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Objective: Machine learning (ML) has been widely used to detect and evaluate major 
depressive disorder (MDD) using neuroimaging data, i.e., resting-state functional 
magnetic resonance imaging (rs-fMRI). However, the diagnostic efficiency is 
unknown. The aim of the study is to conduct an updated meta-analysis to evaluate 
the diagnostic performance of ML based on rs-fMRI data for MDD.

Methods: English databases were searched for relevant studies. The Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the 
methodological quality of the included studies. A random-effects meta-analytic 
model was implemented to investigate the diagnostic efficiency, including 
sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). 
Regression meta-analysis and subgroup analysis were performed to investigate 
the cause of heterogeneity.

Results: Thirty-one studies were included in this meta-analysis. The pooled 
sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.80 
(0.75, 0.83), 0.83 (0.74, 0.82), 14.00 (9, 22.00), and 0.86 (0.83, 0.89), respectively. 
Substantial heterogeneity was observed among the studies included. The meta-
regression showed that the leave-one-out cross-validation (loocv) (sensitivity: 
p  <  0.01, specificity: p  <  0.001), graph theory (sensitivity: p  <  0.05, specificity: 
p  <  0.01), n  >  100 (sensitivity: p  <  0.001, specificity: p  <  0.001), simens equipment 
(sensitivity: p  <  0.01, specificity: p  <  0.001), 3.0T field strength (Sensitivity: p  <  0.001, 
specificity: p  =  0.04), and Beck Depression Inventory (BDI) (sensitivity: p  =  0.04, 
specificity: p  =  0.06) might be  the sources of heterogeneity. Furthermore, 
the subgroup analysis showed that the sample size (n  >  100: sensitivity: 0.71, 
specificity: 0.72, n  <  100: sensitivity: 0.81, specificity: 0.79), the different levels of 
disease evaluated by the Hamilton Depression Rating Scale (HDRS/HAMD) (mild 
vs. moderate vs. severe: sensitivity: 0.52 vs. 0.86 vs. 0.89, specificity: 0.62 vs. 0.78 
vs. 0.82, respectively), the depression scales in patients with comparable levels of 
severity. (BDI vs. HDRS/HAMD: sensitivity: 0.86 vs. 0.87, specificity: 0.78 vs. 0.80, 
respectively), and the features (graph vs. functional connectivity: sensitivity: 0.84 
vs. 0.86, specificity: 0.76 vs. 0.78, respectively) selected might be the causes of 
heterogeneity.

Conclusion: ML showed high accuracy for the automatic diagnosis of MDD. 
Future studies are warranted to promote the potential use of these classification 
algorithms in clinical settings.
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Introduction

Major depressive disorder (MDD) is a global leading cause of 
emotional disorders with a high recurrence and suicide rate (Mccarron 
et al., 2021). It can seriously affect the physical and mental health of 
patients and has brought a huge burden to society (Osler et al., 2015). 
Even though the complex interactions between genetics and the 
environment are involved in the cause of the disease, a large number 
of underlying biomarkers still dominate its development. Up to now, 
the diagnosis of depression is still based on psychiatrists’ assessments 
and interviews, which is subjective to some extent. Moreover, the 
applicability of a depression scale like the Hamilton Depression Scale 
(Hamilton, 1960) (HDRS/HAMD), which is used to assess the 
outpatient, is questionable (Uher et al., 2008). The subjective scale may 
contribute to delayed diagnosis, and then affect prognosis (Pearson 
et  al., 1999; Almeida, 2014; Park and Zarate, 2019). Therefore, 
objective biomarkers are urgently needed to diagnose MDD.

Neuroimaging, which is widely used in clinical practice, has been 
proven to provide several objective biomarkers for the diagnosis of 
MDD. Resting-state functional magnetic resonance imaging (rs-fMRI) 
is one of the functional neuroimaging modalities that is rapidly being 
utilized to investigate the brain biomarkers of psychiatric diseases. In 
rs-fMRI procedures, the brain’s activity is monitored by the changes 
in blood oxygenation (Le Bihan et al., 1995), which alters the magnetic 
properties of the blood and then produces the signals. The rs-fMRI 
has been used as an alternative strategy for the early screening of 
depression (Kassraian-Fard et  al., 2016). Many encouraging 
biomarkers obtained from rs-fMRI, i.e., amplitude of low frequency 
fluctuation (ALFF), regional homogeneity (ReHo), and functional 
connectivity (FC), are used to diagnose MDD; however, the analysis 
procedure is complex and the results are varied with low specificity. In 
this context, research on MDD using rs-fMRI is nowadays mostly 
focused on exploring the biological mechanisms behind depression, 
and can hardly apply into clinical diagnosis and prediction.

