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Abstract

Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against
ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in
hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of
death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy c-ray
radiation daily for 5 days in succession (a total of 5 Gy), and given nicaraven or a placebo after each exposure. The mice were
sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in
hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found
that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity,
and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-29-deoxyguanosine, a
marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a
placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells
did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration
of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-a in the plasma of mice. Our data
suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells,
which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.
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Introduction

Exposure to a high dose of ionizing radiation can directly lead

to DNA double-strand breaks that may elicit cell death or

stochastic changes [1]. Ionizing radiation is also known to trigger

the generation of reactive oxygen species (ROS), which indirectly

contribute to radiation-induced damage through the oxidization of

biomolecules [2–5]. Otherwise, in response to radiation exposure,

a robust release of various inflammatory cytokines has also been

found to contribute to the subsequent injury of cells or organs [6–

10]. Therefore, either quickly scavenging the ROS or effectively

inhibiting the inflammatory responses is thought to be potential

approaches for providing protection against radiation injury. In

this regard, previous studies have demonstrated that radiation-

induced injury could be attenuated by the administration of

antioxidants [11–14], and amifostine, a drug with the ability to

scavenge ROS, has been used clinically as a cytoprotective

adjuvant for patients receiving radiotherapies [15]. However, it is

still important to develop new protective and therapeutic drugs

that counter the effects of radiation-induced injury due to either

therapeutic or accidental exposures.

Nicaraven [N,N¢-(1-methyl-1,2-ethanediyl)bis-3-pyridinecar-

boxamide], a chemically synthesized hydroxyl radical-specific

scavenger [16], has been demonstrated to protect against

ischemia-reperfusion injury in various organs, including the brain

[17–20], liver [21], kidney [22], and heart [23]. Beyond its

primary activity as a hydroxyl radical-specific scavenger, nicaraven

has also been found to suppress neutrophil infiltration under

inflammatory conditions [24,25]. Based on its well-defined anti-

oxidative properties and its likely anti-inflammatory activity,

nicaraven may also effectively protect against radiation-induced

injury. It has been previously demonstrated that the administra-

tion of nicaraven significantly improved the survival of mice that

suffered a lethal dose of c-ray radiation [26]. Nicaraven has also

been found to reduce radiation-induced cell death through the

inhibition of poly (ADP-ribose) polymerase [27,28]. However, the

protective effect of nicaraven on radiation-induced injury has not

yet been well documented, and the relevant mechanism is poorly

understood. Using a mouse whole-body c-ray radiation model, we

herein investigated the protective effects and relevant mechanisms

of nicaraven on radiation-induced injury in hematopoietic stem/

progenitor cells.
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Materials and Methods

Animals
We used 10- to 12-week-old male C57BL/6 mice (SLC, Japan)

for the present study. All experiments were approved by the

Institutional Animal Care and Use Committee of Nagasaki

University (No. 1108120943), and the animal procedures were

performed in accordance with institutional and national guide-

lines.

Radiation exposure and nicaraven administration
Whole-body radiation was performed by exposing the mice to

c-rays with a 137Cs source at a dose rate of 0.86 Gy/min with a

PS-3100SB c-ray irradiation system (Pony Industry Co., Ltd.

Osaka, Japan) [29]. To investigate the protective effect and related

mechanisms of nicaraven on radiation-induced injury in hemato-

poietic stem/progenitor cells, 12 mice were exposed to 1 Gy c-rays

daily for 5 days in succession (a total of 5 Gy) and were then given

intraperitoneal injections of nicaraven (100 mg/kg/day, Nicar-

aven group; n = 6) or saline only (Placebo group; n = 6),

respectively, soon after each exposure. The mice were sacrificed

2 days after the last exposure, and samples of urine, blood, and

bone marrow cells were collected and used for the following

experiments.

