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Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated proteins (Cas) are widely used as gene editing tools in biology,
microbiology, and other fields. CRISPR is composed of highly conserved
repetitive sequences and spacer sequences in tandem. The spacer sequence
has homology with foreign nucleic acids such as viruses and plasmids; Cas
effector proteins have endonucleases, and become a hotspot in the field of
molecular diagnosis because they recognize and cut specific DNA or RNA
sequences. Researchers have developed many diagnostic platforms with high
sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13,
Cas14, etc.) in combination with signal amplification and transformation
technologies (fluorescence method, lateral flow technology, etc.), providing a
new way for rapid detection of pathogen nucleic acid. This paper introduces the
biological mechanism and classification of CRISPR-Cas technology, summarizes
the existing rapid detection technology for pathogen nucleic acid based on the
trans cleavage activity of Cas, describes its characteristics, functions, and
application scenarios, and prospects the future application of this technology.
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1 Introduction

Based on the characteristics of Cas that specifically recognizes target nucleic acids or
activates Incidental cutting activity after recognition, scientists have successfully developed a
series of CRISPR-Cas technologies including Specific High-sensitivity Enzymatic Reporter
unlocking (SHERLOCK), DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR)
and one-Hour Low-cost Multipurpose highly Efficient System (HOLMES) (Abudayyeh et al.,
2017; Stower, 2018; Kaminski et al., 2021). CRISPR-Cas technology has the characteristics of
rapidity, accuracy, sensitivity, simplicity, and economy. It has been successfully applied to the
detection of pathogenic microorganisms, genetic diseases, tumor gene mutations, small
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molecules, etc. It is an ideal next-generation rapid and sensitive
nucleic acid on-site detection technology. Fast, convenient, and
intelligent are the pain points of on-site nucleic acid detection.
Creating intelligent nucleic acid detection products based on
CRISPR-Cas are the future development direction of the field
(Yang and Rothman, 2004). Rapid and sensitive diagnosis has a
huge social demand, especially since the COVID-19 epidemic
poses a huge threat to human society, which makes people more
deeply realize the importance and necessity of establishing rapid and
sensitive detection technology (Weissleder et al., 2020). Due to the
rapid development of genomics, transcriptomics, and sequencing
technology, nucleic acid diagnosis has become the leading role in
the development of rapid and sensitive diagnosis. In recent years, gene
editing, represented by CRISPR-Cas, has brought revolutionary
progress in biotechnology (Pickar-Oliver and Gersbach, 2019). It is
considered to be a revolutionary technology equivalent to Polymerase
Chain Reaction (PCR) (Bodulev and Sakharov, 2020). Like PCR
technology, it affects many aspects of life medicine and was rated
as the first annual breakthrough scientific progress by Science twice in
2015 and 2017 (Pardee et al., 2016; Jackson et al., 2017). It won the first
of Nature’s five most influential scientific events in the past 10 years
and the Nobel Prize in Chemistry in 2020 (Makarova et al., 2020;
Altae-Tran et al., 2021). At the same time, researchers have developed
nucleic acid detection technology based on CRISPR-Cas, which is fast,
accurate, sensitive, and economical, and is an ideal next-generation
rapid and sensitive nucleic acid on-site detection technology. This
technology was rated by Science as one of the top ten breakthroughs in

science and technology in 2018 and Nature as one of the seven
technologies worth paying attention to in 2022 (Coelho et al., 2022).

2 Biological mechanism of CRISPR-Cas
system

In 1987, the CRISPR site was found in the bacterial genome
(Ishino et al., 1987), and Cas was found in 2002 (Jansen et al., 2002).
It was later confirmed that the CRISPR-Cas system is an RNA-
guided adaptive immune system that can resist viruses, plasmids,
and other invasive genetic elements. Its immune process can be
roughly divided into three stages: adaption, expression, and
interference (Figure 1) (Jackson et al., 2017; Yao et al., 2018).
Firstly, at the adaption stage, Cas recognizes and captures foreign
nucleic acid fragments, acquires new spacer sequences, and
integrates them into its own CRISPR array to form immune
memory. Secondly, in the expression stage, when foreign nucleic
acids invade again, the corresponding spacer sequence in the
CRISPR array is transcribed to produce the precursor of CRISPR
RNA (crRNA) and processed to obtain small, mature crRNA, which
contains a conservative repeat sequence and a spacer sequence. The
crRNA further interacts with one or more Cas used to form RNP
(Ribonucleoprotein) complex (Hille et al., 2018). Thirdly, at the
interference stage, Cas recognize the target nucleic acid through
crRNA and are mediated to specifically destroy the invading nucleic
acid (Jiao et al., 2021). In different CRISPR-Cas systems, Cas1 and

