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With the help of a hydrothermal approach in this study, we could provide
flower-like nanostructures (NSs) of zinc oxide (ZnO) doped with Tb (FL-NS
Tb3+/ZnO). Then, FL-NS Tb3+/ZnO morphology was investigated by energy-
dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-
ray powder diffraction (XRD), and map analysis. The results revealed higher
activity centers and porosity of this nanocomposite, which were followed by
acceptable electrochemical function. Hence, it can be utilized for fabricating
an electrochemical sensor with an appropriate response for the simultaneous
determination of kynurenic acid (KYN) and tryptophan (TRP). However, as
compared with the modified carbon paste electrode (FL-NS Tb3+/ZnO/CPE),
the bare carbon paste electrode (BCPE) exhibited a weak response toward
KYN and TRP but the modified electrode was followed by a high current
response for KYN and TRP at a potential 0.35 and 0.809 V. Therefore, cyclic
voltammetry (CV) was applied in optimal experimental conditions to study the
electrochemical behaviors of KYN and TRP over the surface of the proposed
modified electrode. Moreover, we used differential pulse voltammetry (DPV)
for quantitative measurements. It was found that this new modified electrode
linearly ranged from 0.001 to 700.0 μM, with detection limits of 0.34 nM and
0.22 nM for KYN and TRP, respectively. In addition, KYN and TRP in real
samples can be analyzed by this sensor, with a recovery of 97.75%−103.6%
for the spiked KYN and TRP in real samples.
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1 Introduction

According to studies, tryptophan (TRP) is one of the major 20 essential amino acids
provided by a diet. Unlike the other existing amino acids, TRP circulates in plasma and
blood, generally attached to albumin. In fact, 10%–20% of this amino acid occurs as free form
in the plasma (Pardridge, 1979; Floc’H et al., 2011). Its metabolization occurs in mammals
through various pathways, and one of the basic pathways is kynurenic acid (KYN) in the
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central and peripheral systems. Researchers have also observed the
involvement of enzymes catalyzing reactions in KYN in several
disorders and illnesses, wherein an imbalance in the level of KYN
and TRP has been shown. Moreover, TRP degradation via cytokine-
induced indoleamine 2,3-dioxygenase (IDO) to formyl kynurenine
increased in the case of the activation of the cellular immune system
(Vazquez et al., 2001; Ruddick et al., 2006). KYN synthesis is
catalyzed by kynurenine aminotransferase (KAT) which is one of
the endogenous antagonists at the alpha 7 nicotinic cholinergic
receptors and glycine site of N-methyl-d-aspartate (NMDA), with a
fundamentally neuroactive metabolite whose damage is linked to
numerous acute disorders and illnesses in the nervous system (Rossi
et al., 2008). In addition, KYN contributes to hypertension or high
blood pressure and diabetes pathogenesis, and controlling its
activities is of high significance. Thus, measuring KYN and TRP
in plasma has been attractive for timely diagnoses of the respective
illnesses (Andrzejewska-Buczko et al., 2001; Zhao et al., 2010).

Scholars have presented numerous HPLC methods for
determining KYN and TRP in biological samples. In general,
fluorescence detection has been applied for measuring TRP and
KYN and other approaches such as coulometric detection and
capillary electrophoresis with laser-induced fluorescence
determination have been employed for detecting KYN and TRP;
however, various matrices influence their usability (Hansen and
Lunte, 1997; Maneglier et al., 2004; Kawai et al., 2007; Ma et al.,
2009; Soto et al., 2011; Van et al., 2014). Researchers mentioned
disadvantages such as laborious analysis, costly processes,
complications, exposure to diverse interferences, derivatization
reactions, and pollution (Maaref et al., 2018; Farvardin et al.,
2020; Zheng et al., 2020; Jahani et al., 2022; Tang et al., 2022;
Zhang et al., 2023; Ren et al., 2023; Özcan et al., 2023). It was
demonstrated that electrochemical approaches are efficient
analytical procedures with the following characteristics: easy to
use, rapid response, inexpensiveness, and portability (Akbari et al.,
2020; Iranmanesh et al., 2020; Moarefdoust et al., 2021;
Antherjanam and Saraswathyamma, 2022; Zhang et al., 2023;
Cai et al., 2023; Tang et al., 2023; Wan et al., 2023). In fact,
scholars have increased the sensitivity for detecting the
electroactive analytes using chemical modifiers and a wide
range of nanomaterials have been applied to determine the
analytes (Wu et al., 2023; Kambale and Lokhande, 2023; Zhao
et al., 2023; Taherizadeh et al., 2023; Guo et al., 2023; Ghasemi
et al., 2023).

