
Frontiers in Neurology 01 frontiersin.org

Interictal epileptiform discharges 
in Alzheimer’s disease: prevalence, 
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Alzheimer’s disease (AD) is the most common type of dementia and remains 
an incurable, progressive disease with limited disease-modifying interventions 
available. In patients with AD, interictal epileptiform discharges (IEDs) have been 
identified in up to 54% of combined cohorts of mild cognitive impairment (MCI) 
or mild dementia and are a marker of a more aggressive disease course. Studies 
assessing the role of IEDs in AD are limited by the lack of standardization in the 
definition of IEDs or the different neurophysiologic techniques used to capture 
them. IEDs are an appealing treatment target given the availability of EEG and 
anti-seizure medications. There remains uncertainty regarding when to treat 
IEDs, the optimal drug and dose for treatment, and the impact of treatment on 
disease course. This review covers the state of knowledge of the field of IEDs in 
AD, and the steps needed to move the field forward.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia with devastating 
effects on cognition in the setting of disrupted synaptic homeostasis, neuronal loss, and 
impaired neuronal network integrity (1, 2). Clinical studies have suggested a link between 
AD and epilepsy, given the higher rates of clinical and subclinical seizures in patients with 
AD (3) and a more aggressive phenotype (early onset and rapid progression) when both 
disorders are present, or when there is evidence of interictal epileptiform discharges (IEDs) 
on EEG even in the absence of clinical seizures (4). Seizures can also be one of the first 
presenting symptoms of AD (4, 5), and an “epileptic variant” of AD is gaining more 
recognition (6). The accumulation of amyloid-β (a pathogenic hallmark of AD) leads to 
inhibitory interneuron dysfunction creating a state of network hypersynchrony manifesting 
as IEDs, clinical and subclinical seizures (7). This raises the appealing prospect of trying 
to modify the disease course by addressing hypersynchrony with antiseizure 
medications (ASM).

Electroencephalography (EEG) has proven to be the most accessible and cost-efficient 
tool to identify epileptiform abnormalities in patients with mild cognitive impairment 
(MCI) or Alzheimer’s dementia (4, 5). Albeit there may be substantial variability in the 
interpretation and reporting of the data (8). There is a need for clinicians to understand the 
EEG findings in patients with AD, its role in the pathogenesis and progression of the disease, 
and when and whether certain findings should be  treated. This review will highlight 
published data regarding IEDs in AD, and discuss study limitations, and controversies 
regarding treatment.
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2. Illustrative cases

We present 4 cases with different EEG findings in the setting of 
non-lesional MRIs and highlight the range of abnormalities that a 
clinician could face, and the challenge with regards to deciding when 
to initiate treatment.

Case 1 is a 75-year-old male with a history of mild cognitive 
impairment and no history of spells concerning for seizures. He had 
a routine EEG revealing “sharp transients in sleep.” An ambulatory 
EEG showed an isolated left anterior temporal sharp wave in N2 sleep 
(Figure 1A). Case 2 is a 60-year-old female with a strong family history 
of AD who presented to the clinic with short-term memory 
complaints. An ambulatory EEG was obtained revealing occasional 
periodic left temporal sharp waves in N2 sleep (Figure 1B). Case 3 is 
an 85-year-old female with a history of mild AD dementia and 
fluctuating mentation. An ambulatory EEG showed runs of left 
temporal rhythmic delta activity lasting up to 10 s limited to 
wakefulness (Figure 1C). Case 4 is a 70-year-old male with a history 
of mild cognitive impairment and an isolated generalized tonic–clonic 
seizure; he  was maintained on levetiracetam monotherapy. 
A follow-up ambulatory EEG showed bitemporal independent 
frequent spike and slow wave discharges in sleep occurring at a 
frequency of 1/min (Figure 1D).

