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Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of

mature T-cell neoplasms that are unified by the expression of CD30 and

anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)

(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL.

According to the most recent World Health Organization (WHO) Classification of

Haematolymphoid Tumours as well as the International Consensus Classification

(ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL,

and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic

ALCLs harbor rearrangement of ALK, withNPM1 being themost common partner

gene, although many other fusion partner genes have been identified to date.

ALK- ALCLs represent a heterogeneous group of lymphomas with distinct

clinical, immunophenotypic, and genetic features. A subset harbor recurrent

rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion

for which genetic aberrations have yet to be characterized. Although primary

cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary

cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic

morphology together with CD30 expression in the malignant cells, this review

also discusses the pathobiological features of this disease entity. Genomic and

proteomic studies have contributed significant knowledge elucidating novel

signaling pathways that are implicated in ALCL pathogenesis and represent

candidate targets of therapeutic interventions. This review aims to offer

perspectives on recent insights regarding the pathobiological and genetic

features of ALCL.
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1 Introduction

Anaplastic large cell lymphomas (ALCL) refer to a heterogeneous group of CD30-positive

T-cell neoplasms with diverse clinical, histologic, and genetic features. The disease group

comprises approximately 15% of all peripheral T-cell lymphoma and 3 to 5% of all non-

Hodgkin lymphoma (1). ALCL was first recognized in 1985 based on the large size of the
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neoplastic cells with uniform strong expression of CD30 (2). The

recurrent chromosomal translocation t (2;5)(p23;q35), which was

identified in 1994, results in a novel fusion tyrosine kinase involving

the N-terminus of the nucleophosmin (NPM1) gene and the C-

terminus of the anaplastic lymphoma kinase (ALK) gene (3). The

chimeric protein NPM::ALK functions as an oncogenic tyrosine kinase

which impacts diverse cellular signaling pathways leading to

lymphoma. In addition to NPM1, over 20 distinct partner genes of

ALK have been identified (Figure 1) (4). Moreover, the significantly

enhanced survival of ALK+ ALCL patients and distinct genetic features

rationalized its distinction from ALK- ALCLs (5, 6). Based on the

recent understanding of the genetic basis of ALK- ALCL and those that

occur in breast-implant ALCL, the updated 5th edition of the World

Health Organization Classification of Haematolymphoid Tumours (5),

and the International Consensus Classification (ICC) of Mature

Lymphoid Neoplasms (7) recognize three subtypes, namely ALK+

ALCL, ALK- ALCL, breast implant-associated ALCL (BI-ALCL) (5).

Further, we discuss the pathobiological features of primary cutaneous
Frontiers in Oncology 02
anaplastic large cell lymphoma (pc-ALCL) due to many overlapping

histologic and immunophenotypic features with other ALCLs. Recent

genomic studies provide an enhanced understanding of the

pathobiological events in this group of intriguing neoplasms that will

be summarized in this manuscript (6, 8).
2 Pathobiology of ALK+ ALCL

2.1 ALK rearrangements in ALK+ ALCL

ALK+ ALCLs, by definition, express the ALK protein, which

functions as a strong driver oncogene. ALK gene rearrangements

result in the expression of a novel fusion protein and constitutive

activation of the ALK tyrosine kinase (9). The majority (80%) of

cases expressNPM::ALK as a result of t(2;5)(q23;35) involving the 3’

segment of the ALK gene on chromosome 2p23 and the 5’ segment

of the nucleophosmin (NPM1) gene on chromosome 5q35. The
FIGURE 1

Schematic representation of pathogenic signaling pathways in ALK+ ALCL ( ) represents deregulated T-cell receptor signaling pathways

mediated by NPM::ALK. ( ) represents deregulated cell proliferation and apoptosis signaling pathways mediated by NPM::ALK. ( )

represents deregulated cellular metabolism signaling pathways mediated by NPM::ALK. ( ) represents deregulated genomic stability signaling

pathways mediated by NPM::ALK. ( ) represents deregulated epigenetic regulation signaling pathway mediated by NPM::ALK. ( )