As mentioned in the above paragraphs, ZnO has been realized
as one of the semiconductors with the most acceptable
electrochemical and optical features. Various morphologies,
including wires, rods, sheets, flowers, and tubes can be used to
synthesize nanosized ZnO (Song et al., 2019). Research has
shown that the greater specific surface area of ZnO
nanoflowers with a three-dimensional (3D) structure is
appropriate for very good electrochemical functions and ion
exchange (Zhang et al., 2020). Even though nanosized ZnO is

FIGURE 1
XRD pattern of FL-NS Tb3+/ZnO.

FIGURE 2
(A) FESEM image, (B) and (C) High resolution FESEM image of FL-NS Tb3+/ZnO.
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experiencing improvement, it suffers from some limitations in
the electrochemical sensors, which is caused by its lower electrical
conductivity. Doping with rare earth metals has been shown to be
a main approach for improving the electrical conductivity of ZnO
(Sharma and Sahay, 2023).

For the first time, we have synthesized and characterized an
effective material, flower-like nanostructures (NSs) of ZnO doped
with Tb (FL-NS Tb3+/ZnO), to modify carbon paste electrodes
(CPEs). In addition, a literature review showed no studies on the
electroanalysis and simultaneous detection of kynurenic acid (KYN)
and tryptophan (TRP) exploiting modified electrodes with novel
nanocomposites. As seen in the related steps for the modified
electrode, FL-NS Tb3+/ZnO exhibited a greater conductivity and
active area, with faster electron transport over the electrode surface,
which promoted a response of the CPE signal. Moreover, differential
pulse voltammetry (DPV), electrochemical impedance spectroscopy
(EIS), and cyclic voltammetry (CV) were chosen to monitor the
modification process of the electrode and DPV and CV were
employed to examine KYN and TRP electro-oxidation over the FL-

NS Tb3+/ZnO/CPE surface. Finally, we studied the function of FL-NS
Tb3+/ZnO/CPE in terms of the simultaneous detection of both analytes.

2 Experimental design

2.1 Instruments

In this stage, we utilized an electroanalyzer made by SAMA
500, Isfahan, Iran for chronoamperometric and voltammetric
measurements and EIS. This 3-electrode cell was made up of a
platinum wire as the counter electrode, Ag/AgCl (saturated KCl) as
the reference electrode, and a carbon paste electrode as a working
electrode. Moreover, X-ray powder diffraction (XRD) data were
gathered using a Philips PC-APD X-ray diffractometer made in the
Netherlands and the modifier was described by energy dispersive
spectroscopy (EDS) and scanning electron analysis (EM 3200 SEM
and KYKY, provided from China). Finally, we used a digital
pH meter (ELICO LI 120) for the pH value measurement.

FIGURE 3
EDX spectra and elemental mapping of FL-NS Tb3+/ZnO.
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2.2 Chemicals

Graphite powder, ethylene glycol, zinc nitrate, sodium
dihydrogen phosphate, disodium hydrogen phosphate, paraffin
oil, terbium chloride, sodium hydroxide, polyvinylpyrrolidone,
and phosphoric acid, made by Merck Co., were the chemicals
chosen for this research. It should be noted that each chemical
had high analytical purity (≥99% with the exception of phosphoric
acid with 85% purity). We applied double-distilled water to prepare
the solution.

2.3 Cells and electrochemical detection

Electrochemical measurements were done using a 3-electrode
cell in a computer-connected electrochemical system, which
included a platinum wire as the auxiliary electrode, unmodified
and modified CPEs as the working electrodes, and an Ag/AgCl
electrode as the reference electrode.

2.4 Preparation of the solution

As mentioned above, we employed double-distilled water in
each stage of the experiments for washing dishes and preparation of
the aqueous solution. Then, the weighted KYN and TRP were added
to fresh distilled water in volumetric flasks to prepare various
concentrations of KYN and TRP. Furthermore, we prepared fresh
buffer and drug solutions daily and a specific concentration of the
above materials was diluted using a buffer solution at a given pH to
prepare the sample solution of the blood serum, and the standard

addition method was utilized to transfer a certain content to the
electrochemical cells for voltammetric measurements. Then, we
initially cleaned the whole container with a solution of nitric acid
and water (1: 1), and the glassware was washed with deionized and
distilled water.