FIGURE 1
Adaptive immune response in the CRISPR-Cas system. This figure was drawn by Figdraw. (A) In the adaption stage, some short fragments of viruses,
plasmids and other foreign nucleic acids are integrated into CRISPR repeats to form spacer sequences. (B) In the expression stage, CRISPR sequences
were processed into crRNA containing spacer and repeat sequences, which were combined with CRISPR-associated effector proteins to form
complexes. (C): In the interference stage, the complex performs specific cleavage and inactivation of foreign nucleic acids complementary with
crRNA sequences, so as to protect itself from viruses, plasmids and other invasion.
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Cas2 involved in the adaption stage are highly conserved to a large
extent. In contrast, other Cas have significant differences, as they
involve expression and interference stages (Makarova et al., 2015).

3 Classification of CRISPR-Cas system

CRISPR-Cas system is divided into 2 categories, 6 types and
48 subtypes (Makarova et al., 2020). The first category can be divided
into three types: type I, III, and IV, which use the complex composed
of multiple Cas and crRNA to cut the target nucleic acid sequence
(Makarova et al., 2017). The second category also includes three types:
II, V, and VI, which have a single multifunctional Cas and crRNA for
interference (Shmakov et al., 2015). This type of system has been
widely used in the detection of pathogen nucleic acid, especially
CRISPR-Cas9, Cas12, and Cas13 (Figure 2) (Li et al., 2021).

3.1 CRISPR-Cas system category I

There are three types of CRISPR-Cas system category I, which
have effect complexes composed of CRISPR-associated complex for

antiviral defense (Cascade), which is a complex composed of Cas and
crRNA (Brouns et al., 2008). Cascade recognizes the protospacer
adjacent motif (PAM) sequence, targets DNA target sites through
crRNA, and uses Cas3 to achieve target site cutting (Hayes et al.,
2016). At present, among the seven identified subtypes (I-A to I-F
and I-U) (Zheng et al., 2020), subtype I-E CRISPR-Cas3 system also
has trans cleavage activity (Yoshimi et al., 2022). The function of
CRISPR-Cas3 is based on a multi-subunit complex composed of
crRNA and CRISPR-Cas complex in the III-A subtype system, and
the signature protein is Cas10. Type III overall composition and
structure are highly similar to type I affect complex (Zhao et al.,
2014). The target recognition of type III system can activate the
polymerase activity of Cas10, and then Cas10 mediates the
production of cyclic oligoadenylate (cOA), thus cutting target
RNA and other adjacent RNA molecules (Kazlauskiene et al.,
2017). Type IV CRISPR-Cas system is divided into IV-A, IV-B,
and IV-D subtypes, which mainly exist in plasmids. The study found
that type IV CRISPR-Cas system has strong targeting to plasmids.
Some plasmids can use type IV CRISPR-Cas system to fight against
the competition of other plasmids against the same host bacteria.
Type IV CRISPR-Cas system may have the potential to be used in
clinical drug-resistance gene therapy (Pinilla-Redondo et al., 2020).

