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Fish segmentation in underwater videos provides basic data for fish

measurements, which is vital information that supports fish habitat monitoring

and fishery resources survey. However, because of water turbidity and

insufficient lighting, fish segmentation in underwater videos has low accuracy

and poor robustness. Most previous work has utilized static fish appearance

information while ignoring fish motion in underwater videos. Considering that

motion contains more detail, this paper proposes a method that simultaneously

combines appearance and motion information to guide fish segmentation in

underwater videos. First, underwater videos are preprocessed to highlight fish in

motion, and obtain high-quality underwater optical flow. Then, a multi-source

guidance network (MSGNet) is presented to segment fish in complex underwater

videos with degraded visual features. To enhance both fish appearance and

motion information, a non-local-based multiple co-attention guidance module

(M-CAGM) is applied in the encoder stage, in which the appearance and motion

features from the intra-frame salient fish and the moving fish in video sequences

are reciprocally enhanced. In addition, a feature adaptive fusionmodule (FAFM) is

introduced in the decoder stage to avoid errors accumulated in the video

sequences due to blurred fish or inaccurate optical flow. Experiments based

on three publicly available datasets were designed to test the performance of the

proposed model. The mean pixel accuracy (mPA) and mean intersection over

union (mIoU) of MSGNet were 91.89% and 88.91% respectively with the mixed

dataset. Compared with those of the advanced underwater fish segmentation

and video object segmentation models, the mPA and mIoU of the proposed
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model significantly improved. The results showed that MSGNet achieves

excellent segmentation performance in complex underwater videos and can

provide an effective segmentation solution for fisheries resource assessment and

ocean observation. The proposed model and code are exposed via Github1.
KEYWORDS

computer vision, underwater video processing, MSGNet, fish segmentation, optical
flow, coattention
1 Introduction

With over three billion people relying on fish for at least 20% of

their daily protein and more than 120 million directly employed in

the fishing and aquaculture sectors (Food and Agriculture

Organization of the United Nations, 2021), sustainable fisheries

and fish habitat monitoring were a natural focus. It has been

demonstrated that the shape, size, and body length of fish are

essential for monitoring fish habitats (Laradji et al., 2021), which

can reflect the long-term sustainable production capacity of

populations (Hall et al., 2023). In marine fisheries, accurate

information on the size and shape of wild and farmed fish

populations can be obtained by segmentation-based methods

(Muñoz-Benavent et al., 2022; Zhao et al., 2022), for example, by

measuring the centerline of a fish segmentation mask. Such

information is the basis of harvest management and is crucial for

marine ranching farming, as it contributes to the effective

management of feeding regimes, grading times, and ultimately the

optimal harvesting time of fish (Beddow et al., 1996; Muñoz-

Benavent et al., 2022), thus reducing management and production

costs and promoting the sustainable development of marine

fisheries. In the past, morphological characteristics of fish were

usually obtained using manual methods, which may cause damage

to the fish and is inefficient (Petrell et al., 1997). With the

development of artificial intelligence, researchers are beginning to

use deep learning to analyze the size and shape of fish. Object

detection generally use rectangular box labels, which allow for

contact-free fish detection, but only the positional information of

the fish can be obtained, not details such as shape. By contrast,

segmentation of underwater fish can provide more accurate and

richer semantic-level details such as shape, size, and edges. As a

result, segmentation methods for fish analysis have attracted

increasing attention (Garcia et al., 2020).

However, because of water turbidity and insufficient lighting,

visual information of underwater fish is not obvious. At the same

time, reefs (Zhuang et al., 2020) and dense drifting seagrass (Ditria

et al., 2021) constitute a complex underwater background, which

interferes with fish segmentation. Furthermore, many marine

animals have protective colors (Li et al., 2021b) and blend in with

the environment, remaining camouflaged, making it difficult to
02
distinguish from the background. These situations lead to the

general semantic segmentation model (Costa et al., 2006; Huang

et al., 2015) failing to achieve satisfying results. Thus, it is

challenging to segment fish accurately in underwater videos.

To address the problem of water turbidity and insufficient light

that results in indistinct features of underwater fish, Chuang et al.

(2011) used histogram back-projection procedure to ensure fish

segmentation accuracy with insufficient light. Shoffan et al (Shoffan,

2022). applied adaptive histogram equalization for preprocessing,

followed by morphological processing using a K-means clustering

algorithm and open-close operations to obtain fish contours. This

approach has excellent performance for black-and-white scenes but

is not practical for color images. To further improve the robustness

offish segmentation in turbid water, Haider et al. (2022) presented a

robust segmentation model for underwater fish based on multi-level

feature accumulation, which improved the segmentation of obscure

fish by using an initial feature refinement and transfer block to

refine potential information. Similarly, Zhang et al. (2022)

employed dual pooling-aggregated attention with spatial and

channel dimensions, greatly reducing the computational effort

while providing better segmentation results for fuzzy fish, but the

performance in complex scenarios is not known. Natural

underwater environments, often with complex backgrounds such

as seagrass and reefs, interfere with foreground object localization.

To improve the performance of fish segmentation in complex

underwater scenes, Kim et al (Kim and Park, 2022). proposed a

parallel semantic segmentation network that utilizes model and loss

to localize the foreground and background, respectively and

achieves efficient detection of marine animals by learning their

foreground and background regions separately. To simultaneously

segment multiple types of objects, such as underwater fish, reefs,

and people, Islam et al. (2020) proposed a fully convolutional

underwater semantic segmentation model that uses skip

connections between mirror composite layers, realized multi-class

semantic segmentation for underwater. In addition, underwater

organisms become camouflaged when their contrast with the

background is further reduced, as in the case of flounder.

Segmentation of camouflaged underwater organisms is

challenging because the edges of the object are highly blended

with the background, making even coarse localization extremely

difficult. To solve the above problems, Li et al. (2021a) propose a

novel enhanced cascade decoder network (ECD-Net). By using rich

multi-scale features, accurate segmentation of marine animals in
frontiersin.org
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complex underwater environments was realized. Similarly, Chen

et al. (2022) first used a Random Style Adaptation (RSA) module to

enhance underwater images and then achieved accurate

segmentation of underwater camouflaged organisms by utilizing

multi-scale information with different sizes of receptive fields.