2.5 Synthesis of the flower-like NSs of ZnO
doped with Tb

To provide the flower-like NSs of ZnO doped with Tb, 0.1 g of
terbium chloride and 2 g of zinc nitrate and PVP were dissolved in
100 mL of ethylene glycol. After stirring, we transported the
obtained mixture to an autoclave at 200°C for 12 h. In the next

FIGURE 4
EIS diagrams and the equivalent circuit for 0.1 mM [Fe(CN)6]

3-

solution at (A) bare CPE, (B) FL-NS ZnO/CPE, and (C) FL-NS Tb3+/ZnO/
CPE in aqueous 0.1 M KCl. Frequency ranges from 100 KHz to 0.1 Hz.

FIGURE 5
(A) CVs of FL-NS Tb3+/ZnO/CPE in the presence of 0.3 mM
[Fe(CN)6]

3− solution in aqueous 0.1 M KCl at various scan rates (from
inner to outer curve): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, and 300 mV/s. (B) The plot of peak currents vs. υ1/2.

TABLE 1 Surface area of the electrodes.

Electrode Slope Area (A, cm2)

CPE 24.01 0.112

FL-NS ZnO/CPE 48.69 0.228

FL-NS Tb3+/ZnO/CPE 64.20 0.301
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step, filtration of the precipitate and washing with ethanol and water
were performed 3 times. The calcination of the precipitate was done
at 500°C for 4 h, and then it was completely dried at 80°C for a 12 h
period.

2.6 Electrode preparation

2.6.1 CPE
In this step, we mixed graphite powder and paraffin oil at the

ratio of 30:70 using a CPE and squeezed the paste into an insulin
syringe with an aperture diameter of 2 mm. Then, for refreshing the
electrode surface, a syringe piston was applied to eliminate 1 mm of

the paste, and polishing was performed on a clean piece of paper
through vertical abrasion. After that, distilled water was used for
washing its surface for additional measurements and a thin copper
wire was inserted in the CPE from the syringe end to establish an
electrical link between the electroanalyzer and the obtained working
electrode.

2.6.2 CPE modified with the NSs
For this step, we utilized a glass and a balance to weigh 0.5 g of

graphite, added it to a mortar, and powdered it for 20 min. Then,
0.004 g of the FL-NS Tb3+/ZnO was added and mixing was done for
an additional 20 min to achieve the desired paste. Then, 7 drops of
paraffin were poured into it to make this paste more homogeneous
and softer. Finally, the electrodes were labeled.

2.7 Measurement of the real samples of KYN
and TRP

Upon the preparation of the blood serum or urine samples, we
poured 0.9 mL of 15 w/v % solution of Zn sulfate/acetonitrile into
1 mL of the sample of human plasma or urine and kept the test tube
at 40°C for 15 min. Furthermore, solution centrifugation was
performed to settle the proteins to reach a fully transparent
blood serum or urine sample. Afterward, the buffer was poured
for a 5-fold dilution of the blood serum or urine sample, and various
amounts of KYN, TRP, and standard solution were poured into the
final diluted blood serum. Finally, the DPVs were shown, and the
percentage of the recovery of KYN and TRP was specified using the
standard addition approach.

2.8 Electrochemical approach

Cyclic voltammetry (CV), chronoamperometry (CHA), and
differential pulse voltammetry (DPV) were applied for the
electrochemical study and quantification of KYN and TRP,
respectively.

CV was performed in a phosphate buffer (0.1 M, pH 7.0) with
and without the presence of KYN and TRP, starting with the
equilibrium potential in the anodic direction using a potential
window of −0.5–1.2 V at different scan rates. Anodic peaks were
analyzed in order to establish the relationship between the
maximum current intensity of the anodic peaks and the scan rate.

Under optimized conditions, CHA experiments were carried out
at an applied potential of 0.40 and 0.86 V versus SCE using different
concentrations of KYN and TRP, respectively.

TABLE 2 The effect of interferences on the measurement of 50.0 µM of KYN and TRP with FL-NS Tb3+/ZnO/CPE in buffer phosphate 0.1 M with pH = 7.0.

