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Methods to get more
information from sparse vessel
monitoring systems data

Hans D. Gerritsen*

Fisheries Ecosystems Advisory Services, Marine Institute, Oranmore, Ireland
Vessel Monitoring Systems (VMS) and other vessel tracking data have been used

for many years to map the distribution of fishing activities. Mapping areas with

low levels of fishing activity can be of particular interest; for example to avoid

conflicts between fishing and other ocean uses like offshore renewable energy or

to protect relatively pristine ecosystems from increasing fishing pressure. A

particular problem when trying to delineate areas that are lightly fished, is the

relative sparsity of vessel monitoring data in these areas. This paper explores

three novel methods for estimating the distribution of fishing activity from VMS

data, with particular focus on lightly impacted areas. The first new method

divides the area of interest into a nested grid with varying cell sizes (depending on

the density of data at each location); the second new method uses Voronoi

diagrams to define polygons around observations and the third method applies a

local regression to generate a smooth map of fishing intensity. The newmethods

are compared with two established methods: applying spatial grids and

interpolating fishing tracks. The track interpolation method generally performs

better than any of the new methods, however it is not always possible or

appropriate to apply track interpolation; in those cases the local regression

method is the best alternative.

KEYWORDS

vessel monitoring systems, automatic identification systems, fisheries, spatial
distribution, mapping, local regression
1 Introduction

Automated vessel tracking data have been used for many years to map the distribution

of fishing activities; for example, 25 years ago the spatial distribution of beam trawl effort in

the North Sea was mapped in detail (Rijnsdorp et al., 1998). Since the introduction of

satellite-based Vessel Monitoring Systems (VMS) and Automatic Identification Systems

(AIS), detailed positional data have been collected for many fishing fleets worldwide. A

number of methods have been developed to map the distribution of fishing activities
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(Lambert et al., 2012) but the most common approach by far is to

aggregate the positional data in a spatial grid. These grids may then

be used to identify specific fishing grounds (Gerritsen et al., 2012) or

quantify the footprint of fishing activity (Gerritsen et al., 2013;

Eigaard et al., 2017). Of particular interest is the identification of

lightly impacted areas, for example to avoid conflicts between

fishing and other ocean uses like offshore renewable energy

(Campbell et al., 2014) but also to protect relatively pristine

ecosystems from increasing fishing pressure (e.g. ICES, 2022).

A particular problem when trying to map areas that are lightly

impacted by fishing is that data will be relatively sparse. For

example, the International Council for the Exploration of the Sea

(ICES) advises the European Commission on vulnerable marine

ecosystems in areas with low fishing pressure by mobile bottom

contacting gears (ICES, 2022). ICES uses a threshold of a swept-area

ratio (SAR; Gerritsen et al., 2013) of 0.43 to identify areas with low

fishing pressure. A SAR of 0.43 means that a given location has a

43% likelihood of being impacted by fishing gear in a year. Bottom

trawling impacts an area of roughly 0.6km2 per hour offishing when

averaged across gear types and vessel sizes (Eigaard et al., 2016).

With a polling interval of 1h, which is common for VMS data, one

would therefore expect fewer than one VMS record per km2 per

year in areas below that threshold. This means that, although VMS

datasets typically contain many millions of data points per year, the

data are nevertheless sparse in the areas with low fishing activity

that we might be interested in.

A well-known problem with the usual approach of gridding

VMS data is that the results depend strongly on the resolution used.

At a very high resolution (small grid cells), there can be many grid

cells with no data points in areas where activity did occur (because

VMS data are not a census but a systematic sample of fishing

activity). At a low resolution (large grid cells), the spatial detail is

lost and the area impacted by fishing is over-estimated because grid

cells contain areas of both high and low impact. Rijnsdorp et al.

noted this in 1998, but the choice of grid resolution still leads to

controversy (Amoroso et al., 2018).