Measurements of nucleated cells and stem cells in the
peripheral blood

Samples of heparinized peripheral blood were collected, and the

number of nucleated cells in the blood was counted using a Nucleo

Counter cell-counting device (Chemotetec A/S, Denmark). To

measure the c-kit-positive (c-kit+) and CD34-positive (CD34+)

stem/progenitor cells, we isolated the nucleated cells from the

peripheral blood by density gradient centrifugation and then

labeled the cells with a PE-conjugated anti-mouse c-kit antibody

(eBioscience) or a FITC-conjugated anti-mouse CD34 antibody

(BD Bioscience) for 45 min. Respective isotype controls were used

as a negative control. After washing, quantitative flow cytometry

analysis was performed using a FACSCalibur (Becton Dickinson)

(30). We analyzed the acquired data using Cell Quest software

(Becton Dickinson).

Measurement of stem cells in the bone marrow
Bone marrow cells were collected from the femur and tibia, and

the mononuclear cells were isolated by density gradient centrifu-

gation [30]. The c-kit+ and CD34+ cells in the bone marrow

mononuclear cells were measured, as described above.

Colony-forming assay
The colony-forming capacity of the isolated cells was evaluated

using mouse methylcellulose complete medium, according to the

manufacturer’s instructions (R&D System). Briefly, 16105 periph-

eral nucleated cells or 36104 bone marrow mononuclear cells

were mixed well with 1 ml of medium, plated in 3-cm culture

dishes, and then incubated at 37uC in a 5% CO2 incubator. The

formation of colonies was observed under a microscope, and the

total number of colonies in each dish was counted after 9 days (for

bone marrow mononuclear cells) or 12 days (for peripheral blood

nucleated cells) of incubation. The mean number of colonies in

duplicate assays was used for the statistical analyses.

Immunocytochemistry
To detect the DNA damage, isolated bone marrow mononu-

clear cells were seeded on 4-well chamber culture slides (Nalge

Nunc International, Roskilde, Denmark) coated with 10 mg/ml

fibronectin (Invitrogen) at a density of 36106 cells/ml in IMDM

1640 medium supplemented with 10% fetal bovine serum

(HyClone), 100 units/ml penicillin, and 100 mg/ml streptomycin

(Gibco), and incubated at 37uC in 5% CO2. The cells were fixed

in 1% formaldehyde for 10 min after 7 days of culture. After

blocking with 2% bovine serum albumin, the cells were reacted

with anti-mouse 53BP1 antibody (Abcam), followed by a FITC-

conjugated secondary antibody. The nuclei were stained with

Hoechst 33258. The positively stained cells were observed under

fluorescence microscopy with 200-fold magnification, and more

than 150 cells were counted to calculate the percentage of cells

with 53BP1 foci in the nucleus.

Detection of intracellular and mitochondrial ROS
To elucidate the relevant mechanisms, we measured the

intracellular ROS levels based on the oxidation of 5-(and-6)-

chloromethyl-29,79-dichlorodihydrofluorescein diacetate, acetyl

ester (CM-H2DCFDA, Molecular Probes Inc.) to form the

fluorescent compound 29,79-dichlorofluorescein (DCF), as de-

scribed previously [29,31]. Briefly, freshly isolated bone marrow

mononuclear cells were incubated with 10 mM CM-H2DCFDA at

37uC for 30 minutes. After the cells were washed, the fluorescence

intensity in the cells was estimated using a FACSCalibur.

The mitochondrial ROS were analyzed with a MitoSOX Red

mitochondrial superoxide indicator, as described previously [29].

Briefly, freshly isolated bone marrow stem cells were incubated

with 5 mM MitoSOX Red (Molecular Probes Inc.) at 37uC for

30 minutes. After washing, the fluorescence intensity in the cells

was estimated using a FACSCalibur.

Measurements of 8-OHdG, TNF-a, and IL-6 levels in the
plasma and urine

We measured the concentrations of 8-oxo-29-deoxyguanosine

(8-OHdG), a marker of DNA oxidation, in the urine and plasma

using an ELISA kit (Nikken SEIL Corporation, Shizuoka, Japan),

according to the manufacturer’s instructions. The concentrations

of TNF-a and IL-6 in the plasma were measured with ELISA kits

(R&D Systems), as described previously [32]. The mean values of

duplicate assays with each sample were used for the statistical

analyses.