Since the introduction of artificial intelligence, there has been a 
multitude of studies that have used machine learning to diagnose 
diseases and predict the efficacy of treatment (Kumar et al., 2022). 
Apart from saving a certain amount of time and the cost of manual 
evaluation (Valenstein et al., 2001), a combination of machine learning 
and rs-fMRI can diagnose mental diseases precisely (Khanna et al., 
2015) and is essential to the clinical application of objective 
neuroimaging in mental diseases (Fernandes et  al., 2017; Zhang 
X. et al., 2020). As a multivariate model, machine learning is able to 
tap into the complex relationship between brain changes and 
depression symptoms deeply, which most simple rs-fMRI analysis 
approaches cannot do (Haynes, 2015). For example, Chekroud et al. 
(2016) found that clinical non-symptomatic features incorporated in 
machine learning can be very helpful in predicting the treatment 
outcome of MDD. Chen et al. (2022) discovered that the diagnostic 
value of imaging metrics can be partly realized with machine learning. 
An issue with the current use of rs-fMRI to differentiate psychiatric 

disorders is that changes may involve the same brain regions for 
different disorders which induces low specificity. Sha et al. (2018) 
constructed different support vector machine (SVM) models 
depending on the same frontal striatal dysfunction to differentiate 
obsessive–compulsive disorder (OCD) from schizophrenia. 
Unsupervised learning is used to capture features with higher 
specificity in samples of a large size, which will be more likely to 
explain the neural basis of depression (Rutledge et al., 2019).

Despite the many benefits described above, machine learning 
studies on depression diagnosis using rs-fMRI data are few and 
immature. Due to the small sample sizes used in previous studies and 
relying solely on single training and validation methods, The 
diagnostic performance is not reliable. It is also challenging to select 
proper features from the high-dimensional rs-fMRI data. As is known, 
changes in functional connectivity can reflect the ability of information 
transfer between brain regions. With the introduction of topology, the 
synchronous changes in the brain have attracted attention, and brain 
network indicators can reflect the overall or local changes of brain 
neurons, which is of great significance for the regulation of certain 
behavioral traits. Therefore, special feature selection is crucial for 
diagnosing depression and reflecting depressive behavioral traits. 
According to past findings that used brain anatomy data in machine 
learning, the key to optimizing the diagnostic model is applying the 
appropriate subjects rather than modifying the algorithm (De Martino 
et al., 2008). No studies have ever reported the characteristics and 
quantitative effects of the sample on the model.

Therefore, our objective is to use meta-analysis to evaluate the 
diagnostic performance of ML based on rs-fMRI data for MDD and 
further explore the underlying relevant variables.

Materials and methods

We conducted and report this meta-analysis based on the 
PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) guidelines (Moher et al., 2009).

Literature search

Electronic databases including the PubMed, Embase, Web of 
Science, and Cochrane Library databases were searched by two 
observers independently to identify studies. The searches were 
performed on 23 February 2022. The search terms consisted of the 
following terms: ((“Machine Learning” [Mesh]) OR (“machine 
learning”) OR (“ML”)) AND ((“resting-state functional magnetic 
resonance”) OR (“rs-fMRI scans”) OR (“rs-fMRI”)) AND ((“Major 
Depressive Disorders”[Mesh]) AND (“Depression”) AND (“MDD”)); 
((“Artificial Intelligence” [Mesh]) OR (“artificial intelligence”) OR 
(“AI”)) AND ((“Functional Magnetic Resonance Imaging” [Mesh]) 
OR (“fMRI scans”) OR (“fMRI”) OR (“functional MRI”) OR 
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(“functional magnetic resonance imaging”)) AND ((“Major 
Depressive Disorders”[Mesh]) AND (“depression”) AND (“MDD”)).

Study selection

The titles and abstracts of potentially relevant studies were 
additionally screened by two reviewers [a doctoral student with 2 years 
of post-graduate experience in medical image analysis (XX) and a 
radiologist in the fourth year of training (LB)].

All of the studies were selected according to the following criteria: 
(a) original research studies; (b) patients with depression were 
enrolled who were assessed using scales; (c) rs-fMRI was applied to 
classify MDD and HC using ML; and (d) data were sufficient to 
reconstruct the 2 × 2 contingency table to estimate the sensitivity and 
specificity of the diagnosis.