However, the above studies used only static appearance

information, even though some used video data. After

observation and research (Lamdouar et al., 2020), we noticed that

moving objects are more likely to attract attention in underwater

videos, so our work considers using motion information to help

segmentation. By interacting motion information with appearance

information, it is possible to enhance inconspicuous underwater

features and accurately segment fish in complex underwater scenes.

When monitoring wild fish habitat (Saleh et al., 2020), the data

acquisition equipment, usually an underwater camera mounted on

an ROV or boat, is in motion and thus need to be able to identify or

segment fish when both the camera and the object may be inmotion.

We used the optical flow method when processing underwater fish

movement information. Compared to standard moving object

detection methods, such as the background difference method

(Zivkovic and van der Heijden, 2006) the optical flow method

does not require prior information on the scene. It can detect

moving fish in underwater videos independent of camera motion.

Benefits from the development of deep learning and improvement in

hardware, advanced optical flow extraction models (Teed and Deng,

2020) can meet almost real-time requirements. Some current work

also employs optical flow to segment fish in underwater videos.

Salman et al. (2020) combined the segmentation results of an optical

flow with Gaussian mixture models (GMM) to mutually

complement the predicted pixels as input to a convolutional

neural network (CNN) model and achieved a higher segment

accuracy. However, it is difficult to extract the ideal optical flow

due to complex underwater situations such as light changes and

background motion. These works used motion information as a

complementary method rather than directly optimizing it and thus

did not fully consider the vital contribution of motion to segment

fish in underwater videos. In contrast, we propose an optical flow

data preprocessing scheme for obtaining high-quality underwater

optical flows, which highlights the movement of the fish object

through a simple overlay operation and significantly reduces the

interference of the background movement. In addition, the optical

flow method cannot detect stationary fish, so we propose a model to

improve fish segmentation in underwater videos using static

appearance and motion optical flow information.
Frontiers in Marine Science 03
Fish segmentation approaches for underwater videos can

achieve stronger robustness and higher accuracy by combining

both appearance and motion information. The appearance

information provides the location of fish, and the motion

information provides richer contour details. However, as shown

in Figure 1, the appearance of fish becomes fuzzy due to insufficient

lighting and water turbidity in underwater environments, and the

segmentation result from video frames are incomplete. Figure 1 also

illustrates that the additional introduced optical flow can be affected

by factors such as lighting changes in the background, resulting in

segmentation redundancy. Specially, different colors in Figure 1B

indicate different motion directions, and the color depth represents

the intensity of the motion. It is challenging to segment fish in

complex underwater videos using appearance and motion

information reasonably while simultaneously maintaining great

generalization and robustness. Therefore, an effective multimodal

feature interaction and fusion method is needed to selectively

employ appearance and motion information. To address the

above challenge, we propose a multi-source guidance network

(MSGNet) for fish segmentation in underwater videos. MSGNet

contains two key components: the multiple co-attention guidance

module (M-CAGM) and the feature adaptive fusion module

(FAFM). To address the problem of degradation of visual features

of underwater fish due to water turbidity, we designed a multiple co-

attention guidance module (M-CAGM) to cross-enhance the

appearance and motion information of underwater fish by

calculating the similarity between multimodal features and

highlighting relatively salient fish in underwater videos.

Meanwhile, considering that the optical flow map may still have

interference information due to background motion or luminance

variation, we employed a feature adaptive fusion module (FAFM) to

filter and learn the fused features to avoid accumulating error

information. Results on three publicly available datasets,

DeepFish (Saleh et al., 2020), Seagrass (Ditria et al., 2021), and

MoCA-Mask (Cheng et al., 2022) show that our proposed network

effectively solved the low fish segmentation accuracy and poor

robustness problems caused by insufficient lighting and water

turbidity in underwater videos, and can even segment

camouflaged fish. The main contributions of this paper are listed

as follows:
1. A video data preprocessing method was designed to obtain

underwater optical flow with precise edges. Moving fish in

datasets were highlighted by overlaying results of the
A B DC

FIGURE 1

Single type features and segmentation results. (A) the original frame, (B) preprocessed optical flow, (C) frame segmentation result, (D) optical flow
segmentation result.
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pretrained model and corresponding frames with different

pixel values and contrasts.

2. To improve the accuracy of fish segmentation in

underwater videos by reasonably using optical flow and

video frame information, we proposed a multi-source

guidance network MSGNet . By analyz ing the

characteristics of underwater videos, we found that fish

tend to be obscure and in motion. Thus, a multiple co-

attention guidance module (M-CAGM) was integrated in

the encoder stage to focus more on intra-frame salient fish

and moving fish in different frames through nonlocal-based

co-attention. The appearance and motion features of fish

were bidirectionally enhanced and optimized through M-

CAGM.

3. Single type feature errors might accumulate in video

sequence, leading to segmentation failure, a feature

adaptive fusion module (FAFM) was designed in the

decoder of the proposed model. The FAFM applies a

mutual gate to filter and fuse the features by evaluating

the contribution of different types of features to the final

segmentation result, greatly improving the robustness of

the proposed model.
The rest of the paper is structured as follows. Section 2 describes

the proposed method, Section 3 shows and analyzes the

experimental results, Section 4 discusses the model’s superiority

and potential applications in detail, and Section 5 draws a

brief conclusion.
2 Materials and methods

2.1 Experimental dataset

In this work, we used three publicly available underwater video

fish datasets, DeepFish (Saleh et al., 2020), Seagrass (Ditria et al.,

2021) and MoCA-Mask (Cheng et al., 2022), all three datasets

provide video frames and binary ground truth. The videos in the

first two datasets suffer from severe water turbidity and insufficient

lighting. The MoCA-Mask dataset contains many underwater

camouflaged organisms that are highly integrated with their

environment. Underwater water turbidity and insufficient lighting

can cause fish objects to become blurred, similar to camouflage, so

we also considered underwater video camouflage data. Specifically,

the DeepFish dataset contains approximately 40k underwater fish

frames from 20 different habitats in remote coastal marine

environments in tropical Australia. These videos were captured

with a high-definition digital camera and divided into three subsets:

