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An algorithm based on artificial intelligence (AI) was developed and tested to classify 
different stages of myxomatous mitral valve disease (MMVD) from canine thoracic 
radiographs. The radiographs were selected from the medical databases of two 
different institutions, considering dogs over 6 years of age that had undergone chest 
X-ray and echocardiographic examination. Only radiographs clearly showing the 
cardiac silhouette were considered. The convolutional neural network (CNN) was 
trained on both the right and left lateral and/or ventro-dorsal or dorso-ventral views. 
Each dog was classified according to the American College of Veterinary Internal 
Medicine (ACVIM) guidelines as stage B1, B2 or C + D. ResNet18 CNN was used as 
a classification network, and the results were evaluated using confusion matrices, 
receiver operating characteristic curves, and t-SNE and UMAP projections. The area 
under the curve (AUC) showed good heart-CNN performance in determining the 
MMVD stage from the lateral views with an AUC of 0.87, 0.77, and 0.88 for stages 
B1, B2, and C + D, respectively. The high accuracy of the algorithm in predicting the 
MMVD stage suggests that it could stand as a useful support tool in the interpretation 
of canine thoracic radiographs.
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1. Introduction

Myxomatous mitral valve disease (MMVD) is the most common acquired cardiac disease 
in small to medium-sized adult dogs. Myxomatous mitral valve disease is potentially a serious 
threat to canine health because in its final stages it can lead to congestive heart failure (CHF). 
According to the American College of Veterinary Internal Medicine (ACVIM), MMVD can 
be classified as: preclinical (referred to as stages B1 and B2) when structural cardiac abnormalities 
associated with MMVD, but no clinical signs of heart failure (HF), are evident or decompensated 
(stages C and D) when current or past signs of HF are reported (1). Early identification of 
MMVD can help both to delay the onset and to efficiently manage decompensated HF (2).

Chest radiographs should always be performed as part of the routine clinical evaluation of 
patients with suspected cardiac disease to detect concurrent lung disease (e.g., interstitial lung 
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disease, bronchial disease, etc). Furthermore, the correct evaluation of 
the cardiac silhouette on thoracic radiographs, in particular the 
screening for left atrial and left ventricular enlargement, carinal 
elevation, presence of an alveolar and/or venous pulmonary pattern, can 
aid in staging the severity of MMVD (3). However, such an 
interpretation can be  challenging and requires the presence of an 
experienced radiologist and/or cardiologist in the clinic. Furthermore, 
echocardiography is the gold-standard imaging technique for the 
detection and staging of heart disease. Unfortunately, it is time-
consuming and requires trained operators and specific equipment. For 
the above reasons, it is not always easy to perform in general practice.

In recent years, several tools based on artificial intelligence (AI) 
have been released to support clinicians in their day-to-day medical 
routine, both for human and veterinary medicine. Along with this 
expanding development, the use of AI-based tools for cardiovascular 
imaging has also increased (4, 5). In humans, these techniques were 
developed to predict heart disease, to improve image interpretation, 
and, lastly to increase the quality of patient care (6). Recently, a deep 
learning (DL)-based model for the diagnosis of mitral regurgitation 
from thoracic radiographs has been developed in humans (7).

In veterinary medicine, AI-based algorithms has been developed 
for the detection of some radiographic findings, such as 
pneumothorax, pulmonary masses or pleural effusion (8–10). 
Furthermore, some articles proposing tools for the automatic 
evaluation of cardiac silhouette from canine thoracic radiographs 
have been published. Detection of cardiomegaly has been investigated 
in both dogs and cats (9, 11–13). In addition, AI-based tools have 
been proposed in assessing cardiogenic pulmonary edema secondary 
to MMVD and in identifying left atrium (LA) dilation on canine 
thoracic radiographs (14, 15). However, radiographs in the above 
studies were classified according to: the radiographic appearance of 
the cardiac silhouette (9); or the echocardiographic evaluation of LA 
dilation (13, 14). The ACVIM guidelines for patient classification 
were never used in the above studies. Therefore, the aim of this study 
was to develop and test a convolutional neural network (CNN) for 
classifying, from canine thoracic radiographs, the different stages of 
MMVD as set out in the ACVIM guidelines.