Species The molar ratio of interference species, α, to the concentration of KYN and TRP

Na+, K+, Mg2+, Ca2 1,000

NO3
−, CO3

2–, Cl− 1,000

Ascorbic acid, Oxalate, Glycine, Fructose, Sucrose, Glucose, Lactose 800

Uric acid, Dopamine, Acetylsalicylic acid 700

FIGURE 6
CVs of (A) FL-NS Tb3+/ZnO/CPE in the absence of analyte, (B)
bare CPE, (C) FL-NS ZnO/CPE, and (D) FL-NS Tb3+/ZnO/CPE in
presence of (A) KYN (250.0 µM) and (B) TRP (150.0 µM) in 0.1 M PBS
(pH 7.0). In all cases, the scan rate was 50 mV s−1.
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In order to achieve the higher analytical response (anodic
current), the optimal conditions for DPV measurements were as
follows: PBS, pH of 7.0, modulation amplitude of 0.02505 V,
modulation time of 30 ms, interval time of 200 ms, step potential
of 10 mV, initial potential = 100 mV, and end potential of 950 mV.
To achieve the DP voltammograms of KYN and TRP, appropriate
volumes of the stock solutions of drugs were added to the cell
containing supporting electrolytes to a total volume of 25 mL.

3 Results and discussion

3.1 Structural examination

The XRD in Figure 1 shows the crystalline nature of the
nanoflowers in that a 2θ peak was observed at 32.56° (100), 34.83°

(002), 36.415° (101), 47.14° (102), 56.22° (110), 63.59° (103), 67.75°

(200), 68.63° (112), 69.73° (201), 71.70° (004), and 77.22° (202); however,
we did not observe any characteristic peak for other impurities such as
Zn (OH)2 and metallic Zn, reflecting the product purity. There was a

complete correlation between the peaks and polycrystalline hexagonal
wurtzite-structured ZnO; that is, three pronounced peaks (100), (002),
and (101) at 2θ = 32.56°, 34.83°, and 36.41° that could be compared to
the typical XRD pattern of the standard ZnO (JCPDS 89–7,102)
(SudapalliShimpi, 2023). It should be noted that ZnO NF had
higher intensity and narrower peaks, resulting in greater crystallinity.
In Figure 1, a clear shift of the diffraction peaks towards a higher angle
than pure ZnO is shown, demonstrating the significantly greater ionic
radius of Tb (237 p.m.) in comparison to Zn (139 nm) that may be due
to the minor doping of Tb ions into the ZnO lattice, leading to an
improvement in the lattice parameter in the Tb-doped ZnO crystallites.
Researchers have estimated these minor changes in the Tb replacing Zn
ions in the lattice without any variations in the crystal lattice
(Taherizadeh et al., 2023).

In this step, FESEM was used for the characterization of the
morphology of the as-synthesized Tb-doped ZnO nanoflowers.
Figure 2A shows the flower-like 3D morphology of the ZnO
nanoflakes formed in the petals in the FESEM images at a lower
magnification. Consequently, high-density growth was observed
because of the nanoflakes’ self-assembly. Moreover, Figures 2B, C

FIGURE 7
(A,C)CVs of FL-NS Tb3+/ZnO/CPE in pH 7.0 in the presence of KYN (150.0 µM) and TRP (55.0 µM) at various scan rates (from inner to outer curve): 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, and 900 mV/s. (B,D) The plots of peak currents vs. υ1/2.
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shows FESEM images at high magnification, containing uniform
nanoflowers. As shown in Figures 2A, C single nano-flower
dimension was ~1–3 µm with multiple nanoflakes with radial
growth from the center in symmetry so that most of the
nanoflowers were associated with each other.

EDAX analysis, shown in Figure 3, proved the presence of Tb, O,
and Zn in the ZnO nanoflowers. As shown in Figure 3, Tb, O, and Zn
had matching elemental mapping, with a smooth distribution of
these three elements in the sample according to the results obtained
from the elemental mapping.

3.2 Electrochemical behaviors of the
proposed modified electrodes

According to our research design, EIS was applied to show the
variations in the electrochemical behaviors of the modified

electrode surface. Studies in the field have shown the ability of
polymers, semiconductor materials, and nanomaterials coated on
the surface of the electrode to change the transport resistance and
double–layer capacitance of the corresponding electrode. Hence,
this method could be used to achieve more data on the variations in
the surface impedance of the electrodes in the course of the
modification process of the electrode. The features of the
electrochemical impedance of the modified FL-NS ZnO/CPE,
FL-NS Tb3+/ZnO/CPE, and unmodified CPE in the solution
with 1 mM of redox pair KCl 0.1 M and [Fe(CN)6]

3−/[Fe(CN)6]
4− ranged between 0.1 Hz and 100 kHz, shown as the Nyquist curve
(Zre versus Zim) in Figure 4. The equivalent circuit was designed
and implemented to understand and evaluate the individual
components of the EIS system. The resistance of the solution
(Rs), double layer capacitance at the surface of the electrode (CdI),
charge transfer resistance (Rct), and Warburg resistance (W) were
simplified in the Randles equivalent circuits, as shown in Figure 4.