Studies were excluded if: (a) they were reviews, editorials, 
abstracts, or animal studies; and (b) structural magnetic resonance 
imaging (sMRI) or task-based fMRI (t-fMRI) was applied to classify 
MDD and HC by ML; and (c) the information needed could not 
be calculated from the articles.

Data extraction

Relevant data were extracted from each study, including the 
names of the authors, year of publication, demographic characteristics 
of HC and patient groups [group size, age, sex, symptoms as measured 
by the Hamilton Depression Rating Scale (HDRS/HAMD), the Beck 
Depression Inventory (Beck et al., 1961) (BDI), or the Patient Health 
Questionnaire-9 (Kroenke et  al., 2001) (PHQ-9), magnetic field 
strength, training and validation methods, and features selected].

For each study, the true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN) values were extracted, and a 
pairwise (2 × 2) contingency table was created.

Data quality assessment

The Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) was used to assess the methodological quality of the 
included studies and the risk of bias at the study level (Whiting et al., 
2011), which consisted of: (a) patient selection; (b) index test; (c) 
reference standard; and (d) flow and timing.

Statistical analysis

This meta-analysis was conducted using Stata software, version 
16.0, and Review Manager software, version 5.3. The predictive 
accuracy was quantified using pooled sensitivity, specificity, diagnostic 
odds ratio (DOR), positive likelihood ratio (PLR), and negative 
likelihood ratio (NLR) with 95% confidence intervals (CIs). The 
summary receiver operating characteristic curve (SROC) and area 
under the curve (AUC) were used to summarize the diagnostic 
accuracy. Q and I2 were calculated to estimate the heterogeneity 
among the studies included in this meta-analysis. Pooling and effect 
size were evaluated using a random-effects model, indicating that 

estimating the distribution of true effects between studies considered 
heterogeneity (Deeks et  al., 2005). Meta-regression analysis was 
conducted to further investigate the cause of the heterogeneity. 
Subgroup analysis was performed to examine the potential effects of 
different demographic factors, ML algorithms, and types of training 
and validation.

Publication bias

The publication bias was assessed using Deek’s funnel plot 
asymmetry test, where a p value <0.05 suggested a potential 
publication bias. Deek’s funnel plot asymmetry test was performed 
using Stata 16.0.

Results

Literature search

The complete literature search flowchart is presented in Figure 1. 
According to the search strategy described above, 455 potentially 
eligible citations were identified. After screening titles and abstracts, 
we  excluded 135 studies for duplication and 249 studies for 
non-relevant abstracts or publication types. Finally, after revision, 40 
articles were excluded, leaving 31 articles for inclusion in the 
meta-analysis.

Data quality assessment

The quality assessment of the included studies using the 
QUADAS-2 checklist is presented in Supplementary Figure S1. 
Overall, generally, the data quality was considered acceptable.

Study characteristics

The characteristics of the included studies are summarized in 
Table 1. The 31 studies included in this review had 2,699 participants 
where ML models were used to diagnose MDD. All of the studies used 
retrospectively collected data. Of these models, the ML algorithm 
comprised different types of models; most of them were support 
vector machine models, (SVM) (n = 16). Some articles had multicenter 
samples referring to several kinds of models such as linear 
discriminant analysis (LDA) and extreme gradient boosting (Xgboot) 
(n = 5). The HDRS/HAMD was used in 17 studies, and the BDI/BDIII/
PHQ was used in 5 studies. The scores of HDRS/HAMD of current 
depression can be divided into three severity. Status 18 to 22 ≤22 
(n = 5), 22 to 24 (n = 4), or > 24 (n = 5) indicated presenting symptoms 
were mild, moderate, or severe, respectively. In 31 articles, different 
kinds of features derived from resting-state were used, including 
functional connectivity (n = 25), graph theory (n = 5), and ReHo 
(n = 1). The sample size for MDD of four studies was larger than 100 
and the remaining ones (n = 27) were smaller than 100. Eleven studies 
employed five-fold or ten-fold cross-validation as the test method, and 
twenty studies employed the leave-one-out cross-validation method. 
Exclude articles that cannot calculate diagnostic indicators 
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information, there were 16 studies that used 3 T MRI scanners and 6 
studies used 1.5 T MRI scanners. Siemens MRI equipment (n = 11) 
was used more than GE Healthcare MRI equipment (n = 5). The 
information about the neuropsychological estimates can be seen in 
Supplementary Table S1.