represents deregulated miRNA repertoire by NPM::ALK. ( ) represents immune evasion mechanisms mediated by NPM::ALK. ( )

represents deregulated cytokine signaling mediated by NPM::ALK. ( ) represents deregulated proteolytic signaling mediated by NPM::ALK.
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chimeric protein NPM::ALK is composed of the N-terminal

oligomerization domain of NPM1 and the C-terminal tyrosine

k inase domain of ALK. Due to l igand- independent

oligomerization mediated by NPM1, the catalytic domain of ALK

undergoes transautophosphorylation with constitutive tyrosine

kinase activity, which translates into increased intracellular

signaling promoting cell proliferation, resistance to apoptosis, and

oncogenic transformation (10). Apart from NPM1 as its N-terminal

fusion partner, in approximately 20% of ALK+ ALCLs, ALK is fused

with other genes, including tropomyosin 3 and 4 (TPM3 and

TPM4) (11), TRK-fused gene (TFG) (12), 5-amino-imidazole-4-

carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase

(ATIC) (13), ring finger protein 213 (RNF213) (14), clathrin heavy

chain (CLTC) (14), moesin (MSN) (15), non-muscle myosin heavy

chain (MYH9) (15), TNF receptor-associated factor 1 (TRAF1) (16),

eukaryotic translation elongation factor I gamma (EEF1G) (17) and

the poly(A) binding protein cytoplasmic 1 (PABPC1) (18). In

contrast to NPM::ALK, which is expressed in both the nucleus

and cytoplasm, other ALK fusion proteins are localized in various

cellular compartments (Table 1) (3, 11, 13–20). TPM3::ALK, the

second most frequent fusion, is present in approximately 15% of

ALK+ ALCLs. Despite all ALK rearrangements involving the same

region of ALK, the downstream signaling pathways vary due to the

different fusion partners (21). The pathogenetic mechanisms

regulated by variant ALK fusion genes have not been explored

due to the rarity of cases.
2.2 Deregulated T-cell receptor signaling
pathway in ALK+ ALCL

T-cell receptor (TCR) engagement triggers various cascades of

signaling pathways, including phospholipase C-g1 (PLC-g1)-
inositol triphosphate (IP3)-Ca2+-nuclear factor of activated T-cells

(NFAT) pathway (22, 23), the protein kinase C (PKC)-IĸB kinase
Frontiers in Oncology 03
(IKK)-nuclear factor (NF)-kB pathway (24), the Ras-extracellular

signal-related kinase (ERK)-activator protein (AP)-1 pathway (25),

as well as the Phosphoinositide 3-kinase (PI3K)-AKT-mammalian

target of rapamycin (mTOR) pathway (26). These activated

signaling pathways ultimately determine cell fate through

cytokine production, cell survival, cell proliferation, and

differentiation. Although ALK+ ALCLs express rearranged T-cell

receptors, the expression of many pivotal TCR molecules, including

TCF-1, TCF-1/LEF-1, LCK, ZAP-70, LAT, NFATc1, c-Jun, c-Fos,

and Syk is repressed (27). Inhibition of the kinase activity of NPM::

ALK or exposure to DNA methyltransferase inhibitors rescues the

expression of CD3e, ZAP70, LAT, and SLP76, suggesting that

NPM::ALK-mediated transcriptional repression occurs via DNA

methylation to downregulate components of the TCR signaling

cascade in ALK+ ALCL (28). Apart from this, NPM::ALK further

mimics TCR-induced signal transduction by directly interacting

with and phosphorylating PLC-g1, which triggers downstream

signaling cascades for cell survival (29, 30). As such, NPM::ALK

promotes the proliferation and survival of malignant cells by

bypassing the TCR signaling pathway (Figure 1).