FIGURE 2
Basic principles of CRISPR-mediated nucleic acid detection. This figure was drawn by Figdraw. (A) RNA-guided target recognition system, which
specifically recognizes and cleavages the target sequence containing PAM sites for detection by RNA-guided effector proteins. (B) Incidental cleavage
system triggered by targeted recognition, after specifically recognizing and cleaving the target sequence, incidental cleavage of the surrounding labeled
single-stranded nucleic acid is performed to generate detection signals for detection.
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3.2 CRISPR-Cas system category II

CRISPR-Cas system category II has unique effector proteins
(Shmakov et al., 2017). Compared with CRISPR-Cas system
category I, the effector module of CRISPR-Cas system category II
is only a single protein with multiple domains and functions. Cas9 is
a double RNA-guided DNA endonuclease, which mediates Cas9 to
recognize the PAM sequence (5ʹ-NGG-3ʹ). Then, use the HNH and
RuvC domains of Cas9 to cut the target double-stranded DNA,
resulting in flat end double-stranded breaks (Shmakov et al., 2015).
Recently, Jinek et al. (Jinek et al., 2012) constructed the single-guide
RNA (sgRNA) to simplify CRISPR-Cas genome editing by reducing
the three components system (Cas9, crRNA, trans-activating
crRNA. Among them, trans-activating crRNA is abbreviated as
tracrRNA) to two components (Cas9 and sgRNA) (Jiang et al.,
2013). Type V CRISPR-Cas system can be divided into V-A, V-B,
and V-C subtypes, and its effectors are Cas12a (Cpf1), Cas12b
(C2c1), Cas12c (C2c3), etc. (Makarova et al., 2020). Type V
CRISPR-Cas system only needs Cas and crRNA to edit the target
site. After the crRNA recognizes the PAM site (5’- TTTN-3’) and
fully pairs with the target DNA base, Cas12a uses the RuvC domain
to cut the target sequence in a cis manner to generate the 5 ’sticky
end, and at the same time, uses the trans cutting activity to cut any
adjacent single-stranded DNA (ssDNA) (Swarts and Jinek, 2019).
The feature makes the CRISPR-Cas12 system a hot spot in the field
of nucleic acid detection. Recently, the system has also been applied
to the detection of molecular markers, such as microRNA (Zeng
et al., 2022), cardiac troponin I (cTn I) (Chen H. et al., 2022), etc.
The research in this field is of great significance to achieve accurate
in vitro diagnosis. In addition, Cas12 is often used Genetic
Engineering (Kim et al., 2016; Xin et al., 2022). Like Cas12a,
Cas14a belongs to the class 2 system type V family. Cas14a
proteins have RNA-guided ssDNA-targeted endonuclease activity.
Cas14a proteins are not required to recognize PAM sites in the DNA
sequence (Aquino-Jarquin, 2019; Yuan et al., 2022). Type Ⅵ
CRISPR-Cas system can be divided into Ⅵ-A, Ⅵ-B, Ⅵ-C, and
Ⅵ-D subtypes. The signature protein is Cas13, which has higher
eukaryotes and prokaryotes nucleotide-binding (HEPN) domains
(Anantharaman et al., 2013). The uniqueness of this system is
that Cas13 can recognize single-stranded RNA molecular targets.
Under the targeting effect of crRNA, the Cas13-crRNA complex
recognizes the sequence of the Protospacer flanking site (PFS) on the
target nucleic acid, and at the same time cutting the target RNA,
trans cuts the single-strand RNA (Abudayyeh et al., 2017; Cox et al.,
2017). To sum up, the CRISPR-Cas system is diverse, and its key
elements are different in composition, structure, and mechanism of
action (Makarova et al., 2018). The in-depth exploration of the
CRISPR-Cas system may provide a direction for the development of
new diagnostic platforms.

4 Detection of pathogen nucleic acid
based on trans cleavage activity

CRISPR-Cas was originally used as a gene editing system, which
was widely studied and applied in the field of synthetic biology.
According to the biological functions and characteristics of different
proteins, a large number of new gene editing elements and tools were

developed and designed (Cong et al., 2013). In 2016, the CRISPR-
Cas system was first applied to nucleic acid detection and showed
efficient and accurate pathogenic nucleic acid detection in
subsequent research and development (Pardee et al., 2016). As a
new interdisciplinary, synthetic biology focuses on the design of
biomolecules or biological systems, which also provides new ideas
and opportunities for molecular diagnosis (Hilton et al., 2015). The
early nucleic acid detection technology mainly based on type II
CRISPR-Cas9, but some technologies have no obvious advantages
(Quan et al., 2019). With the continuous exploration of the CRISPR-
Cas system, especially the discovery of the trans cleavage activity of
Cas12, Cas13, and Cas14.With the application scope of the CRISPR-
Cas system has been greatly expanded, and the field of nucleic acid
detection has also been further innovated, which may open another
door for research into the CRISPR-Cas system (Table 1). The
characteristics of several nucleic acid detection methods based on
the CRISPR-Cas system are briefly summarized from the aspects of
amplification method, limit of detection, reaction time, detection of
pathogens, signal reading method, and whether is it one-tube
method? it is according to the classification of single CRISPR-
associated effector proteins currently in common use (Table 2).