This paper explores existing and new methods of mapping

fishing activity from VMS data in areas where data are sparse. All

new methods are relatively simple to implement and only require

moderate computing power. The performance of these methods is

compared with the traditional grid approach and with an

established method of interpolating fishing tracks from

consecutive positional data points using Hermite splines (Hintzen

et al., 2010). In the first ‘new’method, a grid is constructed with grid

cells that vary in size depending on the density of data points by

successively splitting large grid cells into smaller ones. This

approach removes the choice of a grid resolution and ensures that

there are no grid cells without data. It is an adaptation of an

approach described by Gerritsen et al. (2013). The second approach

is based on constructing tessellating polygons around individual

VMS data points by computing a Voronoi diagram (Boots et al.,

2009). The surface area of each polygon is then used to calculate the

density of fishing activity in each polygon. The third approach

applies a local regression and density estimation, using a nearest

neighbours approach (Loader, 1999).
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2 Methods

2.1 Data

In order to evaluate the methods, an AIS dataset was used; these

data are structurally similar to VMS data: they contain a vessel

identifier, timestamp, geographic position, speed and heading.

However AIS data are available at much shorter time intervals:

typically less than 5 minutes versus 1 or 2 hour intervals for VMS

data. A major drawback of AIS data is that data are only recorded if

they are received by AIS base stations or satellites fitted with AIS

receivers. This can result in significant gaps in coverage, particularly

in offshore areas. Vessel Monitoring Systems are fully satellite-based

and because VMS are mandatory for enforcement purposes, the

coverage is close to complete for vessels that are obliged to carry

VMS (in Europe this includes all vessels of 12m or more in length).

For the current analysis, gaps in the AIS data will not cause

problems as the data are only used for exploring the proposed

methods and are not intended to provide absolute estimates of the

spatial distribution of fishing activity.

As a first step, the AIS data are used to reconstruct actual vessel

tracks in order to quantify the ‘true’ fishing footprint (ignoring any

inaccuracies in identifying which records correspond to fishing

activity as well as missing data). Next, the AIS data are subsampled

at time intervals similar to VMS data to test the performance of each

method on data that is similar to VMS data.

The AIS data cover the period of one year (2015) and the main

case study area is a rectangle of 200km2 in size, located in the Irish

Sea to the east of Ireland where there was a mix of high and low

fishing activity by demersal otter trawlers (see Supplementary

Material figure S1 for a map of the case study areas).

Approximately 1500 hours of fishing activity took place in the

area and 22 vessels were active there. Two additional case study

areas were selected to test the methods at different intensities of

fishing pressure and using different gears: an area of dredge activity

in the eastern Irish Sea and an area of beam trawl activity in the

Celtic Sea to the south of Ireland. The dredge case study area was

250km2 in size and had around 125 hours of fishing activity by two

vessels; the beam trawl case study area was considerably larger:

1200km2 with nearly 1000 hours of fishing activity by 7 vessels. The

results of these additional case studies are presented in the

Supplementary Material (Data Sheet 2).

For the main case study, only fishing vessels that reported using

bottom trawls in their logbooks were included. These records were

identified by linking the AIS data to the Irish logbooks database using

vessel name and activity date. Because the polling frequency of AIS

data is variable, the dataset was resampled at intervals close to 5

minutes to create a more consistent dataset. Line segments were

created by linking each AIS record to the previous record of the same

vessel and the vessel speed was calculated from the length of these lines

and the time interval between the records. This calculated speed was

assumed to be more representative of the mean vessel speed of the

entire segment than the instantaneous speed provided in the AIS

dataset. Vessels traveling at speeds between 1.5 and 4.5kn were

assumed to be engaged in fishing (following the approach used by
frontiersin.org
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Gerritsen and Lordan, 2011) and line segments outside those speed

thresholds were removed from the dataset. A buffer was applied to the

remaining line segments to approximate the width of the fishing gear

(Figure 1). For bottom trawlers the width of the gear was assumed to

be 100m (e.g. Gerritsen et al., 2013). The density offishing activity was

then calculated as the time duration represented by each line segment

(5 minutes) divided by the surface area of each track segment (100m x

the length of the track); at a fishing speed of 6km/h this would work

out at 1.67 hours per km2. The density values were summed for

overlapping track segments and transferred to a fine-scale spatial grid

(resolution of 25m x 25m). Finally, a spatial smoother was applied to

account for the uncertainty of the actual position of the gear (which is

behind and possibly to one side of the vessel position). The smoother

uses a moving window filter (focal), calculating a local mean using

Gaussian weight function with a 100m standard deviation (Figure 1).