2. Materials and methods

2.1. Study design and database creation

In this retrospective multicentric study, data were collected from the 
Veterinary Teaching Hospital of the University of Padua and from the 
AniCura Arcella Veterinary Clinic (Padua). Dogs over 6 years of age 
with concomitant thoracic radiographs and echocardiographic 
examination were extracted from the medical database of the two 
centres. Cases admitted between July 2012 and December 2022 were 
included. The animals were classified to the ACVIM guidelines (2019) 
(1), as described below: asymptomatic dogs with no signs of 
radiographic or echocardiographic cardiac remodelling (e.g., left atrial 
and ventricular enlargement) were classified as B1; dogs were classified 
as B2 if cardiomegaly with left atrial and ventricular enlargement was 
evident; animals with at least one episode of pulmonary edema and/or 
pleural effusion due to CHF were considered stage C; symptomatic dogs 
refractory to standard cardiac treatment were classed as stage 
D. Lastly, if no abnormalities were found in clinical examination, 

echocardiographies or thoracic radiographs, the dogs were classified as 
healthy. Dogs affected by other heart or systemic diseases were excluded.

2.2. Radiographic and echocardiographic 
findings

Right or left lateral (RL or LL) and/or a dorso-ventral (DV) or 
ventro-dorsal (VD) projections were obtained for each dog. All 
radiographs in which the cardiac silhouette was not perfectly visible 
due to a severe abnormal pulmonary pattern were discarded, and only 
radiographs with a clearly defined cardiac silhouette was clearly 
defined were included in the final database.

Experienced operators (CG, HP, and DC) performed transthoracic 
echocardiographic examination in the right and left parasternal 
windows using standard views (16) and by means of commercially 
available ultrasound scanners (CX50, Philips, Eindhoven, The 
Netherlands; Philips Affiniti 50, Italy).

Echocardiographic assessment of cardiomegaly was based on left 
atrium (LA) and left ventricle (LV) dimensions. Early diastolic LA 
diameter and aortic root diameter (Ao) were measured from the 
short-axis view at the heart base level in the right parasternal window. 
The left atrium to aortic root ratio (LA/Ao) was calculated and LA 
dilation was considered when LA/Ao ≥ 1 6. (17).

Left ventricular internal diastolic diameter (LVIDd) was measured 
in the right parasternal window from the M-mode short axis view at 
the level of the cordae tendinae; this was then normalised for body 
weight (LVIDd-N). Values of LVIDd-N ≥ 1 7.  were representative of 
LV dilation (18).

2.3. Image analysis

The radiographic images were stored in DICOM format and 
then converted to mha format for analysis. All images were 
resampled at a 224 × 224 resolution, and the intensity range was 
normalised to (0–1). CNN ResNet18 was used as a classification 
network due to the relatively small dataset size (compared to other 
computer vision datasets) and the lack of improvement compared to 
larger networks (ResNet50, EfficientNet, Vision Transformer). 
ResNet18 was fine-tuned from ImageNet pre-trained weights by 
unfreezing all layers. Fine-tuning only the last layer was suboptimal 
because the low-level radiographic features differ substantially from 
the ImageNet features.