FIGURE 8
(A) Chronoamperograms obtained at FL-NS Tb3+/ZnO/CPE in 0.1 M PBS (pH 7.0) for different concentrations of KYN. The numbers 1–4 correspond
to: 1.0, 1.5, 2.0, and 2.5 mM of KYN. (B) Plots of I vs. t−1/2 obtained from chronoamperograms 1–4. (C) Plot of the slope of the straight lines against KYN
concentration. (D) As (A) for different concentrations of TRP. The numbers 1–4 correspond to: 0.1, 0.125, 0.3, and 0.35 mM of TRP. (E) Plots of I vs. t−1/2

obtained from chronoamperograms 1–4. (F) Plot of the slope of the straight lines against TRP concentration.
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Warburg resistance is the result of a diffusion process occurring at
the electrode–electrolyte interface. As can be observed in the
Nyquist diagram, the high resistance of the charge transfer for
the unmodified CPE (Figure 4 (curve a)) resulted from the reduced
transfer rate of the charge and mass on the surface of the electrode
(792 Ω). Moreover, the electron transfer kinetics in FL-NS ZnO
[Figure 4 (curve b)] were enhanced in the presence of the modifier
in the electrodes and decreased the transport resistance of the
charge (408 Ω). Additionally, the charge transfer was considerably
enhanced around the modified electrode with the FL-NS ZnO
mixture and Tb3+ (Figure 4 (curve c)) which could related to the
higher conductivity of the modifier (218 Ω).

3.3 Specific surface area of the modified
electrode

According to the research design, the Randles-Sevcik equation
for a quasi-reversible electrochemical process (Eq. 1) and the CV

were employed to calculate the effective surface area (in cm2) of
electrode A. Hence, we used the CV of the soluble 0.3 mM of
[Fe(CN)6]

−3/−4 with the diffusion coefficient 7.6 × 10−6 (Bard and
Faulkner, 2001):

Ip � ± 2.63 × 105( ) n3/2 AD1/2 C v1/2 (1)
where n stands for the number of electrons transported in the
reduction and oxidation processes of [Fe(CN)6]

−3/−4 (=1), D refers to
the diffusion coefficient in cm2/s, and C represents the
[Fe(CN)6]

−3/−4 concentration (mol/cm3). The scanning rate and
current are represented by V/s and A. From the slope of the plot
of Ip vs. ν1/2, the surface area of the unmodified CPE was found to be
0.112 cm2 and for the FL-NS ZnO/CPE and FL-NS Tb3+/ZnO/CPE,
the calculated surface areas were 0.228 cm2 and 0.301 cm2 (Figure 5;
Table 1). The surface area of the FL-NS Tb3+/ZnO/CPE was more
significant, which can be attributed to the presence of Tb3+ and FL-
NP ZnO that led to high electrical conductivity and the specific
surface area of the modified electrode.

FIGURE 9
(A,C) DPVs of the KYN and TRY at the FL-NS Tb3+/ZnO/CPE in PBS (pH 7.0) at a scan rate of 50 mV s−1, respectively, Concentrations from inner to
outer of curves: (0.001, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, and 700.0 μM). (B,D) Plots of I vs.
Concentrations.
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3.4 Electrochemical behaviors of KYN and
TRP over the modified and unmodified
electrode surface

For this step, CV was applied to assess the electrochemical
behaviors of KYN and TRP over the surface of the unmodified
CPE, FL-NS Tb3+/ZnO/CPE, and FL-NS ZnO/CPE in 0.1 M PBS
with a pH of 7.0 (Figure 6). Moreover, a solution of KYN
(250.0 µM) and TRP (150.0 µM) in the PBS was added to the
electrochemical cells, separately. See Figure 6 for the oxidation
peak current of KYN and TRP with the peak oxidation potential
of the solution over the electrodes’ surfaces. As seen in Figure 6,
these voltammograms exhibited an oxidation peak for KYN and
TRP at 0.54 V and 1.001 V for the unmodified CPE, which
shifted to 0.350 V and 0.809 V for FL-NS Tb3+/ZnO/CPE,
respectively. Different currents were observed for the various
electrodes. The currents for the FL-NP Tb3+/ZnO/CPE and FL-
NP ZnO/CPE were 6.7 and 4.86 times greater compared to the
unmodified CPE. The results indicate the simultaneous effect of
Tb3+ and FL-NP ZnO as modifiers in improving the KYN and
TRP peak currents and thus increasing the sensitivity of the
proposed method.