counting, segmentation, and classification. The segmentation subset

contains 13 video clips of different underwater environments with

310 video frames at a resolution of 1920 × 1080 and includes more

single fish scenes. The Seagrass dataset was collected in two estuary

systems in southeastern Queensland, Australia. The raw data were

obtained with submerged action cameras. There are 18 video clips

of underwater fish with 4280 video frames. The resolution of the

frames is 1920 × 1080, and most of the video clips contain multiple
tiers in Marine Science 04
fish. We selected 31 video clips with 4409 images from the DeepFish

dataset and Seagrass dataset at a ratio of 6:2:2 for training,

validation, and testing. The MoCA-Mask dataset contains 87

videos of camouflaged animals from the MoCA (Lamdouar et al.,

2020) dataset, with a total of 22,939 frames with pixel-level ground-

truth. The resolution of most frames in MoCA-Mask dataset is 1280

× 720. For this experiment, we selected 32 underwater camouflaged

animal video clips in MoCA-Mask dataset, including devil scorpion

fish, flatfish, and other underwater camouflaged creatures, with a

total of 1539 frames. These images were divided into a training set,

validation set, and test set at a ratio of 6:2:2.
2.2 Optical flow data preprocessing

In this study, we used optical flow as motion data. Optical flow

can be employed to detect independent motion objects without

prior knowledge of the scene and obtain complete information on

motion objects and is thus suitable in dynamic backgrounds. In

underwater videos, insufficient lighting and water turbidity can

easily affect fish appearance features, resulting in less critical

information such as fish edges and textures. In contrast, optical

flow with precise edges yields more detailed information, which can

significantly compensate for the degradation of fish appearance

features in underwater videos.

Previously, optical flow data were usually synthesized manually

or obtained using special equipment such as light detection and

ranging (LiDAR). There is no optical flow dataset specifically for

fish in underwater videos, so obtaining high-quality optical flow

data by preprocessing is necessary. Compared with land scenes,

underwater scenes suffer from more light variations and different

background motions, and the optical flow of fish in underwater

videos usually has inaccurate boundaries. Therefore, generic optical

flow extraction models cannot perform satisfactorily in

underwater scenes.

Inspired by FlowNet (Dosovitskiy et al., 2015), an optical flow

model, and unsupervised fish segmentation work (Saleh et al.,

2022), we first used a fully convolutional network (FCN) (Long

et al., 2015) segmentation model trained with the ImageNet (Deng

et al., 2009) dataset and fine-tuned it with underwater images to

obtain a coarse binary segmentation of video frames for optical flow

extraction. Different from the background subtraction approach

employed in previous unsupervised fish segmentation work (Saleh

et al., 2022), to avoid the limitations of a fixed camera, we only used

the pretrained model for preprocessing because it has better

robustness. After obtaining the coarse segmentation masks Ox

and Ox+1 for the original video frames Fx and Fx+1, the masks are

overlaid with the corresponding original video frames Fx and Fx+1 to

obtain the inputsMx andMx+1 for the optical flow extraction model.

Specifically, we set different three-channel pixel values of coarse

segmentation masks and transparency of origin frames to highlight

moving fish in underwater videos. We also designed an experiment

to test different transparencies for optical flow preprocessing and

found that it should be in an appropriate range. By simple

overlaying, the model can focus more on foreground motion

information and extract a fish optical flow with precise edges and
frontiersin.org
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complete objects in underwater videos. Figure 2 shows some sample

images from the two publicly available datasets and the results of

optical flow preprocessing and proves the effectiveness of optical

flow data preprocessing in this paper.

We applied recurrent all-pairs field transforms (RAFT) (Teed

and Deng, 2020) as an optical flow estimation model, in which the

similarity between any two points in different images is calculated

by constructing a correlation matrix of consecutive frames, and a

gated recurrent neural network was also designed for iterative

optimization. RAFT can obtain optical flow with clearer edges

even under fast movement, occlusion, etc. Compared with other

optical flow extraction networks such as FlowNet (Dosovitskiy et al.,

2015), RAFT has superior robustness and generalizability. In

addition, considering that the correspondence of model inputs,

the last frame of each video clip was removed to align the number of

video frames and optical flow maps.
2.3 Fish segmentation in
underwater videos

2.3.1 MSGNet
Insufficient lighting and water turbidity in underwater videos

are the main reasons for poor fish segmentation. Previous works

have usually focused on static pictures for underwater semantic

segmentation, ignoring the motion information in dynamic video

scenes. By visualizing the pixel points of moving objects and

focusing more on the motion in a scene rather than the visual

information, optical flow can prevent segmentation failure caused

by the degradation of underwater visual features. This makes optical

flow a preferable choice since it is not impacted by such
Frontiers in Marine Science 05
degradation, which is a significant advantage. From the biological

dimension, moving objects can draw more attention and provide

more detailed information, thus breaking the low contrast with the

background and becoming more obvious. The appearance details

can be recovered from the motion information of underwater fish to

obtain a completer and more accurate object. Meanwhile,

prominent fish can be located with the appearance information,

forcing the model to focus more on the motion of fish and ignore

the interference of motion information caused by lighting changes

and background motion. By employing multi-source information, it

is possible to achieve higher accuracy when segmenting fish in

underwater videos.However, the selection of appearance and

motion features of fish in underwater videos need to be improved.