3. EEG findings in AD

Earlier studies in patients with AD suggested that slowing of the 
occipital peak frequency correlated with the progression of the disease 
(9). Unfortunately, larger cohort studies failed to confirm this finding 
(10). Focal slowing on ambulatory EEG is a common finding in older 
adults in general with a prevalence of up to 63% on ambulatory EEG 
(11). Focal slowing on a routine EEG is relevant because it is one of 
the predictors of finding an IED on an ambulatory EEG (11). In the 
AD literature, the rates of focal slowing range between 44–47% in MCI 
and mild AD (12), while generalized slowing of the background is 
seen in 13–30% (3, 12).

More recent studies have highlighted interictal epileptiform 
discharges (IEDs) as a more relevant electrographic finding in 
patients with AD or MCI (Table 1); as also previously reviewed by 
Csernus and colleagues (20). Most of the study findings are limited 
by the lack of standardization in the definition of IEDs or the 
variability in the type of study used to capture them (routine vs. 
long-term vs. ambulatory EEG). An interictal epileptiform 
abnormality should be  defined by at least 4 out of 6 criteria 
recommended by the international federation for clinical 
neurophysiology to avoid misinterpretation of normal variants on 
EEG (19). Common normal variants in older adults that can 

FIGURE 1

Illustrative cases. (A) Case 1 with an ambulatory EEG showing a bipolar longitudinal montage with a left temporal sharp wave (red arrow) during stage 
N2 sleep. (B) Case 2 with an ambulatory EEG showing a bipolar longitudinal montage with occasional periodic left temporal sharp waves (red arrow) 
during stage N2 sleep. (C) Case 3 with an ambulatory EEG showing a Laplacian montage with runs of left temporal rhythmic delta activity (red arrow) 
lasting up to 10  s. (D) Case 4 with an ambulatory EEG showing an average referential montage with bitemporal independent frequent spike and slow 
wave discharges (red arrows).
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TABLE 1 Characteristics of IEDs in AD.

Modality 
of EEG 
used/ 
EEG 
findings

Incidence; 
Frequency 
of IEDs on 
EEG

AD 
biomarkers 
available

Most 
common 
EEG scalp 
localization 
of IEDs

Most 
common 
EEG state 
for IEDs

Spike 
detection 
software 
used

Inter-rate 
agreement 
among EEG 
raters for 
IEDs

Number 
of 
patients 
studied

Reference

Unclear 

duration of 

EEG/ Spike or 

sharp wave 

discharges

15 patients 

(38%); N/A

N/A Uni or 

bitemporal

N/A N/A N/A 39 patients 

with 

dementia 

from a 

registry 

(74% 

undergo an 

EEG)

(13)

REEG/ IEDs 

as per IFCN 

criteria#

42 patients 

(3%); N/A

N/A Temporal N/A N/A 1 of 3 board-

certified clinical 

neurophysiologists

1,674 

patients 

attending a 

memory 

clinic

(14)

LTM and 

REEG/ Sharp 

waves, 

Generalized 

ED, Focal and 

diffuse 

slowing

aMCI or AD 

evaluated for sz 

vs. no history of 

sz: 62% vs. 6%; 

N/A

6/54 *2 had 

autopsy 

confirmed AD

Temporal (Left) N/A N/A N/A aMCI + 

epilepsy: 

12 AD plus 

epilepsy: 

35 AD plus 

IEDs: 7

(4)

LTM and 

REEG/ 

Epileptiform 

abnormalities, 

focal and 

generalized 

slowing

36% with 

epileptiform 

abnormalities; 

N/A

N/A Frontal or 

temporal

N/A N/A N/A, retrospective 

study

77 patients 

(88% with 

possible/ 

probable/

definite AD)

(5)

REEG/ 

epileptiform 

discharges 

(sharp waves 

or spikes)

23.1% with 

epileptiform 

abnormalities; 

N/A

13/13 Temporal 

(Left>Right)

N/A N/A N/A 13 patients 

with AD 

(MCI) and 

epilepsy

(6)

LTM/ 

Epileptiform 

activity+

21.2% vs. 0%; 

