromosomal location of genes of the risk model. (L) The chromosomal aberrations in high- and low-risk groups. *p < 0.05, **p < 0.01 indicated the
statistical significance of data.
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FIGURE 6
Immune infiltration landscape of CC and estimation of immunosuppressed genes using the risk model. (A) Correlation between immune cell types
and riskscore. (B)Correlation matrix for the immune cells. (C)Comparison of the expressions of immune infiltrating cells in low- and high-risk groups. (D)
Correlation between lncRNA and immune cells. (E) Submap analysis shows that patients in the low-risk group are more sensitive to PD-1 inhibitors. (F)
Correlation analysis and drug response analysis for three differential drugs in CTRP. (G) Correlation analysis and drug response analysis for seven
differential drugs in PRISM. *p < 0.05, **p < 0.01 indicated the statistical significance of data.
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Nomogram construction and evaluation

A nomogram was constructed to predict survivals after 3 and
5 years (Figure 9A). The calibration curve validated that the

nomogram had a good accuracy in predicting patient survivals
(Figure 9B). ROC and DCA showed that the risk score had a
better clinical efficacy compared to several other characteristics
(Figure 9C, D).

FIGURE 7
Experimental validation of genes in the risk model (A–D) qRT-PCR results for TFAP2A.AS1, AP000911.1, AL133215.2, and LINC02078. (E) CCK-8
results for knockdown of AL133215.2 in SiHa cell line. (F) CCK-8 results for knockdown of AL133215.2 in the HeLa cell line. (G) Apoptosis after knocking
down AL133215.2 in SiHa cells (H) Apoptosis after knocking down AL133215.2 in HeLa cells (I) Histogram for apoptosis rates. *p < 0.05, **p < 0.01, ***p <
0.001 indicated the statistical significance of data.
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FIGURE 8
Gene set variation analysis and gene set enrichment analysis results. (A)Differential pathways between high- and low-risk groups. (B) Inflammatory_
response in the HALLMARK gene set is significantly enriched in the high-risk group (C) Oxidative_phosphorylation in the HALLMARK gene set is
significantly enriched in the high-risk group (D) Oxidative_phosphorylation in the KEGG gene set is significantly enriched in the high-risk group (E)
Correlation of AL133215.2 with immune-related pathways (F) Differences in oxidative stress-related pathways in the high- and low-expression
groups of AL133215.2. *p < 0.05, **p < 0.01, ***p < 0.001 indicated the statistical significance of data.
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Discussion

In the immune system, lncRNAs regulate gene expression and
play a key role in tumorigenesis as well as progression (Li et al.,
2020). In addition to serving as prognostic markers, IRLs may
also serve as therapeutic targets for cancers (De Felice et al.,
2018). lnc-INSR suppresses the immune microenvironment by
regulating the differentiation of Treg cells (Liu et al., 2020),
thereby promoting tumor growth. In diffused B-cell
lymphoma, ncRNASNHG14 promotes immune escape by
regulating immune checkpoints (Zhao et al., 2019). Oxidative
stress can lead to inflammatory pathways through which normal
cells are converted into tumor cells, and studies have shown that
oxidative stress plays an important role in the progression of CC
(18, 19). However, the exact role of IRLs in the prognosis of CC
and their associations with oxidative stress remain unclear. In
this study, we identified four lncRNAs and construct an immune
risk scoring system. TFAP2A-AS1 is a tumor suppressor of breast
cancer as it competes for miR-933, thereby releasing SMAD2
(Zhou et al., 2019). AL133215.2 is identified and used to
construct a prognostic model for CC (Chen et al., 2020).
LINC02078 and AP000911.1 have not yet been reported in
this context. Next, we will discuss the potential utility of risk
modeling as a new immunotherapeutic tool and analyze the
relationship between risk modeling and oxidative stress.

The risk model was stratified into two groups based on risk level:
low-risk and high-risk model, which was associated with oxidative-
stress-related genes SOD2 and OGG1. SOD2 plays an important role in
vascular oxidative stress (Dikalova et al., 2017), and OGG1 acts as a
DNA repair enzyme that can counteract DNA damage caused by
oxidative stress (Li et al., 2018). Patients in the low-risk group had a
longer outcome survival, as well as a higher MSI and immunogenicity,
who were also more suitable for anti-PD-1 therapies. Additionally, we
also screened for drugs that showed a great sensitivity among low-risk
patients, including bleomycin A2, dasatinib, afatinib, dinaciclib, and
pelitinib. Risk scores were compared to other clinical characteristics,
which were found to be independent risk factors. In a ROC curve
analysis, the AUC value of the risk model was significantly higher than
that of other characteristics, suggesting that risks were a better predictor
of patient prognosis. A nomogram was constructed to predict patient
survival after 1, 3, and 5 years. Importantly, we validated the expression
of lncRNAs identified using the model through qRT-PCR and
functionally validated one of the genes. This, to some extent,
demonstrated the prognostic value of the risk model.