The training was performed using five-fold cross-validation, 
separately, for the lateral and DV or VD projections. Each fold was 
trained for the same number of epochs (3000), and the state of the 
model from the last training epoch was utilised for further evaluation. 
The number of epochs was chosen experimentally until convergence. 
The number of epochs was relatively high due to heavy data 
augmentation and small epoch size. The validation set was not used 
to make any decisions during the training procedure. The objective 
function was the cross-entropy loss, the optimiser was the AdamW 
algorithm, and the learning rate scheduler was based on exponential 
decay. The training set was online augmented by random: (i) 
horizontal and vertical flipping, (ii) affine transformations, (iii) elastic 
transformations, (iv) contrast changes, (v) Gaussian blur, (vi) pixel 
dropout, (vii) random sharpening, using the Albumentations library. 
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The class imbalance was addressed by oversampling the minority 
classes for the training cases to achieve balance in the training batches. 
All experiments were implemented using the PyTorch library and 
performed on a single NVIDIA A100 GPU. The results were evaluated 
using confusion matrices, receiver operating characteristic (ROC) 
curves, t-distributed stochastic neighbour embedding (t-SNE) and 
uniform manifold approximation and projection (UMAP).

3. Results

3.1. Database

The database consisted of 1,242 (793 from the Veterinary Teaching 
Hospital and 449 from the Arcella Veterinary Clinic) radiographs in 
total, including 728 (58.6%) (381 from the Veterinary Teaching 
Hospital and 347 from the Arcella Veterinary Clinic lateral and 514 
(41.4%) (412 from the Veterinary Teaching Hospital and 102 from the 
Arcella Veterinary Clinic) DV or VD projections.

Due to the relatively low number of healthy control cases (84 and 
53 lateral and DV/VD radiographic views, respectively), these were 
not included in the database for the final analysis. Similarly, since only 
a few radiographs were classified as stage D (27 and 15 lateral and DV/
VD radiographic views, respectively) dogs classified as stage C or D 
were merged in the database and named as the C + D group.

The lateral and DV or VD views were analysed separately. Two 
hundred and thirty-three (32%) lateral radiographs were classified as 
B1, 165 (22.7%) as B2, and 330 (45.3%) as C + D. One hundred and 
seventy-nine (34.8%) DV or VD radiographs were classed as B1, 127 
(24.7%) were classified as B2, and 208 (40.5%) as C + D.

3.2. Classification results

3.2.1. ROC curve
The confusion matrices for classifying the lateral and DV or VD 

radiographs are reported in Tables 1, 2, respectively. The ROC curves 
are reported in Figures  1, 2 for the lateral and DV or VD views, 
respectively. The area under the curve (AUC) showed a good 
performance of the developed algorithm in determining MMVD 
stages from lateral radiographic views, with an AUC of 0.87, 0.77, and 
0.88 for the B1, B2, and C + D groups, respectively. Instead, the AUCs 
for the DV or VD images were 0.80, 0.70 and 0.81 for the B1, B2, and 
C + D groups, respectively.

The overall precision in classifying the lateral radiographs was 
71%, with a precision of 73, 51% and 80% for B1, B2, and C + D, 
respectively. The macro average and the weighted average were 68% 
and 71%, respectively.

A lower accuracy was obtained for DV or VD radiographs, with 
an overall accuracy of 65% and a precision of 66%, 52%, and 74% for 
the B1, B2, and C + D groups, respectively. The macro average and 
weighted average were 64% and 66%, respectively.

3.2.2. Reduction in dimensionality
Latent spaces are present after dimensionality reduction using 

t-SNE and UMAP in Figures  3, 4 for the right and left lateral 
projections, and in Figures 5, 6 for the DV or VD projections. A latent 
space is a set of the features describing the input images after an 
automatic feature extraction by the deep neural network. The 

TABLE 1 Confusion matrix of right and left lateral radiographic views.

Predicted labels

B1  
group

B2  
group

C  +  D 
group

Real labels

B1 group 167 38 28

B2 group 39 88 38

C + D group 22 46 262

TABLE 2 Confusion matrix of dorso-ventral or ventro-dorsal radiographic 
views.

Predicted labels

B1  
group

B2 
group

C  +  D 
group

Real labels

B1 group 125 29 25

B2 group 32 69 26

C + D group 31 35 142

FIGURE 1

Receiver operating characteristic curve of right and left lateral 
radiographic views. The area under the curve was 0.87, 0.77, and 0.88 
for B1, B2, and C  +  D, respectively.