0.03 to 5.18 per 

hour

25/33 Temporal (Left) Sleep (Stage 2) SpikeDensityV101 

Calculation 

Engine in Persyst 

11 EEG software

Two experienced 

epileptologists

33 patients 

with AD; 19 

HC

(3)

AEEG/ 

Epileptiform 

activity+

AD vs. HC: 

54% vs. 25%; 

0.29–6.68 

spikes/h

N/A Temporal (left) Sleep (Stage 3) Micromed System 

PLUS98, 

Compumedics 

NeuroScan Curry

Two independent 

raters

52 patients 

with AD 20 

HC

(15)

Overnight 

EEG + PSG/ 

Epileptiform 

activity*

Probable AD 

vs. MCI vs. 

Controls: 6.38% 

vs. 11.63% vs. 

4.54%; N/A

N/A N/A N/A (RembrandtSleep-

View, Medcare)

Two trained 

neurophysiologists

Probable 

AD: 47 

MCI: 43 

Controls: 44

(16)

(Continued)
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be easily misinterpreted as pathologic include small sharp spikes, 
wicket rhythms, and wicket spikes (8). Yet, even when these criteria 
are applied, there may be  substantial interrater variability; the 
inter-rater reliability regarding IEDs is fair at best even among 
experts (21). This is problematic because AD patients without a 
history of seizures tend to have only a limited number of discharges 
on an ambulatory EEG (12) and can be  easily misclassified as 
having IEDs, as shown in the illustrative cases (Figure 1) where the 
decision to label an EEG as epileptiform or not rests on an 
isolated discharge.

Notably, only one study has used expert consensus to evaluate 
the frequency of IEDs in patients with AD (12), while others 
screened with spike detection software followed by a visual review 
(Table 1). Recent studies have suggested a higher accuracy in the 
identification of IEDs for an ambulatory EEG when compared to 
one or two routine EEGs (22). This could be relevant in the AD 
population since most IEDs are present in stage 2 sleep (Table 1). 
The sensitivity of an EEG is correlated with the length of the 
recording, which explains why a 20–30 min routine EEG may miss 
IEDs (23), and why there was a delay in appreciating the true 
burden of IEDs in AD. Other markers of hyperexcitability such as 
focal rhythmic slowing (24) have only been studied in one cohort 
(12). A benign variant, small sharp spikes (SSS), was seen in a subset 
of patients with AD; some with a high frequency and unilateral 
predominance (12), suggesting that these features may also indicate 
underlying irritability given that they represent outliers and also 
tended to co-occur in EEGs with IEDs. Most of the studies also 
reported the temporal lobe as the most frequent region for IEDs 

(Table 1). The temporal-lobe predominance of IEDs could be due 
to early seeding by amyloid plaques and hyperphosphorylated tau 
in the limbic system (25).

It must be kept in mind that surface EEG as a neurophysiologic 
tool has several limitations including its limited ability to detect deep 
IEDs such as those located in the hippocampus, or IEDs with a 
tangential dipole (26). This limitation was highlighted in a study in 
2016, where 21% out of 42% of the subjects had MEG-only IEDs with 
no IEDs noted on EEG (3). Similarly, in a case series of 2 subjects with 
early onset AD with surface EEG and invasive foramen ovale 
electrodes, 90–100% of the IEDs noted on the invasive electrodes did 
not have a surface EEG correlate (27).

As illustrated in Table 1 the subjects examined per study with 
prolonged EEGs have been limited to date with cohorts often 
including both MCI and mild dementia patients lumped together. 
We need more studies to explore whether IEDs vary in prevalence 
depending on disease stage.