Statistical analyses
All results are presented as the means 6 SD. Statistical

significance between two groups was determined using Mann-

Whitney test (Dr. SPSS II, Chicago, IL). Differences were

considered significant when p,0.05.

Results

Nicaraven attenuated radiation-induced decreases in
peripheral blood nucleated cells and stem/progenitor
cells

Compared with the placebo treatment, the administration of

nicaraven significantly increased the number of nucleated cells in

the peripheral blood (p = 0.041; Fig. 1A), although this number

was still observed to be as low as approximately 10% of that of the

age-matched, non-irradiated healthy mice (16.464.26105/ml,

p,0.001 vs Placebo and Nicaraven groups). Furthermore, it was

shown that the administration of nicaraven also increased the

percentages of either c-kit+ or CD34+ cells in the peripheral blood

after radiation exposure (p = 0.015 and p = 0.002, respectively;

Fig. 1B.C).

Nicaraven Attenuates Radiation Injury
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Nicaraven significantly increased the number and
improved the function of hematopoietic stem/
progenitor cells in bone marrow

The total number of bone marrow mononuclear cells collected

each mouse was similar and there was not different between

groups. The percentages of c-kit+ and CD34+ cells were

significantly higher in freshly collected bone marrow mononuclear

cells from mice that were given nicaraven than those that received

a placebo (p = 0.002 and 0.002 vs. Placebo group, respectively;

Fig. 2). However, the percentage of c-kit+ and CD34+ stem/

progenitor cells in the mice that received nicaraven were still much

lower than that of non-irradiated healthy mice (2.7260.38% and

4.2860.12%, respectively).

We also performed a colony-forming assay to evaluate the

functional impairment of hematopoietic stem/progenitor cells in

the bone marrow. The formation of different types of colonies

from bone marrow mononuclear cells was clearly observed after 9

days of culture in mouse methylcellulose complete medium

(Fig. 3A). Although smaller size of colonies was observed in the

Placebo group than in the Nicaraven group, there was not

obviously difference in the types of colonies (lineage specificity)

between groups. By quantitative counting, we found that the total

number of colonies formed from bone marrow mononuclear cells

was significantly greater in the Nicaraven group than in the

Placebo group (p = 0.004, Fig. 3B). However, the numbers of

colonies in both the nicaraven- and placebo-treated mice were still

less than half of the non-irradiated healthy mice (92.068.6,

p,0.001). Otherwise, we did not detect any colony formation

within 12 days after seeding 16105 peripheral blood nucleated

cells from mice that received either nicaraven or placebo, but

approximately 10 colonies were formed after seeding the same

number of peripheral blood nucleated cells from the age-matched,

non-irradiated, healthy mice.

Nicaraven significantly reduced DNA damage of cells in
the bone marrow

We evaluated the DNA damage in the bone marrow cells based

on counting the formation of 53BP1 foci in the nuclei by

immunostaining analysis. A quantitative analysis showed that the

percentages of cells with 53BP1 foci in the nuclei were significantly

lower in the bone marrow cells collected from mice given

nicaraven than those that received a placebo (p = 0.025, Fig. 4).

However, the percentages of cells with 53BP1 foci in both the

nicaraven- and placebo-treated mice were much higher than that

of the non-irradiated healthy mice (12.565.1%).