Recent VMS data from the same region consist of a mix of

polling frequencies: around 10% of records are recorded at 20min

intervals, 60% at 1h intervals and 30% at 2h intervals. This pattern

was mimicked by randomly assigning the 20min, 1h and 2h

intervals to vessels in the AIS dataset in the same proportions and

subsampling the AIS data at those intervals. Each simulated VMS

record was assigned a fishing activity value (hours fished) equal to

the interval it was subsampled at so that each record is an unbiased

sample of the fishing activity. Both the fishing tracks (AIS) and

point data (simulated VMS) were projected using the WGS 84/

UTM zone 30N coordinate system.
2.2 Regular grid

The new methods will be compared to the full AIS dataset of

‘true’ fishing tracks but also against established methods, the first

one of these is the standard ‘regular grid’ approach. For this
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purpose, the simulated VMS data are aggregated in spatial grids

at three different resolutions: 0.5km x 0.5km; 1km x 1km and 2km x

2km. The level of fishing activity in each grid cell was estimated as

the sum of the fishing hours inside each grid cell divided by the

surface area of the cell. Figure 2 shows the estimated distribution of

fishing activity at those resolutions.
2.3 Hermite spline interpolation

The second established approach that the new methods will be

compared to is the fishing track interpolation described by Hintzen

et al. (2010) and implemented in the vmstools R package. The

Hermite spline method interpolates the fishing tracks of consecutive

data points using vessel speed and heading to define an expected

trajectory. The combination of speed and heading are represented

by vectors, and vector length is multiplied by a parameter fm that

influences the curvature of the interpolations. Before applying the

method, the fm parameter first needs to be estimated. This can be

done by minimising the distance between actual tracks and

interpolated tracks (e.g. https://github.com/nielshintzen/vmstools/

wiki/tuneInterpolation). In the current case, the actual tracks are

available from the AIS data and the fm parameter was estimated for

the main case study area at 0.048 for 20min intervals; 0.091 for 1h

intervals and 0.155 for 2h intervals. Figure 3 shows the resulting

estimated vessel tracks.

A drawback of the method is that it can only interpolate

between consecutive locations along a fishing track. If a fishing

operation is short and only captured by a single VMS record, no

interpolation is possible. Similarly, fishing activity will take place for

a certain amount of time before the first and after the last VMS

position recorded during a fishing operation, leading to additional

bias. In the main case study dataset, this led to a loss of 15% of
FIGURE 1

Bottom trawling tracks in the western Irish Sea, obtained from AIS data. Left: tracks with a spatial buffer to account for the width of the fishing gear.
The colour scale indicates the number of times each location is impacted by fishing each year. Middle: same data after converting to fishing hours
per km2 and applying a focal smoother. Right: the points indicate the locations where the AIS data were subsampled at 0.5, 1 or 2h intervals to
simulate VMS data.
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fishing hours. In order to compensate for this bias, the fishing

activity estimated from the interpolated tracks was inflated by the

commensurate amount: the length of the tracks was unaffected by

this but the fishing hours per track segment were increased so the

total fishing hours matched those of the input dataset. Finally, a

smoother was applied to the distribution of fishing hours (Figure 3),

following the same approach outlined for the AIS tracks and for the

same reasons.

Other interpolation methods exist, e.g. Russo et al. (2011) used

the Catmull–Rom algorithm to refine the spline interpolation

approach and Zhao et al. (2020) applied neural networks to deal

with trajectories that are not smooth. Both of these methods also

address the bias in the Hermite spline approach that is caused by
Frontiers in Marine Science 04
interpolating only between consecutive fishing locations. However,

it is not intended to provide a full review of all available methods

here and therefore only the most widely cited interpolation

approach (Hermite spline) is included in the current analysis.
2.4 Nested grid

The first ‘new’ approach adapts a method described by

Gerritsen et al. (2013) which is similar to the simple grid

approach but the grid resolution varies in space, depending on

the local density of observations. Gerritsen et al. (2013) started with

a course rectangular grid and recursively split each grid cell in two
FIGURE 2

Fishing hours per km2 estimated by gridding the reduced dataset (which is similar to VMS data) at resolutions of 0.5km x 0.5km (left); 1km x 1km
(middle) and 2km x 2km (right).
FIGURE 3