From the appearance perspective, water turbidity and insufficient

lighting lead to low contrast between fish and the background. In

some scenes, fish even become camouflaged, so the visual features of

fish underwater are not significant enough. From the motion

perspective, underwater environments have drastic light changes

because of light refraction and water surface fluctuations, resulting

in vignetting of the extracted underwater optical flow, blurring the

edge of fish. In addition, seagrasses and shadows of fish, which are

non-fish motion present in the background, disturb the optical flow

and capture additional background motion. Thus, it is challenging

to effectively utilize the appearance and motion information of fish

while suppressing the interference of both information.Thus, we

designed MSGNet, a dual-stream network for fish segmentation in

underwater videos with multi-source information guidance. For the

convenience of variable control, the appearance and motion

features of fish are first extracted using two ResNet-101 (He.

et al., 2016) with shared weights. Then, the M-CAGM is designed

in the encoder stage of MSGNet to enhance the insignificant
A B DC

FIGURE 2

Results of optical flow preprocessing. The first two rows of data are from DeepFish and the last two rows of data are from Seagrass. (A) the original
frame, (B) original optical flow, (C) overlaid frame, (D) overlaid frame optical flow.
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appearance features of underwater fish and the motion features with

background interference by co-attention. Since fish in underwater

videos tend to be obscure and in motion, considering both intra-

frame saliency and inter-frame motion, we design two different co-

attention parts in M-CAGM. The self co-attention guidance module

S-CAGM aims to enhance fish appearance features that are not

salient within a single video frame. The flow co-attention module F-

CAGM facilitates the interactive enhancement of fish appearance

and motion features. By combining S-CAGM and F-CAGM, M-

CAGM can focus more on the appearance and motion of

foreground fish in underwater videos. Meanwhile, to avoid the

accumulation of single-category feature errors throughout the video

sequence, such as incorrect object focus or background motion such

as seagrass, the FAFM is designed in the decoder stage of MSGNet

to filter and fuse different features to improve the robustness of the

model. FAFM can learn information at different scales by cascade

stacking. We also set a learnable mutual gate in FAFM to measure

the contribution of different features to the final segmentation result

and selectively fuse fish appearance and motion features. Figure 3

shows the complete MSGNet model.

2.3.2 Multiple co-attention guidance module
Co-attention is often employed to construct the connection

between muti-modal features by interacting with different types of

features for enhancement separately. Co-attention enables

reciprocal optimization of different types of information instead

of focusing on a single category of information, improving the

robustness of the model. For example, a co-attention mechanism is

used in the hierarchical feature alignment network (HFAN) (Pei

et al., 2022) to assign weights to aligned features. These weights are

used to adaptively and selectively fuse motion and appearance

information, thus mitigating the interference caused by poor

optical flow or obscure appearance features. Similarly, the

motion-attentive transition network (MATNet) (Zhou et al.,

2020) employs co-attention to interconvert appearance features

with motion features, improving the unsupervised video object

segmentation accuracy. In underwater videos, appearance

information can be used to locate fish, while motion information
Frontiers in Marine Science 06
contains more details of fish edges. Thus, applying co-attention to

construct correlations between fish appearance and motion features

and guide bidirectional feature enhancement is worth investigating.

Traditional co-attention (Lu et al., 2019) assigns weights to both

inputs simultaneously from a channel perspective by calculating the

affinity matrix of different inputs. In underwater scenes, because of

the degradation of visual features, the relationship between

appearance and motion features cannot be captured entirely from

the channel perspective only. For this reason, a co-attention

guidance module (CAGM) is designed, as shown in Figure 4A.

Specifically, the CAGM takes fish appearance and motion features

as input, reduces the channel by a 1×1 convolution, then performs

global normalization with the softmax function for both types of

features, and establishes the relationship between fish appearance

and motion features from the spatial dimension by calculating the

affinity matrix after global normalization. Compared with simply

resizing to obtain the association between appearance and motion

features, assigning weights to spatial features before calculating the

affinity matrix can better highlight the appearance and motion

features of fish. Similar to the co-attention siamese networks

(COSNet) (Lu et al., 2019), the affinity matrix M contains the

connection between the activated fish appearance and motion

features at the channel level. The motion features are weighted by

M and the appearance features are weighted with the transpose of

M. In summary, the CAGM applies global spatial normalization to

enhance the fish appearance and motion features separately from a

spatial perspective and establishes the relationship between fish

appearance and motion features from the channel dimension by

calculating the affinity matrix of the two features, promoting the

reciprocal optimization of the two different types of information.

However, by calculating co-attention for appearance and

motion features, only the moving fish in underwater videos are

focused on, and the best segmentation masks cannot be achieved. In

some scenarios, static fish or background motion will further

interfere with degraded features and eventually lead to

segmentation failure. Thus, as shown in Figure 4B, we designed

the M-CAGM. According to different inputs, the M-CAGM is

divided into two parts: the self co-attention guidance module (S-
FIGURE 3

Overview of the MSGNet model.
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CAGM) and the flow co-attention guidance module (F-CAGM).

The S-CAGM enhances the degraded fish appearance features by

inputting the same frame twice and calculating the similarity

between the appearance features and itself to obtain the intra-

frame salient fish. The F-CAGM uses a frame and the

corresponding optical flow as input. The appearance information

guides the optical flow branch to focus more on the motion of the

fish and ignore the interference of background motion such as

seagrass. In addition, the motion information can be employed to

recover the edge details of the fish. Finally, we summed the outputs

of S-CAGM by element-wise addition and then concatenated them

with the appearance outputs of the F-CAGM with a 3×3

convolution to obtain the final enhanced fish appearance features.

The motion outputs of the F-CAGM are the enhanced fish motion

features. Figure 4 shows the framework of the CAGM and

M-CAGM.

In addition, the M-CAGM contains a larger number of

parameters, which would be burdensome if used at the first

encoder stage because of the high resolution. In practice, low-

level features provide rich detailed information, i.e., boundary,

texture, and spatial structure information. In contrast, high-level

features contain more semantic information. After balancing the

inference time and average accuracy, we decided to use the M-

CAGM in the last three layers of the encoder.
2.3.3 Feature adaptive fusion module
The M-CAGM promoting the network focuses more on the

appearance and motion of the fish to be segmented. However, there

are still some failures, such as the incorrect optical flow

optimization due to obscure fish appearance information and

inaccurate appearance optimization caused by background

motion such as seagrass in underwater optical flow. To avoid the

accumulation of errors in single-type features within video

sequences, it is necessary to filter and fuse features adaptively.