3.5 Optimization of the modifier amount

To achieve the best response in the electrochemical
measurement of KYN and TRP, the amount of FL-NS Tb3+/ZnO
used as a modifier in preparing carbon paste electrodes was
optimized. For this purpose, electrodes with values of
0.002–0.006 g of FL-NS Tb3+/ZnO were prepared and placed in a
0.1 M phosphate buffer solution at a pH of 7.0 tomeasure 40.0 μMof
KYN solution and 35.0 μM of TRP solution by DPV. The results
indicated that 0.004 g of FL-NS Tb3+/ZnO has the highest current in
the measurement of KYN and TRP.

3.6 Determination of the effects of the
potential scan rate on the KYN and TRP
oxidation

It should be noted that the potential scan rate has been
introduced as a major variable employed in electrochemistry for
investigating the oxidation of the samples, the reaction mechanism
of reduction, or obtaining the kinetic variable. In this step, we
adjusted the potential scan rate of the KYN and TRP oxidation over
the FL-NS Tb3+/ZnO/CPE surface at 10–900 mV/s but we used CV
to determine its effect in 0.1 M PBS (pH = 7.0). See Figures 7A,C for
more information. With the enhancement in the scanning rate, it
was found that the current increased, and Figures 7B, D shows the
current curve to ν1/2 (square of the scan rate), depicting a linear
relationship based on Eqs 2, 3. As seen, the samples’ diffusion limits
the oxidation reaction of KYN and TRP, respectively.

Ip � 1.5434 ν1/2 − 0.0302 R2 � 0.9992( ) (2)
Ip � 0.741ν1/2 − 2.0752 R2 � 0.9993( ) (3)

3.7 Electrocatalytic oxidation of KYN and
TRP using chronoamperometry

Experts in the field use chronoamperometry to measure the
diffusion coefficient of electroactive samples. According to this
approach, a potential is applied to the static electrode with a
specific floating area in a solution with an electro-active
compound at a given concentration. Then, the working electrode
potential is applied to the diffusion platform of the electroactive
samples, and a current–time dependence occurs. There was a
relationship between the current–time curve and variations in the
concentration gradient near the electrode surface. As time increased,
the diffusion layer widened and inhibited the electroactive
compound from approaching the surface of the electrode by

TABLE 3 Performance comparison of FL-NS Tb3+/ZnO/CPE for the simultaneous determination of KYN and TRP.

Method Modifier Linear range (µM) Detection limit Ref.

KYN

High-performance liquid chromatography - 1.0–10.0 µM 0.03 µM Zhao et al. (2010)

High-performance liquid chromatography - 0.02–1.0 (µg/mL) 6.0 (ng/mL) Du et al. (2018)

Adsorptive stripping Voltammetry - 2.5 nM-250.0 µM 1.72 nM Furlanetto et al. (1997)

Voltammetry Metal-organic frameworks, MIL-101(Cr) 0.1–150.0 17.0 nM Bornaei et al. (2023)

Voltammetry FL-NS Tb3+/ZnO 0.001–700.0 0.34 nM This work

TRP

High-performance liquid chromatography - 10.0–100.0 µM 0.4 µM Zhao et al. (2010)

High-performance liquid chromatography - 0.2–20.0 (µg/mL) 5.0 (ng/mL) Du et al. (2018)

Voltammetry Zinc oxide nanoparticles 10.0–40.0 µM 0.57 µM Shruthi Vishwanath et al. (2023)

Voltammetry Poly (9-aminoacridine) 5.0–200.0 µM 0.035 µM Yang et al. (2022)

Voltammetry FL-NS Tb3+/ZnO 0.001–700.0 0.22 nM This work
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FIGURE 10
(A) DPVs of FL-NS Tb3+/ZnO/CPE in 0.1 M PBS (pH 7.0) containing different concentrations of KYN and TRP (from inner to outer) mixed solutions of
Eq. 1 20.0 + 15.0; (2) 30.0 + 20.0; (3) 40.0–25.0; (4) 50.0–30.0; (5) 60.0 + 35.0; (6) 70.0 + 45.0; (7) 80.0 + 50.0; (8) 90.0 + 55.0; and (9) 100 + 60.0 μMKYN
and TRP, respectively, (B) Plot of the peak currents as a function of KYN concentration, and (C) Plot of the peak currents as a function of TRP
concentration.