FIGURE 2

Receiver operating characteristics curve of dorso-ventral or ventro-
dorsal radiographic views. The area under the curve was 0.80, 0.70 
and 0.81 for B1, B2, and C  +  D, respectively.
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dimensionality of the latent space may be  further reduced by 
dimensionality reduction algorithms such as principal component 
analysis (PCA), t-SNE or UMAP, while preserving as much variance 
as possible. In practice, nonlinear learning-based methods such as 
t-SNE or UMAP are superior compared to PCA. These algorithms 
enable intuitive visualisation of the features distribution in 
low-dimensional space (e.g., 2D or 3D). Figures 3–6 illustrate that the 
classification features are distributed in a way that places the B2 cases 
between the B1 and C + D cases, even though the ground truth was 
not annotated using the radiography images. This confirms that the 
features learned by the network are indeed connected with disease 
severity and are not dominated by bias related to confounders caused 
by radiographs acqusition. Cases classed the same ACVIM group are 
shown close to each other. The same behaviour is achieved using both 
t-SNE and UMAP dimensionality reduction.

4. Discussion

In this study, an AI-based algorithm is proposed to predict the 
stage of MMVD from canine thoracic radiographs. The high accuracy 
of the algorithm in predicting the MMVD stage suggests that it could 
potentially support general practitioners in the interpretation of 
canine thoracic radiographs, possibly suggesting the need for further 
cardiological studies, such as an echocardiographic examination.

The vertebral heart score (VHS) is the most widely used system 
for assessing cardiomegaly on canine thoracic radiographs (19). 
However, it can be influenced by the canine morphotype considered. 
For istance, the reference intervals for some canine breeds (e.g., 
Cavalier King Charles Spaniel or Chihuahua) (20–22) are different 
from those of the general canine population. Furthermore, body 
structure, the respiratory phase and the recumbency side used during 
the radiography all influence VHS (23). In such a scenario, the 
interpretation of thoracic X-rays, especially when evaluating the 
cardiac silhouette, can be challenging. For the above reasons, some of 
the potential advantages of deploying the proposed model are to 
overcome interobserver variability and to standardise thoracic 
radiographs evaluation among veterinarians.

FIGURE 4

Visual distribution of latent spaces using UMAP graph of dorso-
ventral or ventro-dorsal radiographic views.

FIGURE 5

Visual distribution of latent spaces using t-SNE graph of right and left 
lateral radiographic views.

FIGURE 3

Visual distribution of latent spaces using t-SNE graph of right and left 
lateral radiographic views.

FIGURE 6

Visual distribution of latent spaces using UMAP graph of dorso-
ventral or ventro-dorsal radiographic views.

https://doi.org/10.3389/fvets.2023.1227009
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Valente et al. 10.3389/fvets.2023.1227009

Frontiers in Veterinary Science 05 frontiersin.org

Interestingly, our model performed better in identifying stage B1 
and C + D dogs than stage B2 dogs. A straightforward comparison 
with the literature is not possible because the cases were classified 
using different parameters in previous studies. In fact, Li et al. (14) 
report a high precision (accuracy of 82.7%) in the identification by 
CNN of LA enlargement. The study cases were classed only according 
to the presence or absence of LA enlargement as classified by 
echocardiography, while ACVIM stage was not considered. In Banzato 
et al. (12), a very high accuracy (AUC = 0.965) in the detection of 
cardiomegaly is reported. However, in this latter study, the dogs were 
classified only considering the size of the cardiac silhouette evaluated 
from thoracic radiographs.