Inspired by the work of Yang et al. (2021), we proposed the

FAFM to filter and adaptively fuse the enhanced fish appearance
Frontiers in Marine Science 07
and motion features to obtain the final segmentation masks of fish

in underwater videos. The FAFM framework is shown in Figure 5.

The FAFM has three inputs: the output of the upper-level

decoder and the appearance and motion features obtained from

the corresponding encoder stage. First, the FAFM follows a cascade

structure, transferring fish appearance and motion features of

different stages to learning multi-scale fish information in the

network. Specifically, the decoder output Dx-1 carries the

information from the previous layer. The output is concatenated

with the appearance features Fxa and motion features Fxm obtained

from the next encoder and summed along the channel to obtain the

fused features F,

F = (Cat(UP(Dx−1), Fxa) + (Cat(UP(Dx−1), Fxm) (1)

UP is the upsampling operation with stride 2. Cat is the

concatenation operation along the channel axis. Fused features F

are enhanced from both channel and spatial dimensions using the

convolutional block attention module (CBAM) (Woo et al., 2018) to

obtain F’, which contains both appearance and motion information

of the main fish. To fuse the appearance and motion information

selectively and avoid the accumulation of errors of single-category

features in the sequence, such as fuzzy appearance or background

motion, we design a learnable mutual gate G to balance the

contribution of different features instead of using CBAM results

directly. Specifically, the fused features obtained by the CBAM are

normalized as an appearance input weight, while the motion input

is weighted using 1-G, as in Eqs. (2-4):

G = s (F 0 ) (2)

Fxa 0 = G⊙ Fxa (3)

Fxm 0 = (1 − G)⊙ Fxm (4)

s indicates the sigmoid normalization function, ⊙ denotes

element-wise multiplication, Fxa’ is the appearance features

weighted by G, and Fxm’ is the motion features weighted by 1-G.
A B

FIGURE 4

Schematic illustration of the CAGM (A) and M-CAGM (B).
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Finally, the decoder output Dx of stage X is as follows:

Dx = Fxa 0 + Fxm 0 + Dx−1 (5)

In contrast to Yang (Yang et al., 2021), in the decoder stage,

considering that the optical flow may not be accurate because of

backgroundmotion or light changes, we fuse appearance features with

motion features to perform feature filtering and enhancement rather

than converting motion features into weights to optimize appearance

features alone. By fusing multilevel information with both fish

appearance and motion information, the segmentation failures

caused by low-quality optical flow can be suppressed. In addition,

the mutual gate places the importance of different types of features for

the final segmentationmask in a learnable state.WhenG approaches 1,

all appearance features contribute to the final segmentation mask. In

contrast, when G approaches 0, motion features contribute to the final

segmentation mask. The mutual gate increases the robustness of the

model and avoids the errors of blurred appearance or low-quality

optical flow on the segmentation results with single information.
2.4 Loss function

The prediction mask for the video frame t at different decoder

stages is Pt
i, where i ∈ {1,2,3,4}. The gap between the prediction

mask Pt and the ground-truth Gt is measured by the standard cross-

entropy loss Lbce (De Boer et al., 2005). Lbce is calculated as follows:

Lbce(Pt ,Gt) = −o
(x,y)

½Gt(x, y)log(Pt(x, y)) + 1 − Gt(x, y)log(1 − Pt(x, y)))�

(6)
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(x, y) are the location coordinates of the pixel points in video

frames, and the final loss Ltotal is as follows:

Ltotal =o
3

i=1
Lbce(UP(P

i
t),Gt) + Lbce(P

4
t ,Gt) (7)

UP is the upsampling operation with stride 2, which aims to

align the prediction mask Pt
i with the ground-truth Gt in the spatial

dimension. Calculating the loss for each decoder allows for precisely

controlling the learning of multi-scale information at different

stages. Additionally, it facilitates the accurate fusion of

appearance and motion features by the mutual gate in the FAFM.
2.5 Evaluation metrics

Fish segmentation in underwater videos is a binary semantic

segmentation task with an object pixel value of 255 and a

background pixel value of 0 for the prediction and ground-truth.

Thus, we employed two semantic segmentation evaluation methods

to evaluate the performance, the mean pixel accuracy (mPA) and

the mean intersection over union(mIoU). The mPA is the ratio of

correctly classified pixels to the total number of pixels averaged over

all classes. The mIoU denotes the average of the ratio of the

intersection and union of the pixel predictions for all classes, and

they are calculated as follows.

mPA =
1

k + 1o
k

i=0

Pii

o
k

j=0
pij

(8)
FIGURE 5

The FAFM (Feature Adaptive Fusion Module) framework.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1256594
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2023.1256594
mIoU =
1

k + 1o
k

i=0

Pii

o
k

j=0
pij +o

k

j=0
pji − pii

(9)

Where k indicates the number of categories, and k is 2 in this

study. pii is the number of pixels correctly predicted as the fish

category, i.e. true positive (TP). pij is the number of fish category

pixels incorrectly predicted as background, i.e. false positive (FP). pji
is the number of background pixels incorrectly predicted as the fish

category, i.e. false negative (FN). pjj is the number of pixels correctly

predicted as background, i.e. true negative (TN).
2.6 Experimental design

To verify the effectiveness and robustness of the proposed

method, the following experiments were designed for validation.

(1) A series of ablation experiments were designed to verify the

effectiveness of the proposed module. (2) Experiments with

different optical flow contrast were designed to compare the

visualization results and select the most suitable contrast for data

preprocessing. (3) Experiments with different numbers of M-

CAGMs were designed to compare the inference speed and

accuracy and select the appropriate positions and numbers of M-

CAGMs. (4) Comparison experiments with other advanced

underwater fish segmentation models and video object

segmentation models using additional optical flow information

were designed to validate the advancement of the model. (5) The

model was tested with video datasets of underwater camouflaged

organisms to verify the generalizability.
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3 Results

3.1 Implementation and training detail

Weutilized a graphics processing unit (GPU) to accelerate training,

and the environmental configurations are as follows:GeForceRTX3090

with 24GBof videomemory, an Intel(R)Core(TM) i7-9700 (3.00GHz)

central processing unit (CPU), a Python 3.8 interpreter, a PyCharm

development platform with CUDA (version 11.3), the PyTorch 1.11.0

deep learning framework, andMMSegmentation (Contributors, 2020),

an open source semantic segmentation toolkit based on PyTorch.