4.1 CRISPR-Cas9

Cas9 is a marker protein in the type II CRISPR-Cas system,
which is the most widely studied and applied protein at present. The
CRISPR-Cas9 system requires a single-guide RNA (sgRNA) chimeric
with crRNA and tracrRNA to guide Cas9 to specifically recognize
and cut targeted double-stranded DNA containing PAM sites
(Sternberg et al., 2014; Najah et al., 2019). According to different
gene fragments, complementary sgRNAs can be designed to
specifically recognize and cut different target sequences. Pardee
et al. (Pardee et al., 2016) took the lead in combining the
CRISPR-Cas system with Nucleic Acid Sequence-based
Amplification (NASBA) technology for Zika virus detection in
2016, with a detection limit of 1 fmol and the ability to detect
and distinguish different virus subtypes with single base differences,
as well as dengue virus infection samples with clinical symptoms
similar to Zika virus. Its advantage is that the detection system is
freeze-dried on the test paper, which is economical, portable, and
can be stored for a long time. It is suitable for on-site and resource-
scarce areas. However, the long detection time (180 min) is the main
reason that hinders its large-scale application. Then researchers tried
to combine the CRISPR-Cas9 systemwith an isothermal exponential
amplification reaction, which improved amplification efficiency and
shortened detection time while maintaining high sensitivity and
specificity. Huang et al. (2018) combined the CRISPR-Cas9 system
with an isothermal exponential amplification reaction to detect
DNA methylation and total RNA of Listeria monocytogenes. The
detection limit of this method is 0.82 αmol, and it shows high
specificity in distinguishing single base mismatch. Subsequently,
Wang et al. (Ting et al., 2019) developed isothermal exponential
amplification reaction based on the CRISPR-Cas9 system, which can
achieve specific detection of typhoid bacillus within 60 min, and the
results can be detected if there are two copies in the 20 µL reaction
system; Its disadvantage is that it relies on expensive real-time
fluorescence reading equipment to read results, which is not
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suitable for detection in resource-poor areas. Quan et al. (2019)
combined the CRISPR-Cas9 system with PCR technology to develop
the method of finding low abundance sequences through
hybridization, which is used to detect pathogens resistant to
antimicrobial therapy and has been successfully applied to the

falciparum malaria model, providing the possibility for CRISPR-
Cas technology to be applied to other parasite detection. Nuclease
deficient Cas9 (dCas9) is chemically modified Cas9, which is
characterized by loss of endonuclease activity but still can
specifically recognize and bind target sequences. Zhang et al.

TABLE 1 Technologies for detecting pathogens based on the CRISPR-Cas system.

Main types of
CRISPR

Technology
item

Effector
proteins

Target
molecule

Mode of
amplification

Limit of
detection

Pathogens Detection
technologies

Type Ⅴ DETECTR Cas12a DNA, RNA RPA αmol/L HPV16/18 SARS-
CoV-2

Fluorescence signal

OR-DETECTR Cas12a RNA RT-RPA 1-2.5 copies/μL SARS-CoV-2 H1N1 Fluorescence signal

HOLMES Cas12a DNA, RNA PCR αmol/L JEV Fluorescence signal

HOLMES v2 Cas12b DNA, RNA LAMP αmol/L JEV Fluorescence signal

E-CRISPR Cas12a DNA — pmol/L HPV1, B19 Electrochemistry

CRISPR-ENHAN LbCas12a RNA RT-LAMP — SARS-CoV-2,
HIV, HCV

Lateral flow
immunoassay

AIOD-CRISPR LbCas12a RNA RPA 1-2.5 copies/μL SARS-CoV-2 Fluorescence signal

SCAN Cas12a DNA, RNA RT-PCR/RT-RPA 13.5 copies/μL HIV Nanopore sensor

TB-QUICK Cas12b DNA LAMP 1.3 copies/μL Mycobacterium
tuberculosis

Fluorescence signal

DETECTR-Cas14 Cas14a DNA, RNA RPA αmol/L Viruses, Bacteria Fluorescence signal

Type VI SHERLOCK Cas13a DNA, RNA RPA αmol/L Viruses, Bacteria Fluorescence signal