In addition to promoting cell proliferation and differentiation,

T-cell receptor engagement also induces activation-induced T-cell

death (AICD) through Fas-mediated apoptosis to prevent the

accumulation of alloreactive T-cells and the development of graft-

vs-host disease (31). It has been demonstrated that FLICE-like

inhibitory protein (c-FLIP) prevents neoplastic cells from

undergoing Fas-mediated apoptosis in ALK+ ALCL. Specifically,

exposure of ALK+ ALCL cell lines that express high levels of c-FLIP,

to CH-11, a CD95/FAS agonistic antibody, alone is not able to

reduce the viability of malignant cells. si-RNA-mediated

knockdown of c-FLIP together with CH-11 treatment rescues Fas-

mediated apoptosis by triggering downstream caspase signaling

pathways in ALK+ ALCL cells (32). Further investigation is

required to determine whether the loss of TCR signaling

molecules contributes to reduced AICD process in ALK+ ALCL.
TABLE 1 Summary of chromosomal rearrangements in ALK+ ALCL.

ALK fusion proteins Translocation Localization Reference

NPM::ALK t(2;5)(p23;q35) nucleus, cytoplasm (3)

TPM3::ALK t(1;2)(q25; p23) cytoplasm (11)

TPM4::ALK t(2;19)(p23;p13) cytoplasm (11)

TFG::ALK t(2;3)(p23;q21) cytoplasm (12)

ATIC::ALK inv(2)(p23q35) cytoplasm (13)

RNF213::ALK t(2;17)(p23;q25) cytoplasm (14)

CLTC::ALK t(2;17)(p23;q23) cytoplasm (14)

MSN::ALK t(X;2)(q11; p23) cytoplasm (15)

MYH9::ALK t(2;22)(p23;q11) cytoplasm (15)

TRAF1::ALK t(2;19)(p23;q33) cytoplasm (16)

EEF1G::ALK t(2;11)(p23;q11) cytoplasm (17)

PABPC1::ALK t(2;9)(p23;q33) cytoplasm (18)
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2.3 Deregulated cell proliferation and
apoptosis in ALK+ ALCL

NPM::ALK regulates many proliferative and anti-apoptotic

signaling pathways, including mitogen-activated protein (MAP)

kinase (33), JAK-STAT (34, 35), PLC-g1 (30), and PI3K-AKT

(29), to promote lymphomagenesis (Figure 1). The MAP kinase

signaling pathway is a major cell proliferation and survival regulator

(36). NPM::ALK phosphorylates extracellular signal-regulated

kinase (ERK)1/2 in a MEK1/2-dependent manner, and

perturbation of MEK and ERK1/2 reduced cell proliferation and

promoted cell apoptosis of ALK+ ALCL cells (37). NPM::ALK also

regulates cell growth of ALK+ ALCL via activation of the PLC-g
pathway. The interaction of NPM::ALK with PLC-g1 occurs via the
tyrosine 644 residue, which is located at the C-terminus of the

chimeric protein, and expression of NPM::ALKY644F abrogates

PLC-g1 phosphorylation and activation (30). The PI3K-AKT

pathway has been implicated in oncogenesis for its role in cell-

cycle progression. NPM::ALK constitutively activates PI3K and its

downstream effector, the serine/threonine kinase AKT, and thus

promotes growth and inhibits apoptosis in ALK+ALCL (38). AKT

phosphorylates the Bcl2-associated death promoter (BAD), thereby

suppressing apoptosis and promoting cell survival (39). Similarly,

mTOR, a serine/threonine protein kinase and a key regulator of cell

growth and proliferation, is also activated by NPM::ALK. Inhibition

of the mTOR pathway leads to cell cycle arrest and apoptosis in

ALK+ ALCL (40). Further, NPM::ALK promotes the expression of

anti-apoptotic factors Bcl-xl and cell cycle-promoting cyclin-

dependent kinase 4 (CDK4) and increased levels of phospho-RB

to trigger cell proliferation (37). Thus, NPM::ALK regulates cell

proliferation and survival while inhibiting apoptosis by

orchestrating multiple signaling pathways.
2.4 Deregulated cellular metabolism in
ALK+ ALCL