Pooled results

The pooled sensitivity and specificity of machine learning for 
discriminating MDD and HC were 0.80 (95% CI: 0.75 to 0.83) and 
0.79 (95% CI: 0.74 to 0.82), respectively. The forest plots are shown in 
Figure 2. The pooled PLR and NLR were 3.7 (95% CI: 3.0 to 4.6) and 
0.26 (95% CI: 0.20 to 0.33), respectively. The DOR was 14 (95% CI: 9 
to 22). SROC curve analysis was used to summarize the overall 
diagnostic accuracy. The AUC was 0.86. The SROC curve is shown in 
Figure 3. The results demonstrated high diagnostic performance in 
discriminating MDD from HC.

Exploration of heterogeneity

There was significant heterogeneity in sensitivity (I2 = 80.14%) 
and specificity (I2 = 80.99%). Subgroup analysis and meta-analysis 
were performed by comparing studies with the different variables. 
Table 2 shows the results of the analysis for subgroups. Studies 
(n = 4) with a large sample size (>100) after excluding one article 
had a lower specificity (0.71 vs. 0.81) and lower sensitivity (0.72 vs. 
0.79) compared with studies (n = 26) with a small sample size when 
the symptoms of the patient were similar. The studies that used 
graph theory had equal sensitivity (0.86 vs. 0.84) and lower 
specificity (0.76 vs. 0.78) compared with those (n = 8) that used 
functional connectivity as a feature. Four studies with self-rating 
scales such as the BDI or PHQ-9 as the evaluation standard had a 
lower sensitivity (0.86 vs. 0.87) and specificity (0.78 vs. 0.80) than 
studies (n = 4) using the HDRS/HAMD. Meta-regression 

(Supplementary Figure S2) using modifiers identified in the 
systematic review was conducted; we found that the leave-one-out 
cross-validation (sensitivity: p < 0.01, specificity: p < 0.001), graph 
theory (sensitivity: p < 0.05, specificity: p < 0.01), BDI (sensitivity: 
p = 0.04, specificity: 0.06), 3T (sensitivity: p < 0.001, specificity: 
p = 0.04), n > 100 (sensitivity: p < 0.001, specificity: p < 0.001), and 
Siemens equipment (sensitivity: p <0.01, specificity: p < 0.001) were 
the sources of heterogeneity (Figure 4).

Publication bias

There was no publication bias based on the Deek’s funnel plot 
(p = 0.07) (Supplementary Figure S2).

Clinical utility

Using an ML-based model increased the post-test probability to 
48% from 20% with a PLR of 4 when the pretest was positive and 
would reduce the post-test probability to 6% with an NLR of 0.26 
when the pretest was negative (Supplementary Figure S3).

Discussion

Until now, it has been extremely difficult to make accurate 
diagnoses and predictions in psychiatry. Although rs-fMRI is a widely 
available tool for psychiatric research, the lack of specificity has 
prevented it being effectively applied in clinical practice (Casey et al., 
2013). Artificial intelligence (AI) has been shown to improve medical 
diagnosis and assist in building more accurate and realistic models of 
neural functioning through the analysis of fMRI data (Cohen et al., 
2017). The current study provides compelling evidence of the high 
accuracy of machine learning using rs-fMRI to diagnose depression. 
Due to the intricacies of psychiatric disorders, the influence of other 

FIGURE 1

Flow diagram of the study selection for meta-analysis.
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TABLE 1 rs-fMRI-based machine learning characteristics of studies included in the systematic review.

Author N 
(MDD)

Sex 
(MDD, 
M/F)

Age 
(MDD)

Equipment Machine 
learning 
method

Features Model validation Evaluation 
scale

31
Chun et al. (2020) 262 100/162 32.91 ± 11.07 3.0 T

SVM, XGboot, 

RF, CNN
FNC Ten-fold cross-validation NA

30
Nakano et al. (2020) 163 NA 44.10 ± 12.20 3.0 T SVM, RF FC

Seven-fold cross-

validation
NA

29 Zhang et al. (2021) 60 9/22 50.50 ± 11.20 NA JSD Graph theory NA NA

28
Guo et al. (2017) 38 15/23 28.40 ± 9.68 3.0 T Siemens SVM

(High order) 