HUDSON Cas13a RNA RT-RPA 1 copies/μL Zika virus, Dengue
virus

Fluorescence signal

OR-SHERLOCK Cas13a RNA RT-RPA 1–2 copies/μL SARS-CoV-2 Fluorescence signal

SHERLOCK v2 Cas12a DNA, RNA RPA — SARS-CoV-2 Lateral flow
immunoassay

TABLE 2 Characteristics of nucleic acid detection methods based on CRISPR-Cas system.

Effector
proteins

Amplification
method

Limit of
detection

Pathogens Time
(min)

Read signal One-
tube

Cas9 NASBA 1 fmol Zika virus 180 Paper sensors No

dCas9 PCR 50 fmol Mycobacterium
tuberculosis

50–60 Fluorescence No

RPA 1 αmol HPV 60 Fluorescence No

Cas12a LAMP 1 copy/µL HBV 13–20 Fluorescence, Lateral flow
immunoassay

No

RPA 50 CFU/mL Mycobacterium
tuberculosis

90 Fluorescence No

RPA 10 copies/µL SARS-CoV-2 40 Fluorescence, Lateral flow
immunoassay

No

PCR 1 αmol JEV 60 Fluorescence No

Cas12b LAMP 1 αmol JEV 60 Fluorescence Yes

Cas13a RPA, 1 αmol Zika virus, Dengue virus 30–60 Lateral flow immunoassay No

HCR 1 αmol SARS-CoV-2 60 Fluorescence No

Cas14a RPA 1 αmol E.coli O157:H7 120 Fluorescence No
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(2022) used the paired CRISPR-dCas9 system and PCR technology
for the detection of mycobacterium tuberculosis and labeled the
paired dCas9 with luciferase as a guide. When RNA guides the
dCas9 pair to specifically bind to the same target, and the distance
between the two binding sites is 19–23 bases. The fluorescein is
oxidized, emitting fluorescence signals and detecting the pathogen.
In addition to using fluorescent labeling, Hajian et al. (2019)
combined the CRISPR-Cas system with the electronic transistor
made of graphene and developed a biosensor: that is, the dCas9 is
fixed on the graphene transistor. After adding DNA samples,
dCas9 combines with the target DNA to change the conductivity
of graphene and the electrical characteristics of the transistor, to
achieve rapid sample detection. The sensitivity of this method is as
low as 1.7 fmol, and the detection time is only 15 min. These studies
demonstrated the potential of dCas9 as a powerful platform for
in vitro nucleic acid detection, but its detection sensitivity still needs
to be improved.