4. IEDs and cognition in the epilepsy 
literature

The association of IEDs on cognition and whether they should 
be  a treatment target has been a matter of debate among 
epileptologists (28). Transient cognitive impairment secondary to 
IEDs gained recognition with the advent of computerized testing 
paradigms. Earlier studies showed that around 50% of subjects with 
epilepsy exhibited transient impairment coinciding with the 

Modality 
of EEG 
used/ 
EEG 
findings

Incidence; 
Frequency 
of IEDs on 
EEG

AD 
biomarkers 
available

Most 
common 
EEG scalp 
localization 
of IEDs

Most 
common 
EEG state 
for IEDs

Spike 
detection 
software 
used

Inter-rate 
agreement 
among EEG 
raters for 
IEDs

Number 
of 
patients 
studied

Reference

AEEG (24 h)/ 

Epileptiform 

discharges

AD-no epilepsy 

vs. AD-epilepsy 

vs. controls: 

22% vs. 53.3% 

vs. 4.7%; 0 to 

0.41/h in AD-

no epilepsy 0 to 

53.3/h in AD-

epilepsy

18/56 1 autopsy 

confirmed

Temporal 

(Left>Right)

Sleep (Stage 2) Manual; Matlab 

for revision

Two trained 

epileptologists 

screen IEDs 

followed by a 

consensus among 

9 epileptologists

AD-no 

epilepsy: 41 

(27 MCI) 

AD-

epilepsy: 15 

(10 MCI) 

Controls: 43

(12)

LTM-EEG 

(24 h)/ 

Epileptiform 

activity+

AD vs. healthy 

controls: 54% 

vs. 25%; 0.29–

6.68 per hour

N/A Temporal (Left) Sleep (stages 2 

and 3)

Micromed System 

PLUS98, 

Compumedics 

NeuroScan Curry

Two independent 

raters

AD: 52; HC: 

20

(17)

Ear-EEG^ 

and 30-min 

REEG/ ED as 

per IFCN 

criteria#

AD vs. HC: 

75% vs. 46.7%; 

mean: 3.03 

spikes per 24 h

20/24 Set up was 

limited to Ear-

EEG.

At night 

(64.8%)

N/A Two experienced 

clinical 

neurophysiologists

AD: 25 HC: 

15

(18)

LTM-EEG, long-term EEG; REEG, routine EEG; AEEG, ambulatory EEG; ED, epileptiform discharges; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; Sz, seizures; IEDs, 
interictal epileptiform discharges; N/A, not available for review; HC, healthy controls. +, Defined as paroxysmal sharp waveforms 20–200 ms, clearly distinct from ongoing background activity, 
with an associated subsequent slow wave. *, Defined as paroxysmal EEG sharp grapho elements that disrupted background activity lasting from 20 to 200 ms, with an abrupt change in polarity. 
#, as defined by the IFCN (19); notably, Ear-EEG cannot identify slow waves as reported by the authors (18). ^ Ear-EEG, defined as electrodes placed inside the ears.

TABLE 1 (Continued)
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occurrence of an IED, and there was a laterality effect with left-sided 
discharges affecting verbal tasks while right-sided IEDs affecting 
visual ones (29, 30). The dysfunction was specifically attributed to 
the after-going slow wave following the discharge (31). IEDs can also 
affect cognition when occurring in sleep by affecting sleep-
dependent memory consolidation. Sleep is essential in transitioning 
memories from being hippocampal-dependent into more 
consolidated memories in widespread cortical networks (32). This 
process is dependent on NREM sleep with slow oscillations and 
sleep spindles playing a pivotal role (32). In older adults with 
epilepsy, the frequency of scalp-detected IEDs in NREM sleep was 
found to negatively correlate with 24 h recall on a visual memory 
task (33).

Moving on from surface EEG-based studies, a similar theme also 
emerges with invasive EEG studies. Hippocampal IEDs detected on 
depths electrodes were associated with impaired maintenance and 
retrieval but not encoding on a short-term memory task (34), while 
the frequency of IEDs detected during sleep was associated with 
impaired one-week long-term recall (35). IEDs even outside of the 
epileptogenic zone have also been associated with impaired 
cognition (36).

Invasive EEG studies have also shed light on how IEDs can disrupt 
cognitive processes; one mechanism is through a transient decrease in 
global functional connectivity (37), while another is through the 
impairment of spindle generation (38) and the induction of pathologic 
hippocampal-cortical coupling (39). IEDs may also alter the firing of 
hippocampal neurons leading to a state of transient cognitive 
impairment (40, 41).