TABLE 4 Determination of KYN and TRP in real samples. All the concentrations are in μM (n = 5).

Sample Spiked Found Recovery (%) R.S.D. (%)

KYN TRP KYN TRP KYN TRP KYN TRP

Human blood serum 0 0 - - - - - -

8.0 6.0 7.9 6.2 98.7 103.6 1.7 2.6

16.0 12.0 16.2 12.1 101.2 100.8 2.3 2.8

Urine 0 0 - - - - - -

20.0 15.0 20.2 14.8 101.0 98.7 3.1 1.8

40.0 30.0 39.1 30.1 97.75 100.3 2.9 2.1

Legends for the Figures.
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decreasing the concentration slope of the profile. Hence, the current
intensity in a flat electrode decreased with time (Cottrell Equation).
Based on the Cottrell Equation, the emission current from the
electrochemical reaction of an electroactive sample would be
followed by Eq. 4 (Bard and Faulkner, 2001):

I � nFAD1/2Cbπ−1/2t−1/2 (4)
where D represents the diffusion coefficient (cm2/s), C refers to the
concentration of the electroactive compound in terms of mol/cm3,
and n refers to the stoichiometric number of electrons involved in
the reaction (Supplementary Figure S1). In the case of plotting the
flow changes with the reverse square time for a chronoamperogram,
the slope equals nFACD1/2/π1/2, in which knowledge of C, F, n, and A
can help to calculate the diffusion coefficient. We also examined the
oxidations of KYN and TRP on the FL-NS Tb3+/ZnO/CPE surface
through chronoamperometry (Figures 8A, D) and the current
diagram in terms of t−1/2 was found to be linear for various
concentrations (Figures 8B, E). Figures 8C, F depict the charts’
slope for diverse concentrations, with diffusion coefficients of 1.02 ×
10−6 cm2/s and 1.15 × 10−6 cm2/s for KYN and TRP, respectively.

3.8 The analytical function of the modified
electrode in detecting KYN and TRP

As mentioned above, we employed DPV for the evaluation and
determination of small concentrations of KYN and TRP. Figure 9
represents the DP voltammograms of the FL-NS Tb3+/ZnO/CPE
surface in the optimum conditions that ranged from 0.001 to
700.0 μM. Eqs 5, 6 give the linear relationship of Ipa and the
concentrations:

I μA( ) � 0.0575CKYN μM( ) + 0.0595 R2 � 0.9999( ) (5)
I μA( ) � 0.0488 CTRP μM( ) + 0.0417 R2 � 0.9998( ) (6)

The limit of detection (LOD) of this new approach, obtained
from Eq. LOD = 3Sb/M [so that M represents the slope of the
calibration curve, Sb stands for the blank standard deviation (SD)],
was found to be 0.34 nM and 0.22 nM for KYN and TRP,
respectively. Hence, this performance and greater sensitivity
resulted from the synergistic effect of FL-NS Tb3+ and ZnO,
increasing the transport rate of electrons and detecting the
limited levels of KYN and TRP.

3.9 Selectivity of the modified electrode in
relation to KYN and TRP

In this step, we determined the impact of numerous interference
samples (α) in the real samples (Table 2) on the potential and peak
current of the DP voltammograms for investigating the FL-NS Tb3+/
ZnO/CPE selectivity to KYN and TRP. Then, the DPV of 50.0 μM
KYN and TRP were recorded five times in the presence of α with
100 times the concentration in comparison with KYN and TRP. The
next step addressed the comparison of the average of the peaks Ep
and IP with the KYN and TRP peaks Ep and IP in the absence of α. In
the case of ˂5% Ep and IP in the presence of α compared to its
absence, the interference samples and the above stages continued to

reach a 5% difference. The interference samples were chosen
according to the common molecules and ions in the drug
samples and biological fluids. The α samples were not interfered
with when measuring KYN and TRP, revealing the very good
selectivity of FL-NS Tb3+/ZnO/CPE to both drugs and their
probable measurement in the real samples.