4.2 CRISPR-Cas12

Cas12 belongs to type V CRISPR-Cas system. At present, there
are much researches on Cas12a (also known as Cpf1) and Cas12b.
Unlike Cas9, which requires two nuclease domains (HNH and
RuvC) to exert cutting activity and produce flat-end incisions,
Cas12a requires only one nuclease domain (RuvC) to produce
sticky-end incisions; Its target is double-stranded DNA and
single-stranded DNA (Zetsche et al., 2015). In 2018, researchers
found that after Cas12a specifically cut target DNA under the
guidance of crRNA, it also cut nontargeted single-strand DNA
nearby (Li et al., 2018a). Based on this “accessory cutting”
feature, Chen et al. (2018) combined recombinase polymerase
amplification (RPA) with the CRISPR-Cas12a system to develop
DETECTR nucleic acid detection technology successfully detects
human papillomavirus (HPV) type 16 and 18 and realizes the
differentiation of different subtypes. In this method, RPA is used
to pre-amplify the target DNA, and then the CRISPR-Cas12a system
is added. After the crRNA in this system guides Cas12a to
specifically recognize and cut the target DNA, nonspecifically cut
the surrounding fluorescent group labeled single-strand DNA and
generate fluorescence signals. DETECTR has extremely high
sensitivity and specificity, its detection limit has reached αmol
level, and the detection results have also been confirmed to be in
good agreement with the PCR detection results. The detection
method based on the DETECTR system can achieve high
sensitivity and specificity for norovirus, HPV, metapneumovirus,
and other viruses (Qian et al., 2021a; Qian et al., 2021b). Ding et al.
(2021) combined Reverse Transcription Loop-mediated Isothermal
Amplification (RT-LAMP) with Cas12a to achieve rapid detection of
HBV in 13–20 min, with a detection limit of 1 copy/µL. Based on the
DETECTR detection platform, a research team combined CRISPR-
Cas12a technology with RPA to achieve rapid and accurate detection
of food-borne bacteria, including Escherichia coli, Listeria
monocytogenes, Staphylococcus aureus, and Vibrio
parahaemolyticus, as well as Mycobacterium tuberculosis and
Mycoplasma pneumonia, with high sensitivity and specificity (Ai
et al., 2019; Bhattacharjee et al., 2022; Li et al., 2022).In addition, the
DETECTR system is also widely used for the detection of SARS-

CoV-2. After reverse transcription and amplification of purified
RNA from the nasopharynx or oropharynx swabs by reverse
transcription isothermal amplification technology, the CRISPR-
Cas system specifically recognizes and cuts the target to generate
fluorescence signals, thereby confirming the existence of SARS-
CoV-2. For example, Broughton et al. (2020) combined the
CRISPR-Cas12a system with RT-LAMP to develop a DETECTR
detection platform for SARS-CoV-2. However, the DETECTR
method is divided into two steps, which are prone to cross-
contamination. To avoid this possibility, Li et al. (Li et al.,
2018b) used physical methods to put the isothermal amplification
system and CRISPR-Cas12a system in the same test tube and
separate them. After 15 min of isothermal amplification reaction,
the two systems were mixed, thus realizing one-step detection and
simplifying the operation steps while avoiding cross-contamination.
In recent years, a research team has established a light-activated,
one-step RPA-CRISPR-Cas method that was successfully used for
the rapid detection of the African swine fever virus. The detection
time was only 40 min, and the detection sensitivity was up to
2.5 copies (Chen Y. et al., 2022). Compared with the
conventional multi-step detection method that first performs
isothermal amplification and then adds CRISPR-Cas system, this
detection method greatly simplifies the operation process on the
premise of consistent sensitivity. Ding et al. (2020) developed An
Integrated Dual CRISPR-Cas12a (AIOD CRISPR, all in one dual
CRISPR-Cas12a) system, integrating the amplification system and
CRISPR-Cas system into the same reaction system so that there is no
need to amplify and transfer amplification products separately; At
the same time, the system uses double crRNA to detect SARS-CoV-
2 and HPV1, which is more simple, more sensitive and more
specific. Cas12b has the same cutting activity as Cas12a, but its
optimal reaction temperature is relatively higher, its specificity is
higher, and its requirements for reaction conditions are more
stringent. Li et al. (2019) combined PCR with the CRISPR-
Cas12a system and developed HOLMES, but the system also
requires a two-step reaction. To solve this problem, the research
team developed HOLMES v2, which integrates the RT-LAMP
system and the CRISPR-Cas12b system with relatively higher
optimal reaction temperature into one reaction system, realizing
one-step detection (Wang et al., 2019). The HOLMES series of
methods established by the team successfully achieved αmol level
detection of Japanese encephalitis virus because the reaction
conditions of Cas12b are stricter, so the research and application
of Cas12b are less than that of Cas12a.