Other markers of epileptogenicity that can be detected using 
scalp EEG, and have been described in epilepsy patients, include high 
frequency oscillations (HFOs) (42). They are currently divided into 
physiologic and pathologic HFOs. Physiologic HFOs have been 
shown to play a central role in information retrieval and sleep 
dependent memory consolidation (43, 44). On the other hand, one 
of the features of pathologic HFOs is that they tend to coincide with 
IEDs and occur during the earliest stages of non-REM sleep (45). 
HFOs pose methodological challenges in their recording and 
detection (46), thus limiting their widespread clinical use in patients 
with AD; especially since it is difficult to disentangle pathologic from 
physiologic HFOs.

5. IEDs and cognition in the AD 
literature

Cross-sectional studies of IEDs in AD show a trend for lower 
mini-mental status exam (MMSE) scores in those with IEDs (14), 
although this finding was not seen in a study using prolonged 
ear-EEG recordings (18). Longitudinal studies of AD patients with 
IEDs have been limited. In a study of 33 patients with AD, those with 
IEDs had an accelerated decline in their MMSE score and their 
executive function composite Z-score (a combination of design 
fluency, information processing speed, and cognitive control from the 
Stroop test, digit span backward, modified trails and the California 
verbal learning test) (3). Of note, not all participants had data on the 
individual tests, and there was no evidence of a decline in the episodic 
memory, language, or visuospatial function domains (3). The cohort 

studied predominantly consisted of patients with early-onset AD and 
33% with atypical presentations.

In another study, 28 out of 52 AD patients were noted to have 
IEDs (17). The authors used the cognitive assessments consisting of a 
Hungarian version of the Addenbrooke Cognitive Examination 
(ACE); scored from 0–100 and allowing the extraction of MMSE 
scores, and analysis of the following cognitive subdomains: 
orientation, attention, memory, verbal fluency, language, and 
visuospatial ability (17). When compared to AD patients without 
IEDs, those with IEDs exhibited a faster decline in ACE scores over 
3 years (12.15 points per year vs. 8.17 points per year) and on the 
MMSE (2.71 points per year vs. 2.22 points per year). The study also 
found a correlation between IED frequency and the rate of decline in 
the ACE. In comparison, studies evaluating AD patients with 
comorbid epilepsy treated with anti-seizure medications (ASMs) did 
not show a change in MMSE scores over at least a 3-year follow-up (47).

6. To treat or not to treat: 
management of IEDs in AD

Although there is mounting evidence regarding the association 
between IEDs and impaired cognition and accelerated disease 
course, there are currently no guidelines to screen for IEDs in AD 
or to treat IEDs. The goal of the treatment is not seizure prevention 
because there are no currently anti-epileptogenic medications 
available. Instead, the aim would be to prevent the possible impact 
of the IEDs on cognition and memory consolidation. In addition, 
there is also evidence of neuronal hyperactivity (IEDs being one 
manifestation of this) causing accelerated neurodegeneration by 
promoting AD pathology (48). The medication that has garnered 
the most interest has been levetiracetam. Animal AD mouse models 
exposed to levetiracetam show IED suppression and improvement 
in cognition (49). In one of the only randomized trials of the 
treatment of seizures in AD, levetiracetam (dose range 500-2000 mg) 
was better tolerated when compared to phenobarbital (dose range 
50-100 mg) or lamotrigine (dose range 25-100 mg) and was 
correlated with improved MMSE scores after 1 year (50). Studies 
evaluating the IED suppression properties of ASMs in epilepsy also 
show evidence for lamotrigine and topiramate (51). The downside 
of treatment is that ASMs in general, as a drug class, are commonly 
associated with cognitive and fatigue side effects (52). While 
levetiracetam is associated with prominent neuropsychiatric side 
effects (53), lamotrigine and other sodium channel blockers are risk 
factors for falls (54). In addition, benzodiazepines are known to 
increase the risk of cognitive decline and dementia in the 
elderly (55).