Hermite spline track interpolation of the reduced dataset. Left: the point data and interpolated tracks. Middle: tracks converted to fishing hours per
km2. Right: same data after applying a focal smoother (moving window average).
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equal halves if both halves contained at least n data points, creating

a grid of increasingly small rectangles that are nested inside each

other. Here, instead of splitting rectangles in equal halves, the

rectangles are split to contain equal number of data points by

identifying the median x and y position of the points inside the

rectangle. Rectangles that are higher than they are wide are split

along the x direction rectangles that are wider than high are split

along the y direction. A threshold of n=5 was used, meaning that

rectangles will not be further split if that would result in fewer than

5 data points in either of the resulting sub-rectangles. Figure 4

illustrates how the approach was applied to the simulated VMS

dataset. The datapoints inside each rectangle were aggregated to

estimate the total fishing hours in each grid cell and the distribution

of fishing activity was estimated by dividing the fishing hours by the

surface area of each rectangle.
2.5 Voronoi

The second new approach is based on creating polygons around

individual datapoints – inspired by the way the VAST spatio-

temporal model can create maps from prediction grids (Thorson,

2019). However, in areas where these points are very dense, this can

generate polygons with very small areas, resulting in noisy density

estimates. For this reason, the data were first aggregated at a spatial

grid of 100m x 100m. Next a set of tessellating polygons was

generated by computing a Voronoi diagram (Boots et al., 2009).

Figure 5 illustrates how the approach was applied to the simulated

VMS dataset. The fishing hours in each polygon are equal to the

fishing hours associated with the relevant data point except in areas

of high density where data points were aggregated, resulting in some

polygons with fishing hours in excess of 2h. The distribution of
Frontiers in Marine Science 05
fishing activity was estimated by dividing the fishing hours by the

surface area of each polygon.
2.6 Local regression

The final new approach deals with two features of the data

separately: the response – in this case the hours fished; and the

density – the number of data points per km2. Due to the nature of

the data (where the number of data points is directly proportional to

the amount of activity in an area), there is much more information

on the spatial structure of the data in areas with high activity than in

sparsely exploited areas. This means that any spatial smoothing

approach will need to employ a variable bandwidth (otherwise over-

smoothing will occur in high-activity areas and under-smoothing in

low-activity areas). A local regression and density estimation

approach, fitting to a set of nearest-neighbours can deal with this:

in high-activity areas the n nearest neighbouring data points will

occur within a small area, allowing fine-scale structure to be

retained; in low-activity areas, the n nearest neighbours cover a

larger area, smoothing out the observations over that larger area.

Loader (1999) describes such a regression and density

estimation using local polynomials. This approach is

implemented in the locfit R package. The choice of bandwidth has

a critical effect on the fit and can be specified as a constant

bandwidth or a nearest neighbour bandwidth or a combination of

the two. Here, only the nearest neighbour bandwidth is used so that

the local neighbourhood always contains a specified number of

points. Another important choice is the polynomial degree. A

degree of zero is simply a local mean, a degree of one results in a

linear regression and higher levels correspond to quadratic and

higher degree polynomials. A high-degree polynomial leads to a
FIGURE 4

Nested grid approach: grid cells are iteratively split in two until they cannot be further divided without containing at least 5 observations in each cell.
This results in a roughly uniform distribution of fishing hours per grid cell (left). This is then divided by the area of each grid cell (middle) to estimate
the distribution of fishing hours per km2 (right).
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more variable estimate which may need to be compensated for by

increasing the bandwidth. Loader advises that it often suffices to

choose a low degree polynomial and focus on choosing the

appropriate bandwidth to obtain a satisfactory fit. The final

component is the weight function. The (default) tricube weight

function was used here; it places less weight on observations that are

furthest away and is the traditional weight function for

local regression.