Neoplastic metabolic reprogramming is largely characterized by

the shift from efficient energy-producing pathways to strategies for

biomass production to support cell growth. In this regard,

integrated analysis of the phosphoproteomic and metabolomic

signature revealed that NPM::ALK signaling triggers an increase

in biomass production by rerouting glycolytic intermediates (6) as

well as modulation of lipid metabolism, amino acid metabolism,

and nucleotide metabolism (Figure 1). Particularly, NPM::ALK-

mediated phosphorylation of PKM2 at Y105, a key enzyme in

aerobic glycolysis, leads to a metabolic switch promoting

lymphomagenesis (6). Regarding lipid metabolism, NPM::ALK

phosphorylates ATP citrate lyase (ACLY) at residue 682, which

may serve as a switch to promote lipid synthesis required for cell

proliferation. ACLY is a critical enzyme that catalyzes acetyl-CoA

synthesis and connects vital biosynthetic pathways such as

carbohydrate and l ip id metabol ism (41) . Genet ic or

pharmacologic disruption in the NPM::ALK-ACLY signaling axis

leads to impaired cell proliferation, impaired clonogenic potential,
Frontiers in Oncology 04
reduced tumor growth in an in vivo xenograft model, and

attenuated lipid synthesis in ALK+ ALCL (42). NPM::ALK also

modulates cancer metabolism through the downregulation of

CD147, causing aberrant glycolysis and thus impairing the major

energy source of tumor cells (43).

Further, metabolic alterations in cancer not only modulate the

metabolic state of the cell but also impact cellular signaling and the

epigenetic state. ALK+ ALCL-derived cell lines and primary tumors

exhibit cholesterol auxotrophy due to reduced expression of a critical

enzyme, squalene monooxygenase rendering the accumulation of

squalene, a metabolite with antioxidant-like properties. Squalene

monooxygenase oxidizes squalene to 2,3-oxidosqualene.

Aggregation of squalene in cells prevents malignant cells from

ferroptosis, which is induced by oxidative stress (44). Cholesterol

auxotrophy of ALK+ ALCL can be a therapeutic vulnerability that

can be utilized in combination with conventional therapies. In

summary, NPM::ALK signaling orchestrates cellular metabolic

reprogramming that favors lymphomagenesis.
2.5 Increased genomic instability in
ALK+ ALCL

Under physiologic conditions, cells consistently encounter

intracellular stress, such as reactive oxygen species (ROS)

generated by cellular metabolism, and extracellular stress, such as

UV light and carcinogenic chemicals. These stresses can disrupt

genomic integrity. One of the hallmarks of cancer is genomic

instability. It is generally accepted that NPM::ALK is required and

sufficient to transform primary human T cells in a relatively short

span of time. Furthermore, genetic alterations (single nucleotide

variants) in ALK+ ALCL are relatively uncommon, suggesting a

stable genome (45–47). In ALK+ ALCL, however, impaired DNA

repair pathways (48), particularly DNA mismatch repair, may

represent a mechanism by which tumor cells initiate additional

genetic lesions, considering that a subset of ALK+ALCL patients

develop resistance against ALK-specific treatment approaches. To

initiate DNA mismatch repair, it is essential for the system to

recognize DNA lesions. Two ATPase protein complexes participate

in the mismatch recognition process, namely MuTSa, which

identifies the base-base mismatches and small insertion/deletion,

and MuTsb, which modulates larger insertion/deletion. MuTSa is

composed of MutS protein homolog 2 (MSH2) and MutS protein

homolog 6 (MSH6). MuTSb is composed of MSH2 and MutS

protein homolog 3 (MSH3) (49). NPM::ALK directly binds to

MSH2 and phosphorylates it at the tyrosine 238 residue. This

abnormal interaction prevents MSH2 from binding to its normal

partners, MSH3 andMSH6, leading to the ablation of normal MuTs

complexes and consequentially impaired DNA damage repair (50).

In addition, the expression of NPM::ALK in primary CD4+ T cells

downregulates genes participating in DNA repair pathways (51).