First, in the optical flow preprocessing stage, the underwater optical

flowdataset is acquiredaccording to themethoddescribed inSection2.1,

the FCN here is provided by MMSegmentation and pre-trained on

ImageNet1k, fine-tuned using 3576 underwater fish images publicly

available online, and the optical flow extraction model is the RAFT

model integrated into PyTorch 1.11.0. Then, after balancing the

inference time and accuracy, we use two ResNet-101 branches with

shared weights to extract the appearance feature and themotion feature

of underwater fish. The ReNet-101 used here was pre-trained on the

ImageNet1K dataset, and the final average pooling and fully connected

layers were removed. The input frame and optical flow resolution used

for training and testing were uniformly set to 384 × 384 to facilitate

model processing and enhanced by random flipping. Themodel inputs

are video frames and their corresponding optical flow. We trained our

model for 100 epochs with a batch size of 4. Stochastic gradient descent

(SGD) was employed as the model optimizer, where the initial learning

rate, momentum, and weight decay were set to 1e-3, 0.9, and 5e-4,

respectively. Figure 6 visualizes the loss and IoU changes in the training

process, which indicates that as the training epochs increase, the loss

gradually converges, and the IoU increases.
FIGURE 6

Training loss and IoU plot.
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3.2 Ablation test

To verify the effectiveness of the proposed model as well as the

modules, an ablation test was designed. The baseline in this paper

was a two-stream network. Specifically, the encoder stage of the

model is a shared weight ResNet-101 network, which was used to

extract the features of different inputs. The decoder obtains the final

segmentation masks by concatenating the fish appearance and

motion features along the channels, applying a convolution with a

kernel size of 3 x 3. Combining the baseline with the M-CAGM and

FAFM, we obtain the MSGNet model.

The test results in Table 1 indicated that both the M-CAGM

and FAFM improved themPA andmIoU of the baseline in different

ways. The improvement of the baseline by the FAFM was more

significant than that by the M-CAGM because the M-CAGM only

enhanced fish appearance and motion features using co-attention

but did not filter the features to guide the enhancement, causing

additional interference. The FAFM achieved better results by

filtering the enhanced features through the mutual gate to avoid

error accumulation leading to false segmentation. In addition, the

mPA of the baseline with only the FAFM added was slightly higher

than that of MSGNet because there are more small fish in the

datasets, especially the Seagrass dataset. Meanwhile, the M-CAGM
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in MSGNet segments part of the background as a target, causing a

high percentage of incorrectly segmented pixels. We visualized the

features in the last stage of the decoder. As shown in Figure 7, the

baseline features are not obvious enough to obtain only the coarse

location of the fish. By adding the M-CAGM to the baseline, the fish

features are enhanced, but interference is introduced in the

background. By adding the FAFM, the features are filtered, and

the background interference is suppressed, but this leads to missing

fish object edges. Combining the M-CAGM and FAFM, MSGNet

enhances the fish object features, suppresses the noise in the

background, and obtains clear edge information. The mPA is

improved by 1.77% and the mIoU is improved by 2.81% in

MSGNet compared with those of the baseline, which verifies the

effectiveness of using both the M-CAGM and FAFM.
3.3 Contrast selection test for optical
flow preprocessing

In the optical flow data preprocessing stage, using different

contrast ratios for the superimposed object and background frames

will result in different optical flows, which will have an impact on

the experimental effect. Contrast refers to the ratio of the
A B

FIGURE 7

Illustration of the ablation test. (A1) means the first row of column A, and so on. (A1) Visualization features of the baseline; (B1) visualization features
of the baseline + M-CAGM; (A2) visualization features of the baseline + FAFM; (B2) visualization features of MSGNet.
TABLE 1 Ablation analysis of MSGNet where the metrics with the highest rankings are shown in bold.

Method M-CAGM FAFM mPA/% mIoU/%

Baseline 90.12 86.10

Baseline + M-CAGM √ 91.31 87.23

Baseline + FAFM √ 92.11 88.06

MSGNet √ √ 91.89 88.91
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background frame luminance to the original frame luminance, so

the contrast selection test for optical flow preprocessing is designed

to select and verify the optimal front- and back-view contrast ratios.

The standard evaluation metric for optical flow is the endpoint

error (EPE), which is the mean of the Euclidean distance between

the predicted optical flow vector and the ground- truth over all

pixels. However, there is no available optical flow labeling method

to compare the predicted optical flow and the ground-truth. To

research the effect of different optical flows on segmentation, we

used preprocessed optical flows with contrasts of 1, 0.75, 0.5, 0.25,

and 0 as input to the proposed model. Figure 8 demonstrates the

segmentation masks of the preprocessed optical flow with different

contrast ratios. It is evident that as the contrast ratio decreases, the

optical flow is gradually disturbed by light changes and background

motion. Especially when the contrast ratio is 0, there is no

background in the overlay frame, and the moving object can no

longer be detected by the optical flow. Optical flow can be used to

detect similar texture regions in the image and calculate each point’s

distance and direction of motion by dense matching. If the

background disappears completely, the textures are identical, and

the random motion of any point in the background satisfies the

matching condition, which is not conducive to calculating optical

flow. In Figure 8, when the contrast is 0.75, the interference caused

by the change in illumination appears in the upper right part of the

fish, but the outline of the fish is still clear, and the proposed model

can effectively remove this small part of the interference. When the

contrast is 0.5 or 0.25, the outline below the fish becomes blurred,

the predicted mask contains redundant incorrectly predicted pixels,

and the fish and background cannot be accurately distinguished.
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After experimenting with the complete datasets, the predicted