Figure 1. Nucleated cells and stem/progenitor cells in the peripheral blood of mice after treatment. The number of nucleated cells in the
peripheral blood (A) was directly counted, and c-kit+ (B) and CD34+ stem/progenitor cells (C) in the peripheral blood were measured in the fraction of
the nucleated cells by flow cytometry. The open circles represent data from each mouse and the red lines indicate median values of each group.
doi:10.1371/journal.pone.0060023.g001

Figure 2. Stem/progenitor cells in the bone marrow of mice after the treatments. Bone marrow mononuclear cells were collected 2 days
after the last radiation treatment, and the c-kit+ (A) and CD34+ (B) stem/progenitor cells were measured by flow cytometry. The open circles
represent data from each mouse and the red lines indicate median values of each group.
doi:10.1371/journal.pone.0060023.g002
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Nicaraven did not significantly decrease the levels of
intracellular and mitochondrial ROS

As nicaraven is well recognized as a hydroxyl radical-specific

scavenger, we measured the levels of intracellular and mitochon-

drial ROS in the bone marrow cells. The intracellular and

mitochondrial ROS levels in the bone marrow cells obtained 2

days after the last radiation or drug treatment were unexpectedly

similar between the nicaraven- and placebo-treated mice (Fig. 5).

Nicaraven significantly decreased the urinary 8-OHdG
Low plasma levels of 8-OHdG were measured in both the

nicaraven- and placebo-treated mice. Consequently, we found no

significant difference between the two groups (p = 0.59, Fig. 6A).

In contrast, the urinary levels of 8-OHdG were significantly lower

in the Nicaraven group than in the Placebo group 2 days after the

last radiation and treatments (p = 0.026, Fig. 6B). The 8-OHdG

in plasma and urine of the non-irradiated healthy mice is not

detectable.

Nicaraven significantly decreased the levels of
inflammatory cytokines in the plasma

As a robust release of various inflammatory cytokines is

considered to indirectly contribute to radiation injury, we further

investigated whether nicaraven can protect against radiation

damage through the inhibition of the inflammatory responses

after radiation exposure. We found that the levels of both IL-6 and

TNF-a in the plasma were significantly decreased in mice that

were given nicaraven compared with those that received a placebo

(p = 0.002 and p = 0.009, Fig. 7). Both IL-6 and TNF-a is not

Figure 3. Colony-forming assay. Bone marrow mononuclear cells were collected 2 days after the last radiation treatment. Freshly isolated bone
marrow mononuclear cells were mixed in methylcellulose complete medium, and the colony formation was observed under microscopy at 9 days
after incubation. A) Different types of colonies, including CFU-GEMM, CFU-M, CFU-GM, and BFU-E were clearly formed from the bone marrow cells. B)
A significantly higher number of total colonies (.50 cells) was formed from the bone marrow cells of the mice that were given nicaraven than those
that received placebo. The open circles represent the mean of data from a mouse with duplicate assay. The red lines indicate the median values of
each group.
doi:10.1371/journal.pone.0060023.g003

Figure 4. DNA damage in bone marrow cells. Bone marrow cells from mice were seeded in 4-well culture slides and cultured for 7 days. The
DNA damage in the cells was estimated by immunostaining with an anti-53BP1 antibody. A) Representative images show the formation of 53BP1 foci
within the nuclei of some cells (arrowheads). B) Quantitative analysis shows that the percentages of cells with 53BP1 foci were significantly lower in
the Nicaraven group than the Placebo group. The open circles represent data from each mouse and the red lines indicate median values of each
group.
doi:10.1371/journal.pone.0060023.g004

Nicaraven Attenuates Radiation Injury
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detectable in the plasma of the non-irradiated healthy mice by

using the ELISA kit.

Discussion

In addition to the direct induction of DNA double-strand breaks

[1], ionizing radiation can trigger the releases of ROS and the

production of a multitude of inflammatory cytokines, which

indirectly contribute to the consequent damage to cells and tissues

[2–10]. Therefore, the scavenging of ROS and the suppression of

the inflammatory response are thought to be potential pharma-

cological interventions for mitigating radiation-induced injury. It

has been demonstrated that the intake of anti-oxidants can

attenuate radiation-induced injury [11–14], and amifostine, a

ROS-scavenging drug, has been approved by the FDA as a

cytoprotective adjuvant for cancer patients receiving radiothera-

pies [15]. However, the development of new protective and

therapeutic drugs for ionizing radiation has been particularly

emphasized in Japan since the Fukushima nuclear power plant

accident took place.