Thus, NPM::ALK ablates genomic stability by compromising the

DNA mismatch repair process (Figure 1). Therefore, the role of

NPM::ALK in promoting genomic instability by compromising the

DNA repair process needs further study.
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2.6 Epigenetic deregulation in ALK+ ALCL

Epigenetic modifications are heritable yet reversible covalent

modifications in DNA or histones that alter the expression of genes

without affecting DNA code. The most studied and significant

modifications are the methylation of DNA at cytosine residues

that function to repress gene expression (52) and the methylation or

acetylation of distinct amino acids of the histone tail that dictate

their repressive or activating properties (53). These modifications

and their combinations dictate nucleosome positioning and local

chromatin conformation that provide access to transcriptional

regulators to modulate gene expression. DNA modifications

direct histone modifications, and methylation of DNA causes

steric hindrance to the transcriptional regulators (54). Moreover,

the interaction of DNA with methyl-binding proteins, such as

methyl CpG binding protein 2 (MeCP2), also prevents

transcription factor binding at the locus causing repression of the

target gene (52, 55).

NPM::ALK regulates the transcriptional silencing of many gene

promoters and enhancer regions that encode tumor suppressors

through its downstream effector transcription factors (Figure 1)

(56). NPM::ALK activates the transcription factor STAT3, which

upregulates DNA methyltransferase 1 (DNMT1) to methylate

target genes for repression (57). As an example, IL-2Rg promoter

methylation is induced by NPM::ALK. NPM::ALK promotes STAT3

binding to the IL-2Rg promoter, which then recruits DNMT1 to its

promoter for its silencing (58). Notably, deleting DNMT1 abrogates

lymphomagenesis, suggesting a therapeutic opportunity for

targeting DNMT1 in patients who develop resistance to ALK

inhibitor treatment (59). ALK+ALCL also exhibits CpG Island

methylation at STAT5A, a tumor suppressor that reciprocally

suppresses NPM::ALK gene expression by binding to its enhancer

(60). These results show that silencing of tumor suppressor genes by

DNA methylation may contribute to the neoplastic transformation

of ALK+ ALCL.

In addition to DNA methylation, gene expression is regulated

by the chromatin remodeling machinery, which modulates

accessibility of the chromatin. Deregulation of chromatin

remodelers has been demonstrated to participate in cancer

development as well as lymphomagenesis (61, 62). Among them,

SWI/SNF is a multi-subunit chromatin remodeling complex that

uses the energy generated by ATP hydrolysis to displace or evict

nucleosomes and further regulates local chromatin conformation

(63). Expression of BRM-Related Gene1 (BRG1), a core component

of the human SWI/SNF complex (64), is mediated by NPM::ALK.

Further, the expression of BRG1 is dependent on the kinase activity

of NPM::ALK. Knockdown of BRG1 in ALK+ ALCL cells results in

a decrease in cell viability compared to scramble shRNA control

(65). The role of other chromatin remodelers in the pathogenesis of

ALK+ ALCL needs further investigation, and the relationship

between the chromatin remodelers and NPM::ALK is still

largely underexplored.

Loss of cellular identity is intrinsic to neoplastic transformation.

ALCLs, despite originating from T-cells, exhibit downregulation of

the transcriptional program that defines its T-cell phenotype. The

pharmacologic treatment combining DNA demethylation and
Frontiers in Oncology 05
histone acetylation was insufficient to restore the T-cell

phenotype in ALK+ ALCL cells. This suggests that additional

stimulus is required to repress the T-cell phenotype. However,

other T-cell lymphoma cells exposed to the same treatment

exhibited expression of genes characteristic of ALCL (ID2,

LGALS4, c-JUN) as well as loss of T-cell phenotype marked by

loss of CD3, LCK, and ZAP70 expression indicating that global

DNA demethylation and histone acetylation are critical for cellular

reprogramming towards an ALCL-like phenotype (66).

The combinatorial pattern of DNA methylation and histone

post-translational modifications (PTMs) are increasingly

appreciated as epigenetic signatures of cancer subtypes. These

modifications regulate cellular processes, such as cell cycle

regulation, apoptosis, and DNA damage response (67–70).