3.10 Simultaneous detection of KYN and TRP

It is widely accepted that simultaneous measurements of the
medicines using a modern technique by a new electrode could
exhibit acceptable functions in real samples. Hence, we assessed
the function of the FL-NS Tb3+/ZnO/CPE electrode in
simultaneous measurement of KYN and TRP (Figure 10A).
With regard to Figures 10B, C, concentration of KYN and
TRP were changed from 20.0-100.0 μM for KYN and 15.0-60.0
for TRP. As shown by Figure 10A, no changes were observed in
the potential of KYN and TRP and peak current in the presence of
each of them. Thus, an FL-NS Tb3+/ZnO/CPE electrode could be
used for measuring samples of both KYN and TRP without
interfering with each other.

3.11 Reproducibility and stability

To examine the reproducibility of the preparation process of the
electrode, we conducted measurements in 50.0 μM solutions of KYN
and TRP using five modified electrodes with the same DPV and the
value of the relative standard deviation (RSD) of the anodic peak
current (mean of 3 measurements/electrode) equaled 2.84 and
2.52 (Supplementary Figure S1). The findings indicated the
acceptable reproducibility of the modified electrode in the
voltammetric measurements and electrode production. Then, we
put the electrode into a buffer medium at room temperature for
4 weeks and analyzed 50.0 μM solutions of KYN and TRP to
evaluate the modified electrode stability. Ultimately, the peak
currents (3.12% and 2.26%) declined, demonstrating the
acceptable stability of the prepared electrode (Supplementary
Figure S2).

3.12 Comparison of our method with others
in the literature

The comparison of analytical efficacy between the as-fabricated
electrode and other electrochemical and non-electrochemical
methods was performed for KYN and TRP (Table 3). As shown
in Table 3, the detection limit and linear range of the as-fabricated
sensor were better than electrochemical and non-electrochemical
methods (Zhao et al., 2010; Wu et al., 2023; Kambale and
Lokhande, 2023; Zhao et al., 2023; Taherizadeh et al., 2023;
Guo et al., 2023). When comparing chromatography methods
with electrochemical methods, these methods are expensive,
sophisticated, and multi-process techniques, with the need for
sample preparation, pre-filtration, extraction, and temperature
monitoring. The as-fabricated sensor is potentially able to
determine the trace amounts of KYN and TRP in various
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media. In addition, it is noteworthy that the voltammetry method
determines KYN and does not utilize simultaneous determination
with TRP. As seen in Table 3, the as-fabricated electrode for
electrochemically sensing KYN and TRP generally showed
admirable properties for measurement speed, sensitivity,
detection limit, and linear range when compared to other
methods reported in the literature.

3.13 Measurement of real samples

The new electrode was employed for determining KYN and
TRP in blood serum and urine samples to evaluate the capability of
FL-NS Tb3+/ZnO/CPE for oxidation of the analytes. The standard
addition procedure was applied for the measurements because of
the complexity of the real samples’matrices. Based on the findings,
the recovery percentage for the blood serum samples ranged from
97.7%–101.2% and for the urine samples from 98.7%–103.6%
(Table 4). The acceptable percentage of recovery and RSD
values of ˂5% demonstrate the high functionality of the FL-NS
Tb3+/ZnO/CPE to measure KYN and TRP in samples with real
matrices.

4 Conclusion

We employed a hydrothermal method to provide FL-NS Tb3+/
ZnO and thus FL-NS Tb3+/ZnO was employed as a CPE modifier
for sensing KYN and TRP through DVP and CV. The major merits
of the mentioned method were its rapid and simple simultaneous
determination of KYN and TRP. In addition, we showed the
facilitation of the transition of KYN and TRP targets into the
boundary of the electrolyte/electrode by FL-NS Tb3+/ZnO.
Moreover, electron transportation was facilitated by the
conductivity and porous structure of FL-NS Tb3+/ZnO.
According to the results, the peak potential of KYN and TRP
oxidation was 0.49 V and 0.37 V in FL-NS Tb3+/ZnO/CPE,
respectively. Furthermore, the modified electrodes could
probably be used for quantitative analysis of KYN and TRP in
the plasma sample of humans, resulting in acceptable outcomes.
Therefore, measuring KYN and TRP with the help of FL-NS Tb3+/
ZnO/CPE can be considered a modern method. Hence, this new
sensor could be utilized as a model for modifying other existing
sensors.
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