4.3 CRISPR-Cas13

Cas13 belongs to type VI CRISPR-Cas system, which has RNA
nuclease activity and only works on single-stranded RNA. Cas13a,
also known as C2c2, is the first effector protein used to target RNA
cleavage (Cox et al., 2017; O’Connell, 2019). Cas13a also has the
activity of “incidental cleavage”. Under the guidance of crRNA,
Cas13a specifically cleaves targeted single-strand RNA by relying on
the flanking sequence (PFS sequence, which has the same function as
the PAM sequence) of the anterior spacer sequence, and then
performs non-specific cleavage on the nearby single-strand RNA
(Abudayyeh et al., 2016). Abudayyeh et al. (2019) combined
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CRISPR-Cas13a technology with RPA to develop a SHERLOCK
nucleic acid detection system, which can detect Zika virus as low as
2 αmol; Its specificity is also very high, and it can recognize single
nucleotide mismatch. Then Myhrvold et al. (2018) developed a
SHERLOCK v2 nucleic acid detection system based on a strip by
using a biotin-labeled reporter gene, which realized simple and rapid
detection of the Zika virus, and its detection results were consistent
with RT-PCR detection results. Compared with the detection
method based on PCR technology, the detection platform based
on SHERLOCK and SHERLOCK v2 does not need thermal cycles
and complex laboratory systems, and it can be combined with
technologies such as test strips, which makes reading results
easier and faster, and has higher sensitivity and specificity.
Studies have shown that DETECTR and SHERLOCK diagnostic
kits for SARS-CoV-2 detection have been approved and marketed
abroad (Guo et al., 2020; Hou et al., 2020; Pang et al., 2020). In
addition, the detection platform based on SHERLOCK, other
researchers combined CRISPR-Cas13a with the general
autonomous enzyme-free Hybridization Chain Reaction (HCR)
and triggered the downstream HCR circuit by designing the
release promoter sequence of the lysate probe report, to detect
SARS-CoV-2 or related coronavirus strains, with a sensitivity of
αmol. The reaction time is shorter than 60 min (Yang et al., 2021; Li
et al., 2023).

4.4 CRISPR-Cas14

Cas14 protein, also referred to as Cas12f, is the shortest
member of the CRISPR-associated protein family, consisting
of approximately 400–700 amino acids (Zhang and An, 2022).
There are three subtypes of Cas14: Cas14a, Cas14b, and Cas14c.
It has the ability to cleave specific nucleic acid sequences (cis-
cleavage) and non-specific single-stranded DNA and RNA
sequences (trans-cleavage). When a small guide RNA (sgRNA)
is present, these subtypes are able to cleave ssDNA without the
need for a PAM sequence (crRNA) (Ma et al., 2020). It is
estimated that more than CRISPR-Cas14 system has evolved
independently, although the Cas14 proteins display a
significant amount of sequence diversity. There exhibit a
common RuvC nuclease domain, which is universally found in
V-type CRISPR-Cas system (Harrington et al., 2018). In addition
to enabling the advancement of nucleic acid targeted editing,
virus detection, and nucleic acid detection through protein
purification, it facilitates the development of nucleic acid
targeted editing techniques (Harrington et al., 2018; Aquino-
Jarquin, 2019; He et al., 2023; Li et al., 2023).

5 Discussion

CRISPR-Cas system, as a novel and powerful nucleic acid
diagnostic tool, has developed many detection technologies based
on the inherent characteristics of different Cas, and the detection
technology based on Cas12 and Cas13 has the most potential.
DETECTR–Cas14 technology combines RPA and
Cas14 technology, has greater specificity than the previous
DETECTR–Cas12 technology, which has been applied