A bandwidth based on the n = 20 nearest neighbours was used

for both the regression and density estimation – this was based on

trial and error and resulted in the least bias and highest precision

when compared to the ‘true’ distribution of fishing activity from the

AIS dataset. For the regression estimating the distribution of the

hours fished per datapoint, a polynomial degree of zero was used;

this prevents the model from extrapolating to extreme or negative

values in areas with sparse data while the relatively narrow

bandwidth makes it flexible enough to account for local

differences. For the density estimation a polynomial degree of one

was chosen. This allows the model to fit to a local trends in density

(which can occur if vessels with a high polling frequency operate in

different areas than vessels with a low polling frequency). This is

preferable to a traditional kernel density estimate (equivalent to

zero degree polynomial), which tends to trim peaks and be biased in

the tails.

Figure 6 shows the spatial distributions of predicted mean

fishing hours per observation; the density estimate and the fishing

hours per km2
3 Results

The methods described above were used to estimate the part of

the case study area that is relatively lightly impacted by fishing,

choosing an arbitrary threshold of 5 fishing hours per km2 per year
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in the main case study area. First, the ‘true’ area below the threshold

was calculated for the full AIS dataset (Figure 7). The south-western

corner of the case study area is not impacted by fishing at all and

there are number of smaller areas within the fishing ground which

fall below the threshold.

The Hermite spline interpolation appears to be able to

accurately reconstruct the fishing tracks from the reduced data set

(Figure 7). Visually, this method seems to give the closest

approximation of the true area that is below the threshold. This is

the only approach that makes use of all available information like

speed, heading and the sequence of datapoints of each vessel,

making the approach more powerful than the other approaches,

which treat each observation as an independent data point.

Figure 7 also shows that the grid-based approaches

(unsurprisingly) yield very pixelated results. At the 0.5km grid

resolution there are a many grid cells that are incorrectly identified

as being below the threshold due to the relative sparsity of the data.

The 1km grid resolution appears to give a reasonable estimate of the

area below the threshold but the 2km grid resolution is already

much too coarse to identify the smaller features that are apparent in

the full AIS dataset. The nested grid method settles on a grid size

similar to the regular grid of 1km x 1km in areas around the

threshold and does not appear to perform any better than the

regular grid approach in identifying the outline of the area below

the threshold.

The Voronoi approach, like the 0.5km grid, tends to over-

estimate the area below the threshold of 5 hours per km2. The local

fit method comes closest to the true pattern but is unable to recover

the same amount of detail as the spline interpolation

method (Figure 7).

In order to investigate the performance of the established and

new methods at different thresholds, the proportion of the case

study area that was incorrectly identified as being below or above

each threshold was calculated for a range from 0.5 to 15 hours per
FIGURE 5

Voronoi approach: Voronoi tessellation is applied to the individual observations. To avoid generating very small polygons, the data are first
aggregated on a 100m x 100m grid, this results in some polygons that contain data from more than one data point. The fishing hours per polygon
are shown on the left. This is then divided by the area of each grid cell (middle) to estimate the distribution of fishing hours per km2 (right).
frontiersin.org
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FIGURE 7

The green/blue colour shows the area below the threshold of 5h/km2/year and the orange/brown area is the area above the threshold. The lighter colours
refer to areas that were incorrectly assigned, compared to the ’true’ area based on the actual fishing tracks of the full AIS dataset, which is shown in the top-
left map. The other maps show the various approaches using the reduced dataset. The spline interpolation approach appears accurately reconstruct the
vessel tracks and impacted area from the reduced dataset. The area below the threshold estimated by the regular grid approach depends strongly on the
grid resolution (0.5km, 1km and 2km), but at all grid resolutions, there is a relatively large area that is incorrectly classified as being below the threshold; the
nested grid approach gives similar results to the 1km grid; the Voronoi approach gives similar results to the 0.5km grid and the local fit approach is
reasonably accurate but is too smooth to capture the fine structures that are a few hundred meters in size.
FIGURE 6

Local fit approach, using the 20 nearest neighbours. The first model estimates mean fishing hours per data point at each location (left); this is
expected to be more or less uniformly distributed. The second model estimates the density of observations (middle). The fishing hours per km2 are
estimated by multiplying the predicted values from the two models (left).
Frontiers in Marine Science frontiersin.org07
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km2. Figure 8 shows that the spline interpolation method is the

most accurate across a the range of thresholds, with generally less

than 5% misclassification. At relatively low thresholds, the 0.5km

grid over-estimates the area below the threshold. This is because

there are too many cells with no data observations. The opposite is

true for the 2km grid: the cells are so large that nearly all of them

include an area with a relatively large number of data points. The

nested grid and Voronoi approaches both tend to over-estimate the

area below the threshold for relatively low thresholds. The local fit

approach is not as accurate as the spline interpolation but with less

than 10% misclassification, it is the second-most accurate method.