BCL2L11, also known as BIM (Bcl-2 interacting mediator of cell

death), a Bcl-2 homology 3 (BH3)-only proapoptotic protein that

belongs to the Bcl-2 family, is epigenetically silenced via the

combinatorial deregulation of DNA methylation and histone

acetylation in ALK+ ALCL (66, 71). Recruitments of MeCP2 and

Sin3a/histone deacetylase1/2 (HDAC1/2) corepressor complex to

the BIM promoter contributes to its silencing. Exposure of the DNA

methylase inhibitor, 5-azacytidine, or the HDAC inhibitor,

trichostatin, alone to ALK+ ALCL cells is not only able to rescue

the expression of BIM at both mRNA and protein level but also

increases apoptosis (71). This suggests that DNA methylation and

histone acetylation together may contribute to the pathogenesis of

ALK+ ALCL. In this regard, the pharmacological modulation of

a l t e r ed ep ig ene t i c mach ine ry may repre s en t nove l

therapeutic interventions.

Histone PTMs alone can also dictate disease-specific changes in

the transcriptional program, and the pattern of histone PTMs can

be utilized as a novel biomarker of disease subtypes (72). HDAC

inhibitors have already been approved by the Food and Drug

Administration (FDA) for the treatment of T-cell malignancies

(73–75). However, the comprehensive landscape of histone PTMs,

such as methylation and acetylation (66, 76), phosphorylation (77),

ubiquitination (78), and sumoylation (79) for different classes of

ALCL is yet to be determined. Since the current therapeutic

approach of using HDAC inhibitors has been shown to cause

nonselective toxicity, further understanding of the comprehensive

epigenetic landscape of ALCL is warranted as it may lead to

discoveries of novel histone modifications and their writers and

erasers, which can be targeted for precision therapeutics (80).

Evaluation of ALCL subtypes with highly sensitive proteomic

approaches for histone modification analysis as well as single-cell

proteomic approaches with enrichment and analysis of histone

PTMs will add significant value to define the epigenetic signature of

the disease.
2.7 Deregulated MicroRNA repertoire in
ALK+ ALCL

It has been observed that nearly 90% of the human genome is

transcriptionally active, yet only 1.4% of this transcriptome is

constituted by protein-coding mRNA (81). The role of non-
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coding RNAs (ncRNA) is underappreciated yet critical to cell

physiology and diseases, including ALCL. In ALK+ ALCL, the

fusion protein NPM::ALK is associated with non-coding RNAs

(ncRNAs), such as microRNAs to alter the gene expression

signature of ALK+ ALCL (Figure 1) (82, 83). Along with tRNA

and ribosomal RNA, the non-coding transcriptome is comprised of

small nuclear RNA (snRNA), long noncoding RNA (lncRNA), and

microRNA (miRNA). MicroRNAs are short, usually 20-23 nt long

non-coding RNA that function by activating the RNA-induced

silencing complex (RISC) against specific mRNA targets (84).

miRNA array based on locked nucleic acid (LNA) technology

containing 636 human and 425 murine miRNA probes performed

on ALK+ ALCL cell lines identified distinct miRNA clusters from

ALK+, to ALK- ALCL. These clusters are cross-validated with

Npm::alk transgenic mice and primary ALK+ and ALK- ALCL to

classify the miRNA unique to each disease group. These studies

demonstrated strong upregulation of the miR-17-92 cluster in ALK

+ ALCL and miR-155 upregulation in ALK- ALCL. Further,

reduced expression of miR-101 is observed in both ALK+ ALCL

and ALK- ALCL (82). Subsequent studies identified 32 miRNAs

associated with ALK expression in vitro, presenting distinct miRNA

expression profiles (85). These studies identify 7 miRNAs, of which

5 are upregulated (miR-512-3p, miR-886-5p, miR-886-3p, miR-

708, miR-135b) and 2 downregulated (miR-146a, miR-155) in ALK

+ ALCL. Another similar study identifies a distinct profile of

miRNA that are specific to ALK+ or ALK- ALCL and cross-

validated earlier findings. Moreover, it also identifies that miR-

181a, which participates in the regulation of T-cell differentiation

and TCR signaling, is significantly downregulated in ALK+

ALCL (86).