A recent study trying to tackle the balance between IED 
suppression and adverse effects of ASMs showed that in children 
undergoing invasive EEG, reaction time improved with IED 
suppression (with oxcarbazepine) and worsened with increased IED 
frequency (56). In this study, levetiracetam did not show a clear 
benefit (56). In a retrospective analysis of older Japanese patients 
with IEDs on EEG, treatment with various ASMs improved serial 7 
scores and MMSE scores in those with IED suppression (57). The 
first randomized trial for levetiracetam in AD was published in 2021 
(58), and several other trials also exploring levetiracetam are 
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pending. In the trial, 34 patients with AD were treated with 
levetiracetam at a low dose of 125 mg twice a day vs. placebo and 
then underwent a washout period and cross-over. Based on 
overnight EEG and then a 1 h MEG, 13 participants were found to 
have IEDs. The cognitive battery consisted of the National Institutes 
of Health Executive Abilities: Measures and Instruments for 
Neurobehavioral Evaluation and Research (NIH-EXAMINER) 
which consists of a test measuring executive functions, Stroop color 
and word test, the Alzheimer’s Disease Assessment Scale—Cognitive 
Subscale (ADAS-Cog), and a virtual route learning test. There was 
no improvement on the primary endpoints with the medication, 
however, a subset analysis of those with IEDs showed that they 
improved on the virtual route learning test and a subscale of the 
Stroop test. Notably, there was no evidence of IED suppression with 
the medications (58).

7. How to deal with IEDs in AD 
patients in the clinical practice

Ultimately, the clinician caring for patients with AD is faced with 
decisions regarding when to order an EEG, how to interpret the data, 
or when to start an ASM. The other challenge is that diagnosis of 
epilepsy in an elderly population is challenging, requiring a detailed 
description of suspected events, consideration of atypical events as 
seizures (i.e., unexplained falls or brief episodes of confusion), and 

the need for an expert evaluation (59) (Figure 2). Until we have more 
evidence from randomized trials that levetiracetam will help AD 
patients, and more so those with IEDs, routine screening of AD 
patients with EEG is not recommended. However, one should have a 
low threshold to screen patients with suspected co-morbid seizures, 
including those with early onset AD because they are at the highest 
risk. If an EEG is ordered, it should at least have N2 sleep captured, 
and that is why 24 h EEGs are preferred over routine EEGs. Interictal 
discharges as exemplified by the illustrative cases lie along a spectrum, 
with seizures (clinical and subclinical) occurring at the end of that 
spectrum and representing the extreme manifestation of network 
hyperexcitability. Features such as a high IED frequency, periodicity, 
duration, and perhaps morphological features (spikiness, amplitude) 
should be  considered more concerning and should tip the scale 
toward treatment (cases 2,3,4). In the absence of more data, isolated 
and equivocal discharges should not be  treated (case 1). When a 
decision is made to treat, the lowest therapeutic dose should be used 
to ensure tolerability.

8. Conclusion

Network hyperexcitability is a feature of AD, and IEDs are a 
marker of this phenomenon. They are highly prevalent in AD, are 
often detected in sleep, and have been linked with deleterious effects 
on cognition and an accelerated disease course. Limited studies to date 

FIGURE 2

Approach to Hyperexcitability in IED. (A) History prompting the need for EEG: fluctuating cognition, stereotyped symptoms, distinct confusional spells, 
(possibly) early-onset AD (B) Concerning EEG features: markers of hyperexcitability such as IEDs with >4 out of 6 criteria of the IFCN, unilateral small 
sharp spikes, temporal rhythmic delta activity. Assess frequency, periodicity, (possibly) amplitude/spikiness. (C) Decision to treat based on A  +  B: 
consider an SV2A inhibitor such as levetiracetam/(possibly) brivaracetam or lamotrigine.
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show some benefit with treatment, however further evidence is needed 
to determine whether this should become the standard of care.
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