The Supplementary Material (Data Sheet 2) shows the results of

the two other case studies. In the case of dredge activity (Figure S2),

the Hermite spline method gave visually similar results to the actual

fishing tracks (Figures S3, S4) despite the relatively short tracks and

sharp turns that are typical in this fishery. In terms of accuracy, the

local fit approach performed equally well to the spline interpolation

(Figure S5). The beam trawl case study (Figure S6) showed that the

Hermite spline method performed best at reconstructing the

distribution of fishing activity from the reduced dataset (Figure

S7). The local fit and Voronoi methods were both able to identify

the main areas of fishing but not individual tracks (Figure S8). In

terms of accuracy at different thresholds, the spline interpolation

method performed best, followed by the local fit approach

(Figure S9).
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4 Discussion

The Hermite spline interpolation is the most accurate method

of mapping the distribution of fishing activity as well as estimating

the area that is below a certain threshold of fishing activity for the

case studies examined here. However, interpolation methods are

not widely applied in practice. This may be partially due to

computational demands of these approaches, which makes it

difficult to apply on a large scale. Also, interpolation methods

tend to perform poorly when the duration of fishing operations is

short, compared to the polling frequency of the data or when the

position of the fishing gear is difficult to estimate directly from the

vessel position, as is the case in seine and pair-trawl fisheries. In

those cases, alternatives need to be considered.

Grid-based methods are by far the most widely used approach to

map fishing intensity. These methods are simple to implement and

require only moderate computing power. However the choice of the

size of the grid cells is highly influential and there is no one-size-fits-

all solution. The nested grid approach is intended to address the

arbitrary choice of the size of the grid cells with smaller cells in areas

of high densities of datapoints. This allows detailed mapping of fine-

scale structures in areas with high fishing intensity but for the present

purpose (identifying areas with low fishing intensity), the grid cells

are necessarily coarse and this method does not perform much better

than the a regular grid approach.
FIGURE 8

Proportion of the case-study area that was incorrectly classified as being above (false-positive) or below (false negative) various thresholds. The
spline interpolation method has highest accuracy at most threshold levels. The fine grid (0.5km) strongly overestimates the area below the threshold
up to around 10h/km2/year and the coarse grid (2km) overestimates the area above the threshold up to around 10h/km2/year. The 1km grid seems
to be the best compromise of the grid-based approaches for this case study. Both the nested grid and Vonoroi approaches tend to over-estimate
the area below the threshold. The local-fit approach does not perform as well as the spline interpolation (although at very low thresholds they are
comparable) but it appears to be the most accurate of the point-based methods.
frontiersin.org
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The Voronoi method performs reasonably well but is slightly

biased in areas where there is a decreasing density of datapoints

because it will extend some of the vertices out into untrawled areas:

this can be seen in the bottom-left corner of the maps e.g. (Figure 5).

The same bias occurs in the nested grid and 2km grid approaches.

Like the grid-based approaches, the Voronoi approach is unable to

produce smooth surfaces, which could be considered a drawback.

The local fit method is relatively easy to implement on vessel

tracking data: it has a well-documented statistical basis (Loader, 1999)

and accompanying R package (locfit). It also requires significantly less

computing power than track interpolation methods. Because this

method does not attempt to reconstruct the fishing tracks, it can be

applied to fisheries for which interpolation methods do not work.

Another advantage is the fact that the local fit approach estimates the

density separately from the response. In the current case study, the

response is the amount offishing activity but any response variable can

be modeled: other measures of fishing effort like kW hours; the catch

of a certain species; the monetary value of the total catch; etc. The local

regression model can then be adapted to the properties of the

response variable.

Conclusion: Grid-based methods are widely used but have a

number of drawbacks. The Hermite spline interpolation is generally

the most accurate approach but track interpolation methods may be

difficult to implement on large datasets or in cases where the

duration of the fishing operations is relatively short. The local fit

approach provides a good alternative in those cases.
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