Nicaraven, a chemically synthesized compound produced by

Chugai Pharmaceutical Co Ltd., was originally recognized as a

powerful radical scavenger that effectively protects various tissues

or organs against injury, particularly ischemia-reperfusion injury

in the brain [17–25]. Considering the well-recognized anti-

oxidative properties and likely anti-inflammatory activities of

nicaraven, we examined the protective effects of nicaraven on

radiation injury. We found that post-radiation administration of

nicaraven effectively improved the radiation-induced decreases in

the number and colony-forming capacity of hematopoietic stem/

progenitor cells, indicating that post-radiation administration of

nicaraven may be beneficial for protecting against radiation-

induced injury, even after high-dose exposures. The number and

colony-forming capacity of hematopoietic stem/progenitor cells in

mice that received nicaraven remained at relatively low levels (less

than half of the levels in healthy, non-irradiated mice) 2 days after

the last radiation treatment, indicating that the post-administra-

tion of nicaraven significantly mitigated, but did not completely

prevent, radiation-induced injury after whole-body exposure to 1

Gy c-rays daily for successive 5 days.

Regarding the defense mechanisms by which nicaraven protects

against radiation-induced injury, we have found that nicaraven

significantly decreased the urinary levels of 8-OHdG, indicating

the effective mitigation of oxidative damage by the compound

after radiation. The reason that no statistically significant

Figure 5. Intracellular and mitochondrial ROS in bone marrow cells. Mice were exposed daily to 1 Gy c-rays for 5 days in succession, and
either nicaraven or a placebo was given after each exposure. The cells were collected 2 days after the last radiation treatment and then loaded with
10 mM CM-H2DCFDA or 5 mM MitoSOX Red at 37uC for 30 minutes. The intracellular ROS (A) and mitochondrial ROS (B) were detected as the mean
fluorescence intensity in all cells by flow cytometry. The open circles represent data from each mouse and the red lines indicate median values of
each group.
doi:10.1371/journal.pone.0060023.g005

Figure 6. The levels of 8-OHdG in the plasma and urine. The plasma 8-OHdG levels were very low and did not significantly differ between the
two groups (A), but the levels of urinary 8-OHdG were significantly lower in the mice that received nicaraven than in those that received a placebo
(B). The open circles represent the mean of data from a mouse with duplicate assay. The red lines indicate median values of each group.
doi:10.1371/journal.pone.0060023.g006

Nicaraven Attenuates Radiation Injury
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difference was shown in the plasma concentrations of 8-OHdG

between the placebo- and nicaraven-treated groups may be due to

the relatively low levels of 8-OHdG obtained in the former group.

However, the levels of ROS in the bone marrow cells did not differ

between the mice that received either nicaraven or a placebo 2

days after the last radiation or drug treatment. This observation

may be explained in terms of the following hypotheses. First, it is

possible that the time point of measurement in this study was too

late to precisely detect the difference in ROS levels between the

two experimental groups. Otherwise, because the abrupt release of

ROS was known to be brought about by various stimulations, the

measured ROS levels in the isolated bone marrow cells in this

study would not represent their real ROS levels within the bodies

of mice because a robust release of ROS in the bone marrow cells

might be induced by artificial factors during the measuring

processes, including the mechanical stresses of cell collection and

isolation, the changes of temperature (37uC in the body vs. 4uC in

a test tube sometimes), and the different oxygen tensions (1,3%

O2 in bone marrow vs. 20% O2 in a test tube). Therefore, it

remains unknown at the present time whether nicaraven decreases

ROS in cells in the in vivo microenvironment, especially at an

earlier phase after nicaraven administration, and answering this

question requires further investigation. A recent study reported

that increased ROS levels are not necessarily correlated with

functional impairment of hematopoietic stem cells [33]. Taken

together, the decreased levels of urinary 8-OHdG by nicaraven

strongly suggest that the protective effects of nicaraven on

radiation-induced injury may be related at least partly to its

anti-oxidative properties.