To evaluate the efficiency of risks in immunotherapies, the
immunogenicity of the tumor microenvironment needs to be
investigated (Gasser et al., 2017). TMB is a biomarker of
immunotherapeutic response (Hellmann et al., 2018; Samstein et al.,
2019), the higher the TMB is, the greater the benefit of
immunotherapies will be. MSI is a major predictor of

FIGURE 9
Construction of prognostic nomogram. (A) The nomogram predicts the probabilities of the 3- and 5-year outcome survival (B) The calibration plot
for the nomogrampredicts the probabilities of the 3- and 5-year outcome survival. (C) AUC values for factors in the nomogram. (D) The decision curve for
the nomogram.
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immunotherapeutic sensitivity; tumors with a highMSI (MSI-H) can be
better treated with ICIs (Baretti and Le, 2018). HRD induces genomic
instability and increases immunogenicity for patients with tumors,
thereby leading to an increased response to ICIs (Dai et al., 2018).
In this study, we found that risk grouping was significantly correlated
with MSI grouping; the high-risk group had a higher MSI value.
However, since microsatellite instability status does not effectively
represent the potential benefit of immunotherapies (Camidge et al.,
2019), other methods of evaluation need to be developed.

Mutations in certain genes are closely associated with
immunotherapies, such as TP53, along with their associated co-
mutations that can increase the expression of TMB and immune
checkpoints, thereby affecting patients’ response to immunotherapies
(Assoun et al., 2019). Of the 14 genes identified that showed mutational
differences between the high- and low-risk group, 12 showed higher
mutations in low-risk patients. AHNAK2 and BRCA1 are involved in
the regulation of the immune system (Ju et al., 2020; Xie et al., 2020).
Mutations in BRCA1, a homologous repair gene, can affect the efficacy
of immunotherapies (Fumet et al., 2020).

Infiltration of immune cells can be used to predict the response to
cancer immunotherapies (Junttila and de Sauvage, 2013). We used
XCELL, EPIC and CIBERSORT algorithms to estimate the
relationship between risks and immune cells, and the correlations
between neutrophils and risks were positive. Neutrophils are early
infiltrative inflammatory cells that enable tumor cells to escape
immune surveillance (Fetz et al., 2021). A comparison between
immune cells of the high- and low-risk group was analyzed with
ssGSEA, which showed that the high-risk group had a higher
neutrophil infiltration, while the low-risk group had a higher
infiltration of NK-CD56 bright cells, NK cells and pDCs. The
activation of plasmacytoid dendritic cells (pDCs) can induce T-cell
activation or tolerance; the NK CD56 bright cells can be used as
antitumor effectors in cancer immunotherapies (Wagner et al., 2017).
From the above results, the low-risk group seemed to have a better
immunogenicity. Combined with the results of the comparison of
immune datasets, we speculated that patients in the low-risk group
might respond better to immunotherapies.

Dinaciclib is an effective anti-PD1 inhibitor that induces
immunogenic cell deaths (Hossain et al., 2018). Dasatinib,
combined with low-intensity chemotherapies, is effective in
Philadelphia-positive acute lymphoblastic leukemia (Rousselot
et al., 2016). Obatoclax improves the response of patients with
bladder cancer to cisplatin chemotherapies and their treatment
outcomes (Steele et al., 2019). Although the role of these drugs in
CC is rarely reported, in our study, by analyzing their potential
efficacy in patients carrying PIK3CA mutations, we speculated that
several drugs, including dasatinib, dinaciclib, and obatoclax, might
show better efficacies in the low-risk group of patients. This could
provide targeted therapy options for low-risk patients.

Our study innovatively identified and validated four IRLs for CC,
uncovered immune-associated risk models for predicting clinical
outcomes, and established links to oxidative stress. The key features
we selected may define a new therapeutic strategy that will serve as new
immune biomarkers for future CC immunotherapy. Meanwhile, in the
risk model, a significant increase of the inflammatory response and
oxidative phosphorylation was observed in the high-risk group of
patients, suggesting that both inflammation and oxidative stress
could lead to increased risks. AL133215.2 was lowly expressed in

high-risk patients, therefore, the oxidative-stress-related pathways
were significantly enriched in the AL133215.2 low-expression group.

Conclusion

In conclusion, we developed a prognostic risk model by identifying
IRLs and explored the associations between the risk model and oxidative
stress. In actual clinical practice, we can perform transcriptome
sequencing of 4 IRLs from patients, assess the risk scores and
stratification of patients based on risk modeling formulas, and make
comprehensive judgments on prognosis in conjunction with the clinical
characteristics of patients. We can also propose the appropriate
treatment plan according to the patient’s risk stratification. However,
there are limitations to our study, including insufficient sample size,
limited generalisability due to lack of information on patient treatment
and long-term follow-up, and lack ofmore in-depthmechanistic studies.
These limitations may affect the interpretation of our findings, but they
do not negate the reliability of our study.
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