successfully to the typing of SNP genes (Harrington et al., 2018).
So far, DETECTR (Chen et al., 2018), SHERLOCK (Gootenberg
et al., 2018), and many other detection technologies have been
applied to the detection of a variety of pathogens, including SARS-
CoV-2 (Kellner et al., 2019; Khan et al., 2021). These detection
methods can usually reach the sensitivity of fmol/L to αmol/L and
achieve a single base resolution. To simplify and optimize the
detection process, researchers have developed some simple
sample pretreatment, such as Heating Unextracted Diagnostic
Samples to Obliterate Nucleases (HUDSON) (Barnes et al., 2020),
which can directly amplify and detect pathogenic nucleic acids
(Gootenberg et al., 2018). The development of one-tube reaction
technology has reduced the risk of sample contamination, and the
target nucleic acid amplification and Cas cutting are conducted in a
closed tube; The development of different result reading methods
(fluorescent reading, colorimetric reading, electrochemical reading,
etc.), and the combination of portable low-cost instruments
(smartphones, etc.), which are very suitable for on-site detection.
In addition, in some detection technologies, the design and use of
optimized crRNA reduced the miss effect, and the use of Cas with
lower nucleotide mismatch tolerance also solved the potential false
positive problem. Although the CRISPR-Cas system has many
advantages, there are still many challenges to overcome before
the technology is translated into clinical application. For
example, the recognition and cleavage of target nucleic acid by
Cas12, Cas13, Cas14, and other proteins depends on PAM or PFS
sequence, which limits the selection of target nucleic acid region and
greatly reduces the selection range of primer design. Moreover, the
existing detection technologies cannot get rid of the nucleic acid pre-
amplification step and realize one-tube multiple detections. At the
same time, the detection technology developed based on CRISPR-
Cas system, like PCR technology, cannot monitor the possible
emerging virus threat or pandemic in the future (Yang and
Rothman, 2004). While there are so much restriction, but there
is still a strong need to develop large-scale multiplexed nucleic acid
detection technology for the CRISPR-Cas system (Ackerman et al.,
2020). Because the CRISPR-Cas technology is a new method for
molecular biology detection that offers many advantages over
traditional PCR methods. For example, it does not require any
expensive equipment and consumables, is easier to operate and saves
time than traditional PCR technology (Li et al., 2023).

6 Conclusion and prospects

Nucleic acid detection based on the CRISPR system is still in its
infancy, and it still faces the following challenges to promote to the
field and clinical application: Firstly, the carrier function of the
CRISPR-Cas system is limited by the size of pathogen genes, and
most of the currently developed Cas are large molecular weight
proteins; Secondly, Type Ⅱ CRISPR-Cas requires a PAM or PFS
site in the target binding site to activate the cutting activity, which
limits CRISPR-Cas system to be used for short target sequence
detection; Thirdly, at present, most of them are based on the
detection technology of CRISPR-Cas system requires pre-
amplification of nucleic acid before detection, which adds
operation steps. Based on the above challenges, the following
work can be carried out in the future: Firstly, try to develop
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and utilize new Cas effector proteins with smaller molecular
weight, such as Cas14 (Harrington et al., 2018; Khan et al.,
2019; Yang et al., 2021)CAS; Secondly, through primer design,
the PAM sequence was artificially inserted to broaden the target
detection range; Thirdly, at present, a series of one-step CRISPR-
Cas detection platforms have been developed to simplify the
operation steps. We can also try to build efficient microfluidic
enrichment and other technologies, improve the digestion activity
of Cas effector proteins, improve the target capture efficiency, and
achieve rapid and sensitive detection. Fourthly, develop CRISPR-
Cas system in combination with more other nucleic acid
amplification methods to improve the detection ability of very
low concentration nucleic acids; Fifthly, the one-tube equal
temperature detection technology has promoted the
development of fast and convenient detection methods, making
it possible to visually detect viral RNA, including test strips,
portable UV lamps, color changes, etc. ; Sixthly, develop one-
tube thermostatic non fluorescent detection methods combined
with isothermal amplification and CRISPR-Cas, such as
electrochemical (Heo et al., 2022) or colorimetric (Zhang et al.,
2021) detection methods, to improve the matrix tolerance of
nonfluorescent detection systems; Seventhly, develop new
storage and use methods, such as paper based lyophilized
reagent (Pardee et al., 2016), to avoid reducing the activity of
reaction reagent during storage, transportation and use; Eighthly,
develop more convenient and efficient sample pretreatment
methods, reduce operation process and time, and apply to
different types of samples; Ninthly, develop high-throughput
detection methods, develop detection probes with multiple
fluorescent channels or combine them with high-throughput
detection platforms, such as micro-drop digital CRISPR with
the optimization and further understanding of CRISPR-Cas
system, detection technology developed based on CRISPR-Cas
system may become one of the mainstream platforms for
pathogen nucleic acid detection. Although many detection
technologies cannot be quickly transferred from laboratory to
clinical application and play their roles shortly, but they can
provide a good platform for large-scale population screening,
better and faster control of pathogen transmission, and rapid
on-site detection (Patchsung et al., 2020).
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