masks had the highest mIoU and mPA when the contrast was

0.75. Thus, we selected 0.75 as the background contrast in the

optical flow data preprocessing stage. The specific results are shown

in Table 2. Notably, the mPA and mIoU of the model decrease

significantly when the contrast is 0. Under this condition, the

optical flow cannot bring any benefits and will only cause

model interference.
3.4 Test and analysis of the number
of M-CAGM

The M-CAGM is used to facilitate reciprocal enhancement of

different types of features. The number of M-CAGMs affects the

accuracy of model segmentation and the inference speed, where the

number setting refers to the number starting from the deep encoder

level. Specifically, the low-level encoder captures the main fish edges

and location information, while the high-level encoder contains

more advanced semantic information. Theoretically, the more M-

CAGMs applied, the higher the segmentation accuracy of the

model. However, considering the real-time demand, the inference

speed is also an essential performance measure. Thus, we designed

this test to balance the model accuracy and inference speed and

selected the most suitable number of M-CAGMs. Table 3 shows the

mIoU and inference speed for different numbers of M-CAGM

settings. The experiments are based on a GeForce RTX3090, and

fps is the speed of inference, which indicates the number of frames

per second that can be processed. When the number of M-CAGMs
1 contrast 0.75 contrast 0.5 contrast 0.25 contrast 0 contrast

FIGURE 8

Illustration of the optical flow contrast ratio test. From top to bottom: the object overlay frames, optical flow of the overlay frames, and predicted
masks of the overlay frames.
TABLE 2 Evaluation of optical flow with different contrast where the metrics with the highest rankings are shown in bold.

Contrast ratio 1 0.75 0.5 0.25 0

mPA/% 91.55 91.89 87.32 84.74 71.33

mIoU/% 88.16 88.91 84.46 79.60 61.52
frontier
sin.org

https://doi.org/10.3389/fmars.2023.1256594
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2023.1256594
is 5, the network cannot be trained because the M-CAGM has high-

resolution input. The processing burden is too large, which is also

the reason for the low fps. When the number of M-CAGMs is 3, the

mIoU is very close to the best, and the fps is reduced within a

reasonable range compared to that using fewer M-CAGMs.

Therefore, we applied 3 M-CAGMs in the proposed model.
3.5 Comparison with other
advanced models on the
DeepFish and Seagrass dataset

To verify the segmentation effectiveness of the proposed model

in the case of underwater visual feature degradation, MSGNet was

compared with the robust underwater object segmentation network

(WaterSNet) (Chen et al., 2022) and segmentation of underwater

imagery network (SUIM-Net) (Islam et al., 2020), advanced

underwater fish segmentation models. Considering that optical

flow was introduced as an additional input in this study, for a fair

comparison, we also compared MSGNet to the full-duplex strategy

network (FSNet) (Ji et al., 2021) and attentive multimodality

collaboration network (AMC-Net) (Yang et al., 2021), advanced

video object segmentation models. The results in Table 4 indicate

that the model using additional optical flow data has higher mPA

and mIoU values than those of the model using only pictures.

SUIM-Net applies a fully convolutional encoder-decoder with skip

connections. It offers competitive performance while ensuring fast

end-to-end inference but cannot fully utilize information from

different layers by skip connections and deconvolution only.

WaterSNet effectively improves the segmentation accuracy of

non-significant and camouflaged fish by random style adaptation

(RSA) of input images and multi-scale fusion. However, when

setting the group size of RSA, the batch size is directly used as the

number of mixed images in the group, which leads to a significant

decrease in the robustness of the model under hardware-

constrained conditions. FSNet effectively enhances the interaction

between appearance and motion features with a full-duplex but
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unselectively reuses motion information, leading to unsatisfactory

segmentation results in poor optical flow. AMC-Net suppresses

redundant and misleading information through multichannel co-

attention gates while designing a motion correction module with a

visual motion attention mechanism to highlight features of

foreground objects, achieving mPA and mIoU values close to

those of MSGNet. In Figure 9, the results of MSGNet have more

accurate bounds compared to the segmentation results of other

models while effectively suppressing prediction redundancy.

Compared with the above models, the M-CAGM in MSGNet

facilitates the reciprocal interactive enhancement of fish

appearance and motion information. At the same time, the

FAFM effectively suppresses the error accumulation of single-type

features through the mutual gate. The proposed model improves the

mIoU by 2.08% compared with those of the WaterSNet, and

compared with those of the AMC-Net, the mIoU value is

improved by 1.30%. The comparison experiment shows the

eff ec t iveness o f the MSGNet in segment ing fi sh in

underwater videos.
3.6 Testing results and analysis on
camouflage dataset

To verify the generalizability of the proposed model and

investigate the segmentation effect of MSGNet in dealing with

different degradation conditions of underwater visual features, we

conducted validation experiments with the moving camouflaged

animals mask dataset MoCA-Mask. The camouflaged object in

selected frames has low contrast with the background and blends

in with the underwater environment, which is similar to the

segmentation difficulties caused by the degradation of underwater

visual features. Additionally, considering that there is less water

turbidity in the MoCA-Mask dataset, no preprocessing of optical

flow data was performed in this experiment. The first two rows of

Figure 10 demonstrates that MSGNet can still segment a complete

object when the visual features of the fish are degraded and blended
TABLE 4 Comparison test results with advanced models .

Model Image Flow mPA/% mIoU/%

SUIM-Net √ 89.89 83.27

WaterSNet √ 91.14 86.83

FSNet √ √ 86.77 82.84

AMC-Net √ √ 91.55 87.61

MSGNet √ √ 91.89 88.91
fr
TABLE 3 Inference speed and mIoU for different numbers of M-CAGMs where the metrics with the highest rankings are shown in bold.

Number 5 4 3 2 1

fps/(frame/s) 8.64 23.33 26.86 28.08 28.90

mIoU/% – 88.94 88.91 88.15 87.71
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with the background. The evaluation results shown in Table 5 also

verify that MSGNet achieves higher mPA and mIoU compared to

those of the baseline, indicating that MSGNet can perform well with

different datasets, demonstrating its good generalizability. However,

as demonstrated in the third row of Figure 10, the model proposed

in this paper still has failure cases when segmenting underwater

camouflaged creatures. On the one hand, the third row of Figure 10

belongs to a highly camouflaged state, where the camouflaged object

is not only unremarkable at the edges but even difficult to be

distinguished from the background texturally. Another reason is

that the underwater object is small and hard to be roughly localized.