Increasing evidence has shown that the release of a multitude of

cytokines in response to radiation exposure can contribute to the

damage to the cells/tissues [6–10]. As nicaraven has been found to

reduce the infiltration of neutrophils into injured tissues [24], we

wondered whether nicaraven could mitigate radiation-induced

injury through the suppression of the inflammatory response. By

measuring the levels of inflammatory cytokines, we found that the

administration of nicaraven significantly decreased the levels of

two major inflammatory cytokines, IL-6 and TNF-a, in the plasma

of mice exposed to radiation. This observation suggests that

nicaraven protects against radiation injury by inhibiting the release

of inflammatory cytokines. However, further experiments would

be needed to confirm the direct anti-inflammatory activity of

nicaraven because the attenuation of radiation-induced injury

through the scavenging of oxygen radicals by nicaraven may also

be attributable to the decreased levels of inflammatory cytokines.

Of particular interest is the finding that the urine volume in the

mice that received nicaraven was found to be more than double

that of the mice that received placebo (data not shown). As

nicaraven has previously been found to protect against ischemic

injury of the kidney [22], we wondered whether any radiation-

induced histological abnormalities in the kidney were mitigated by

treatment with nicaraven. A simple hematoxylin and eosin staining

did not demonstrate any obvious abnormalities within the kidney

in mice that received either nicaraven or placebo (data not shown)

2 days after a total c-ray exposure of 5 Gy (1 Gy/day for 5 days in

succession). Although electron microscopy and immunohistolog-

ical analyses may reveal certain pathological changes in the

kidney, our speculation at the present time is that the higher urine

volume obtained in the nicaraven-treated mice is related to the

improvement of hypoperfusion of blood flow in the kidney [22,34].

This study has several limitations. First, we only measured the

percentages of c-kit- and CD34-positive cells in freshly-collected

cells and counted the total formed number of all colonies after cell

culture. It is still unclear whether the protective effect of nicaraven

will be differed among different types of stem/progenitor cells,

especially to identify the protective effect on the rare population of

long-term hematopoietic stem cells (Lin2/Sca1+/c-Kit+, LSK

cells). Second, although the protective effects of nicaraven against

radiation-induced injury likely associated with the anti-oxidative

and anti-inflammatory activities, further study will be needed to

understand the relevant molecular mechanism by an in vitro

approach. Otherwise, it is also very important to compare the

protective effect against radiation injury between nicaraven and

amifostine, a cytoprotective drug clinically used for radiotherapies

[15].In summary, we have clearly demonstrated that the

administration of nicaraven significantly increased the number,

improved the colony-forming capacity, and diminished the DNA

damage in hematopoietic stem/progenitor cells in mice after a

total c-ray exposure of 5 Gy. Furthermore, the mechanisms on the

protective effects of nicaraven against radiation-induced injury are

likely to be related at least partly to the anti-oxidative and anti-

inflammatory properties of the compound. Many antioxidants

have been shown to effectively attenuate radiation-induced injury

[11–14]. Although we have not yet compared the protective

potency of nicaraven on radiation injury with those of other

antioxidants and drugs, nicaraven may be a potentially powerful

new protective treatment for radiation-induced injury. As phase

Figure 7. Inflammatory cytokines in the plasma. The plasma was collected 2 days after the last radiation treatment, and the levels of the
inflammatory cytokines IL-6 (A) and TNF-a (B) in the plasma were measured by ELISA. The open circles represent the mean of data from a mouse with
duplicate assay. The red lines indicate median values of each group.
doi:10.1371/journal.pone.0060023.g007
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III studies of nicaraven for the treatment of acute cerebrovascular

diseases were fully completed with an excellent safety profile [18],

these clinical findings, as well as the experimental data shown in

the present study, deserve further clinical investigation to ascertain

the potential benefits of nicaraven for the treatment of radiation

injury.
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