Graph theory
NA HAMD: 22.8

27
Zhao et al. (2020) 269 105/164 32.80 ± 10.60 3.0 T

GAN, SVM, 

AdaBoot
FNC Ten-fold cross-validation HDRS: 18.3

26

Zeng et al. (2012) 24 8/16 31.83 ± 10.99 1.5 T GE SVM

Kendall rank 

correlation 

coefficient

LOOCV HDRS: 26.2

25
Wei et al. (2013) 20 10/10 34.30 ± 8.20 3.0 T Siemens SVM

Hurst 

exponent FC
LOOCV HDRS: 25.8

24 Yu et al. (2013) 19 11/8 26.65 ± 7.62 1.5 T GE SVM FC LOOCV HRSD: 25.4

23 Drysdale et al. (2017) 220 NA NA NA SVM FC LOOCV NA

22
Zeng et al. (2014) 24 8/16 31.83 ± 10.99 1.5 T GE

SVM, LDA, 

MMC
FC LOOCV HRSD: 25.4

21
Zheng et al. (2019) 82 29/53 30.84 ± 10.38 3.0 T GE SVM

Hurst 

exponent FC
LOOCV HAMD: 22.46

20 Lord et al. (2012) 22 13/9 34.55 3.0 T Siemens SVM Graph theory NA HAMD: 15.80

19 Ramasubbu et al. 

(2016)
18 6/12 38.00 ± 10.00 3.0 GE SVM FC Five-fold cross-validation NA

18 Sharaev et al. (2018) 25 NA NA 1.5 T Toshiba SVM Graph theory NA NA

17 Mousavian et al. (2021) 38 11/27 18.00 ± 15.00 NA NA FC Ten-fold cross-validation BDI-II: 13.00

16 Jun et al. (2020) 29 8/21 43.79 ± 13.06 3.0 T Siemens GCN FC Ten-fold cross-validation HDRS: 14.48

15
Jing et al. (2017) 19 NA 34.84 ± 13.58 3.0 T Siemens SVM

Dynamic FC 

(DFC)
LOOCV HAMD: 21.65

14 Yoshida et al. (2017) 58 NA 42.8 ± 11.9 3.0 T GE KPLS-LDA FC LOOCV BDI-II: 30.90

13 Yan et al. (2020) 0.43 13/30 35.23 ± 11.23 3.0 T GE SVM DFC Ten-fold cross-validation HAMD: 23.35

12 Guo et al. (2019) 38 15/23 28.4 ± 8.99 3.0 T Siemens SVM Graph theory Ten-fold cross-validation HAMD: 22.80

11 Bhaumik et al. (2017) 38 9/29 20.97 ± 1.53 3.0 T GE SVM FC LOOCV HAMD: 2.39

10 Shi et al. (2021) 1,021 336/685 35.52 ± 13.40 NA Xgboot FC Ten-fold cross-validation HAMD: 21.70

09 Li et al. (2021) 14 6/8 27.38 ± 7.38 3.0 T Siemens KELM ReHo Five-fold cross-validation PHQ-9: 18.21

08 Jacob et al. (2020) 21 NA NA 7.0 T QLA FC Five-fold cross-validation NA

07 Cao et al. (2014) 39 16/23 27.99 ± 7.49 1.5 T Siemens SVM FC LOOCV HAMD: 24.97

06 Wang et al. (2016) 29 15/14 NA 1.5 T GE WDDL, SVM FC LOOCV NA

05 Sundermann et al. 

(2017)

49 13/36 15.62 ± 2.86 NA SVM Dynamic FC LOOCV BDI-II: 29.00

04 Geng et al. (2018) 24 8/16 51.2 ± 10.6 3.0 T Siemens SVM, KNN, 

LR

Effective 

connectivity

LOOCV BDI: 32.30

03 Craddock et al. (2010) 20 8/12 43.2 ± 10.8 3.0 T Siemens SVC FC LOOCV NA

02 Sen et al. (2021) 180 94/86 50.8 ± 7.1 3.0 T SVM FC Ten-fold cross-validation HAMD: 20.20

01 Patel et al. (2015) 27 7/20 70.20 ± 7.98 3.0 T Siemens ADTree FC LOOCV HAMD: 20.33

SVM, Support-vector machine; LOOCV, Leave-one-out cross-validation; LDA, Linear discriminant analysis; FC, Functional connectivity; XGBoost, Extreme gradient boosting; RF, Random 
forests; PLS, Partial least squares regression; ADTree, Accurate, detailed, and automatic modelling of laser-scanned trees; HAMD, Hamilton Depression Scale; BDI, Beck Depression Inventory; 
PHQ-9, Patient Health Questionnaire-9; KNN, K-Nearest neighbor; SVC, Support vector classification; WDDL, Weighted discriminative dictionary learning; GCN, Graph convolutional 
network; JSD, Jensen–Shannon Divergence.
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factors should be considered more carefully in the implementation of 
subgroup analysis. Our study found that potential confounding 
factors, including sample size, validation strategy, and disease severity, 
can impact the construction of reliable and comprehensive models 
(Claeys et al., 2022).