Even if the overall accuracy of the developed system for the B2 
and C + D stages was adequate a significant number of B2 (23.6%) 
and C + D (6.7%) cases was this misclassified as B1 potentially 
classifying deseased dogs as healthy. The authors believe that the 
lower overall precision in the case classification resulting in the 
present study (71%) is related to different factors. Firstly, the cases 
were divided into three groups, whereas a binary case classification 
was used in the previous studies. The intrinsic differences between 
dogs classed as B1, B2 or C + D are smaller compared to the 
differences existing between dogs showing/not showing cardiomegaly. 
In the current study, the sample was more homogeneous because only 
elderly dogs were included and, since MMVD is age-related, it is also 
possible that this factor may have played a role in the classification 
results generated by the CNNs developed by the other authors. Lastly, 
this was a multicentric study, whereas all the previous studies were 
carried out in a single centre, and differences in image quality might 
lower CNN accuracy. On the other hand, CNNs created using data 
from multiple institutions tend to have a higher generalisation 
ability (24).

Not surprisingly, the worst classification results were obtained for 
the B2 stage dogs. This can be explained, among other factors, by the 
greater variability that exists between animals classified in this stage 
of the disease and animals classified as B1 or C + D. In fact, they range 
from having a slightly enlarged cardiac silhouette to having a severe 
cardiomegaly with signs of cardiac remodelling. This aspect was also 
confirmed by the visual distribution of the cases in the t-SNE graph 
(Figures 3, 5); in fact, we can immediately perceive the variability of 
stage B2 dogs from the wide distribution of the dots representing 
this group.

Lastly, the developed heart CNN had a high accuracy in detecting 
stage C + D dogs. This aspect of the results is similar to that of a 
previous study evaluating to what extent AI software could identify 
canine pulmonary oedema (15). Furthermore, high precision in 
classifying alveolar and/or interstitial pattern was also previously 
documented in dogs and cats (9, 11).

In human medicine, Ueda et al. (7) proposed a model based on 
DL for the diagnosis of mitral regurgitation based on chest 
radiographs. In addition, a visualisation technique was used to check 
and confirm that the features learned by the AI algorithm were 
specifically related to cardiac morphological changes due to disease 
severity. Furthermore, they found that the sensitivity of the model rose 
as the severity of mitral regurgitation increased. A direct comparison 
between the previous study and our results was not straightforward 
due to the different system of heart disease classification.

In the present study, radiographs from both institutions involved 
were included in the database and used for algorithm training and 
testing. Another approach could have been to use the radiographs 
from one institution as a training and validation set and the 
radiographs from the other institution as a test set. We chose to mix 
the two databases because the overall number of radiographs was 
limited and the size of the two databases was markedly different. 
Furthermore, CNN performance is also influenced by disease 
prevalence in the different databases. One of the main problems is 
what is known as overfitting; models often show very high accuracy 
in internal tests but fail to generalise when exposed to external data. 
One of the strategies that can be adopted to overcome overfitting, at 
least partially, is to use data acquired from multiple institutions for 
the training (24). Further studies, possibly involving a higher number 
of veterianary clinics are required to assess the real generalisation 
ability of the network.

This study does have some limitations. Its retrospective nature 
did not allow us to establish a more rigorous collection of data. The 
relatively small size of the database, compared to human studies on 
similar topics (7), also acted as a limiting factor. On this aspect, 
we would like to point out that the database size was comparable to 
other studies developing similar CNNs in dogs (9, 13, 14) and cats 
(11). Lastly, many stage C dogs were receiving diuretic therapy when 
the radiographs were taken. Even if cardiomegaly was evident, it 
could be associated with a normal pulmonary pattern. This factor 
may have led to misclassification of dogs in the C + D group. Further 
studies selecting only dogs with acute or chronic decompensated HF 
should be considered.

5. Conclusion

An AI-based algorithm for the automatic staging of dogs affected 
by MMVD was proposed based on canine thoracic radiographs. This 
method showed a high accuracy in identifying dogs belonging to stage 
B1 or C + D stage and a moderate accuracy in the identification of 
stage B2 dogs. Potentially, the use of a larger dataset could provide 
greater result accuracy. The heart CNN could stand as a useful support 
tool for general practitioners when interpreting canine chest 
radiographs. Nonetheless, more studies with a larger sample size 
would provide a better insight into the performance of the heart-CNN.
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