These failure cases indicate that the proposed model still has space

for improvement, such as using multi-scale information to improve

the accuracy of segmenting small underwater objects.
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4 Discussion

4.1 Model superiority discussion

Accurately segmenting fish objects in complex underwater

environments can be challenging. On the one hand, underwater

objects are often blurred due to water turbidity and insufficient

brightness. On the other hand, there are camouflaged creatures in

some underwater scenes, such as devil scorpion fish and flounder. To

survive better, these creatures get evolved with low contrast with the

background, making it difficult to quickly locate the object’s position

even in a clean underwater environment and more difficult to

accurately segment the underwater camouflaged creatures. There are

few studies for fish object segmentation in complex underwater videos,
FIGURE 9

Prediction results of different models on DeepFish and Seagrass dataset.
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and most use only appearance information. Biological visual

perception shows that in continuous scenes, people are easily

attracted to moving objects, thus breaking the original blurred or

camouflaged state. From this point, ourwork innovatively usesmotion

optical flow to help segment fish objects in underwater videos, and this

is the most apparent difference between our proposed model and

existing work (Haider et al., 2022; Shoffan, 2022). We first preprocess

the underwater optical flow. After acquiring the underwater optical

flow data, instead of simply summing the multimodal feature

alignment, we selectively enhance and fuse the appearance and

motion information to improve the accuracy and robustness of fish

segmentation in underwater videos. The ablation tests show that

through M-CAGM, the proposed model simultaneously considers

the visual saliency of the fish itself and the correlation between

appearance and motion, effectively achieving the interaction and

enhancement of multi-source information in underwater scenes,

highlighting the possible fish objects in the scenes. FAFM then

further filters and fuses the features after the exchange to avoid the

accumulation of errors, which may lead to segmentation failure. The

results of comparison experiments on public datasets indicate

that introducing motion information can effectively improve

segmentation accuracy in underwater videos. Thus, our work can

effectively segment blurred and camouflaged fish in underwater videos.
4.2 Application and future work

In 2021, the United Nations (UN) launched the Decade of the

Ocean (OD) initiative to promote sustainable ocean development.

Protecting marine ecosystems will be enhanced by increasing secure

areas and severely protected areas for habitats and fish stocks salvage
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(European commission, 2020). Under such an initiative, our work

focuses on pixel-level segmentation of fish in underwater videos. By

accurately segmenting fish in underwater videos, information such

as fish length and profile can be obtained, which may be helpful for

visual verification or estimation of fish size and weight by human

experts, facilitating habitat population monitoring. Hall et al. (2023)

showed that the size of anadromous Baltic Sea perch females affects the

quality of the offspring and the ability of the progeny to perform under

different temperature conditions, and our proposed MSGNet allows for

the accurate segmentation of underwater fish, which can be used to

estimate fish size, thus enabling an assessment of the long-term

sustainability of the population. Laradji et al. (2021) also pointed out

that pixel-level segmentation masks are more helpful in evaluating

the size and shape of fish to analyze fish habitat. The proposed

segmentation methods can also be combined with counting

and tracking and integrated into a system that automatically performs

comprehensive monitoring to increase efficiency and reduce labor costs.

In addition, overfishing is a significant problem for the sustainable

development of marine fisheries. The Food and Agriculture

Organization of the United Nations (FAO) states that the proportion

of unsustainably exploited fishery resources has increased from 10% to

35.4% since the 1970s (Food and Agriculture Organization of the United

Nations, 2022). Employing pixel-level segmentation for obtaining fish

sizes in underwater videos can reduce the risk of overfishing by avoiding

catching fish that are not the right size. Another potential application is

the lightweight deployment of the proposedmodel to underwater robots

or other portable devices for automatically collecting vital information

like the shape and size of fish in underwater videos, which can facilitate

the survey and management offishery resources. We hope our work will

inspire relevant researchers and continue contributing to fish habitat

monitoring and sustainable fisheries.
Frame GT Baseline MSGNet

FIGURE 10

Tests with the MoCA-Mask dataset.
TABLE 5 Evaluation metrics with the MoCA-Mask datasets where the metrics with the highest rankings are shown in bold.

Method mPA/% mIoU/%

Baseline 85.38 77.23

MSGNet 88.37 84.70
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However, some parts can still be improved at this stage of our

work. As a result of our research, we found that in current ocean

observation, the algorithms often need to be deployed on constrained

hardware platforms (Novy et al., 2022) or portable underwater robots

(Chatzievangelou et al., 2022), which require high computational

power and running speed of the models. Although our proposed

model has high segmentation accuracy for blurred or camouflaged

fish in complex underwater videos, it contains many computational

parameters and needs to be more lightweight. In applications

requiring high portability, such as when divers carry equipment to

explore marine resources and species, hardware limitations may

make it impossible to balance inference speed with segmentation

accuracy. Considering the limitations of the device in practical

applications, in the future, we will investigate a way to make the

model lighter and achieve more efficient ocean observation.
5 Conclusion

In this paper, a multi-source guidance network MSGNet was

proposed to segment fish in underwater videos. It combined both

video frames and motion optical flows, and can be used to facilitate

ocean observation. To address the problems of low accuracy and poor

robustness of the model caused by insufficient lighting and water

turbidity in complex underwater environments, this paper proposes a

method to segment fish in underwater videos combining both

appearance and motion information. First, we apply a simple overlay

to obtain high-quality underwater optical flow data. Then, we employ

multiple co-attention mechanisms to facilitate the interaction and

enhancement of the appearance and motion features of fish. Finally,

we design amutual gate to filter and adaptively fuse the different features

to obtain the final segmentation results of fish in underwater videos

through multiple iterations. The experimental results with several

publicly available datasets validate the effectiveness and superiority of

this study for fish segmentation in underwater videos. However, this

study still needs to be improved, as the M-CAGM contains multiple

global normalizations, resulting in a large computational overhead.

Considering the equipment limitations in practical applications, we

will research amethod tomake themodelmore lightweight in the future.
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