Regression with sample size as a moderator showed a significant 
effect on both sensitivity (p < 0.001) and specificity (p < 0.001). 
Subgroup analysis showed a large sample size (>100) exhibited 
lower specificity (0.71 vs. 0.81) and sensitivity (0.72 vs. 0.79) than a 
small sample size (n < 100). This was in line with previous research, 
which found that small sample size (N = 20) accuracies were up to 
95%, while the accuracy of medium sample sizes (N = 100) were up 
to 75% (Flint et al., 2021). When there are few data samples and 
many features, the biased accuracies are typically visible (Simon, 
2003). The amount of data is one of the three challenges with 
applying functional neuroimaging in the era of big data 
(Rajalakshmi et al., 2018; Li et al., 2019). It has been demonstrated 
that the amount of data available has a considerably greater impact 
on model construction than algorithms performance (Hidalgo-
Mazzei et al., 2016). The majority of the studies included in our 
research proposed the model validated on a single site; in contrast, 
the five articles in our study containing large and multicenter 
samples employed the model validated on multiple sites. The 
pipeline can give us a complete view of how to deal with the data 
through machine learning, such as external validation methods 
between different sites and the training methods used.

The support vector machine (SVM) algorithm was employed to 
categorize patients in the vast majority of studies in the present 
research since it is well recognized in machine learning to handle 

FIGURE 2

Pooled estimates of sensitivity and specificity of machine learning to differentiate major depressive disorders from healthy controls. On the left 
represents the annotation for each article, we only use the first name of the first author or the corresponding author.

FIGURE 3

Summary receiver operating characteristic curve (SROC) of the 
diagnostic performance of ML to distinguish MDD and HC.
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noisy, correlated characteristics and high-dimensional data sets. It 
was significant that the articles using large samples used other 
different classification algorithms, such as Xgboot and LDA, to obtain 

better diagnostic performance. When there are many more candidate 
features than cases, decomposition and grouping techniques are the 
best option for understanding the true neural basis (Khosla et al., 
2019). Combining various classifiers, such as the SVM and the 
logistic regression or the SVM and the linear discriminant analysis, 
was more effective than using only one to identify MDD (Yan et al., 
2020). The size of the dataset and the feature selection technique are 
two variables that affect the choice of a suitable classifier. Therefore, 
it is worthwhile to investigate the application further (Pereira et al., 
2009). Validation is another crucial element. As the meta-regression 
showed, different cross-validation methods can lead to different 
conclusions (sensitivity: p = 0.00, specificity: p = 0.00). The leave-
one-out cross-validation (loocv) is a common approach in which the 
prediction algorithm is built using all of the training data except for 
one observation (Tai et  al., 2019). Varoquax demonstrated that 
(Varoquaux et al., 2017), although this technique is good and can 
strengthen the model structure, it may result in unreliable accuracy 
when is compared to five-fold or ten-fold cross-validation. If the 
sample size is limited, cross-validation could cause major statistical 
errors (Varoquaux, 2017) that cannot be changed by optimizing the 
model. This training–testing strategy based on complex data sets has 
been heavily depended upon to improve the accuracy of diagnosis 
models, and this research anticipated creating a meta-analytical 
framework for clinical decision-making in psychiatry diagnosis 
(Iwabuchi et al., 2013).

We also found that studies using Siemens MRI equipment 
were one of the sources of heterogeneity (sensitivity: p < 0.01, 
specificity: p < 0.001). This means different MRI equipment may 
affect the diagnostic performance. Therefore, prospective studies 
comparing the two pieces of MRI equipment are necessary to 
explore the diagnostic performance of rs-fMRI-based diagnosis. 
However, previous studies have solved the problem of data drift 

TABLE 2 Results of pooled estimates of all studies and of different subgroups.

Studies Number of 
studies 

included

Sensitivity (95% 
CI)

Specificity (95% 
CI)

PLR NLR DOR

All studies

Overall 31 0.80 (0.75–0.83) 0.79 (0.74–0.82) 3.7 (3.0–4.6) 0.26 (0.20–0.33) 14 (9–22)

Sample size (n), patients with severe symptoms:

n > 100 4 0.71 (0.68–0.74) 0.72 (0.68–0.75) 2.5 (2.2–2.8) 0.4 (0.36,0.45) 6 (5–8)

n < 100 26 0.81 (0.75–0.86) 0.79 (0.74–0.83) 3.9 (3.0–5.0) 0.24 (0.18–0.32) 16 (10–27)

The scores of different degrees of disease with HDRS (n < 100):

Mild (<22) 5 0.52 (0.39–0.65) 0.62 (0.52–0.71) 1.4 (0.9–2.1) 0.77 (0.53–1.11) 2 (1–4)

Moderate (22–24) 4 0.86 (0.80–0.90) 0.78 (0.71–0.83) 3.8 (2.9–5.1) 0.19 (0.13–0.26) 21 (12–35)

Severe (≥24) 5 0.89 (0.77–0.95) 0.82 (0.75–0.87) 4.9 (3.3–7.2) 0.14 (0.06–0.31) 36 (12–109)

Features selected: graph theory, patients with moderate symptoms:

Graph theory 4 0.84 (0.77–0.89) 0.76 (0.64–0.85) 3.5 (2.3–5.3) 0.21 (0.14–0.30) 17 (9–32)

Functional 

connectivity
4 0.86 (0.80–0.90) 0.78 (0.71–0.83) 3.8 (2.9–5.1) 0.19 (0.13–0.26) 21 (12–35)

Different scales: patients with moderate and severe symptoms:

BDI 4 0.86 (0.80–0.90) 0.78 (0.71–0.83) 4.3 (3.4–5.6) 0.17 (0.11–0.24) 21 (12–35)

HDRS/HAMD 9 0.87 (0.81–0.91) 0.80 (0.75–0.84) 4.3 (3.4–5.6) 0.17 (0.11–0.24) 26 (15–46)

FIGURE 4

Univariable meta-regression plot of machine learning for the 
diagnosis of depression in factor of leave-one-out crossvalidation, 
graph, 3 T field strength, Siemens equipment, and BDI/HDRS scales.

https://doi.org/10.3389/fnins.2023.1174080
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1174080

Frontiers in Neuroscience 08 frontiersin.org

caused by data collection from different sites through algorithm 
optimization. Gradient matching federated domain adaptation 
(GM-FDA) is a domain adaptation algorithm which combines the 
ideas of federated learning and domain adversarial training. This 
method has been used to solve the problem of poor performance 
of machine learning models on different devices, especially mobile 
devices. Zeng et al. effectively applied this method to solve the 
issue of low generalization ability of previous machine learning 
models related to neuroimaging and validated it for the diagnosis 
of depression.

Our study found that the usual features selected in publications 
were the functional connectivity between different brain regions. They 
were typically selected using lasso-regularized logistic regression 
(lasso) or tested using permutation (Zhang R. et al., 2020) because of 
the large amount and result of overfitting. This meta-regression and 
sub-analysis showed that the powerful classifying capacity of the 
topology features derived from graph theory analysis was almost equal 
to the result of functional connectivity (sensitivity: 0.84 vs. 0.86; 
specificity: 0.76 vs. 0.78). It can be used to assess the centrality of the 
brain network (the betweenness centrality, eigenvector centrality, 
participation coefficient, and within module z-score) (Sotero, 2016), 
as well as integration (characteristic path length and efficiency) and 
segregation (clustering coefficient and transitivity). Kazeminejad and 
Sotero (2018) found graph theoretical analysis is more reliable than 
earlier analysis technique applied and can effectively cancel out the 
effects of multisite and multi-device MRI sequences. What is more, 
the data obtained are not too so much that they can also achieve a 
good training effect (Wang et al., 2017). According to Wang et al. 
(2017) found that deficiencies in the topological structure underlying 
emotion processing could help distinguish MDD from other mental 
disorders. Topological features can be  used to display the entire 
pathological imbalance of brain connections induced by depression 
(Zhang R. et al., 2020), and there are some discrepancies between the 
functional and structural topological properties in MDD. Kambeitz 
et al. (2017) The overall diagnostic efficiency(88% sensitivity, 92% 
specificity) using DTI as the characteristic is higher than that using 
rs-fMRI. (85% sensitivity, 83% specificity). The same graph metrics 
may describe different physiological pathology in structural and 
functional networks (Xu et al., 2021). Until now, there have not been 
many resting-state graph theoretical analyses that are worthy of being 
carried out. Other research also described some novel rs-fMRI 
analysis methods such as effective connectivity and dynamic 
functional connection, which can provide more knowledge about the 
brain (Xiao et al., 2020; Ji et al., 2021). A multimodal MRI connectome 
study is still a prospective direction. Due to the sample size, we did not 
perform the sub-analysis of their diagnostic accuracy, which may 
be another future direction.

A prior work hypothesized that the severity of clinical 
symptomatology was correlated with the degree of functional and 
structural brain abnormalities seen in depression (Demenescu et al., 
2011; Mwangi et al., 2012). Machine learning had been reported to 
be able to predict the severity of depression according to functional 
connectivity features. It is yet unknown how well it can diagnose 
different degrees of depression (Kessler et  al., 2016); the current 
subgroup study preliminary addressed the limitation of the research by 
Kambeitz et al. by showing that the accuracy of diagnosing severely 
unwell subjects was higher than that of diagnosing the moderately and 
mildly ill (sensitivity: 0.89 vs. 0.86 vs. 0.52; specificity: 0.82 vs. 0.78 vs. 

0.62, respectively). We also observed that similar illness states assessed 
by different depression scales might not correspond to similar brain 
circumstances. This is one of the drawbacks of using behavioral 
assessment for psychiatric disorders. In our study, the judgment of 
BDI-based ML diagnosis accuracy was worse than the HDRS-based 
ones (sensitivity: 0.86 vs. 0.87, specificity: 0.78 vs. 0.80). There are 
differences in the assessment of depressive states when using BDI/
BDI-II on the same individual, and these differences tend to increase 
gradually with severity (Furukawa et  al., 2019), which involves 
consistency of various scales (Rabinowitz et al., 2022). When there is 
not a perfect association, a comparison between them can potentially 
offer helpful clinical information (Petkova et al., 2000; Targum et al., 
2013). The BDI scales could additionally experience the same issues as 
other self-report scales because scores can easily be exaggerated or 
minimized under specific circumstances (Pop-Jordanova, 2017). The 
evaluator’s incorrect interpretation of the rules (Monica et al., 2008) 
and the subjects’ careless responses may also result in the failure of 
assessment. This finding convinced us that pure behavioral assessments 
were easily affected and unreliable. Combining behavioral traits with 
objective changes in brain function is more persuasive for screening 
depression. It is feasible to utilize the multivariable property of machine 
learning to connect depressive scales with functional MRI and develop 
a practical model, consistent with previous research conclusions 
(Stoyanov et al., 2019), in the primary time, which is advantageous 
given the difficulty of translating neuroimaging to clinic application.

Limitations and future direction

As psychiatric disorders were inherently heterogeneous and the 
subjects included were complex, we used subgroup analysis to select 
some potential variables and the I2 was reduced at the same time. 
There were still some inconsiderable factors such as antidepressant 
medication, age, and sex (Liu et al., 2019). The gender and age ratios 
were consistent with the epidemiology of depression and other 
relevant data the articles provided were limited or ambiguous, so 
we were unable to analyze further. In addition, some articles used the 
same data to test the diagnostic efficacy of different combinations of 
models. We selected the best results for inclusion in the study, which 
were in line with the machine learning training guidelines for building 
models. Negative results were not presented in articles so a publication 
bias might have occurred.

In our subgroup analysis, we obtained high specificity of machine 
learning diagnostic performance for feature selection and sample size. 
This is a crucial point explored in this study. However, uncontrollable 
factors during this process may still affect machine learning in 
diagnosing depression, such as cross-site data collection and the 
selection of preprocessing step parameters. Standardization and 
streamlining of this part of the process will play a decisive role in 
providing neurobiological information for the diagnosis of depression 
using machine learning methods in the future. The limited sample size 
of severely depressed patients used in previous studies has restricted 
our exploration of the significance of machine learning selection 
methods. The lack of early sensitivity markers in the clinic can 
be  addressed to a certain extent through the combination of 
neuroimaging and machine learning methods. However, this process 
still requires repeated testing and verification, and the use of large 
databases can save time and manpower. In the future, the 
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establishment and open availability of large-scale databases can create 
even greater potential for efficient transformation of resting-state 
fMRI information using machine learning methods.

From the results of this meta-analysis, We concluded that the 
sample size had a significant impact on the model’s accuracy; 
therefore, it is crucial to carry out external validations in larger 
samples to encourage generalizability. Another direction for the future 
is the use of multi-modal imaging data to create better models, as it 
will be more advantageous to include proteomics or genomes while 
tracking depression in its early stages.

Conclusion

There is more and more research using machine learning based 
on rs-fMRI to identify psychiatry like depression. Our work revealed 
that machine learning may be a reliable technique for differentiating 
depression from healthy controls on the basis of neural mechanisms 
after displaying some possible characteristics. It is hoped that this will 
eventually turn into a controllable instrument.
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