The role of exosomal miRNA in promoting disease

dissemination of ALK+ ALCL has been recently reported. RNA

sequencing studies identified 12 miRNAs that are significantly

differentially expressed in the plasma of 20 NPM::ALK+ ALCL

patients compared to healthy donors (n=5). Among these miRNAs,

the level of miR-122-5p has further been validated as highly

expressed in a larger cohort of ALCL patients (n=66) compared

with healthy donors. Levels of miR-122-5p are elevated in late-stage

(III-IV) ALCL patients compared to those with early-stage (I-II)

disease. Interestingly, the expression of miR-122-5p is barely

detectable in lymph nodes and other tissues but highly enriched

in the liver of ALCL patients. In vitro and in vivo experiments

indicate that miR-122-5p expressed in small extracellular vesicles

promotes the proliferation and progression of ALCL cells (87).

These mechanisms employed by miRNA using small extracellular

vesicles for the pathogenesis of ALK+ ALCL may represent

opportunities for discovery of novel mechanisms of disease

dissemination as well as identification of prognostic biomarkers.
2.8 Immune evasion in ALK+ ALCL

Immune evasion by cancer cells is increasingly appreciated as

an emerging hallmark of cancer. ALK+ ALCL cells exploit

molecular mechanisms that bypass immune recognition

(Figure 1). NPM::ALK-STAT3 signaling in ALK+ ALCL induces
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expression of transforming growth factor beta (TGF-b), IL-10, and
cell surface receptor PD-L1 (CD274, B7H1), creating an

immunosuppressive tumor microenvironment (88). The NPM::

ALK-STAT3-DNMT1 pathway also epigenetically downregulates

CD48, an immune surveillance molecule, to prevent tumor cell

recognition by natural killer cells. STAT3 directly binds and

methylates the promoter of CD48 in association with DNMT1.

Pharmacologic inhibition of NPM::ALK, STAT3, or DNMT1

sensitizes ALK+ ALCL towards NK cell-mediated cytotoxicity in

vitro. Further, expression of CD48 in ALK+ ALCL cell line increases

NK cell-mediated cytotoxicity in vitro and in a xenograft mouse

model (89). Similarly, NPM::ALK-STAT3 pathway induces the

expression of ICOS, a member of the CD28 costimulatory

receptor superfamily, by transcriptional induction, as well as

suppresses the ICOS inhibitor miR-219 (90). Since ICOS

engagement promotes ALK+ ALCL proliferation, it is tempting to

speculate that by engaging its ligand (ICOS-L), tumor-specific ICOS

subverts other critical co-stimulatory signals from immune cells,

impairing cytotoxic response to tumor cells. Previous studies

suggest that ALK+ ALCLs and ALK+ ALCL cell lines, do not

express TNF-a as a result of promoter methylation, thus preventing

its proapoptotic function on tumor cells (91). Importantly,

inhibition of DNMT1 by 5’-aza-2’-deoxy-cytidine (5-ADC)

rescues the expression of TNF-a mRNA and protein. Further,

exogenous TNF-a expression inhibits the growth of ALK+ ALCL

cell lines and induces the activation of apoptotic pathway

intermediates, namely caspase 8 and caspase 3. Hence, inhibition

of DNMT1 not only triggers the NK cell-mediated cytotoxicity but

also promotes the proapoptotic signaling pathway in ALK+ ALCL,

raising the possibility of DNA methyltransferase inhibitors as a

therapeutic option for ALK+ ALCL. The observation that the serum

titers of anti-ALK antibodies in patients are inversely proportional

to stage stratification and progression of disease indicates that

NPM::ALK protein is immunogenic and triggers a natural

immune response that keeps a check on disease progression to

some extent (92). Therefore, i t wil l be important to

comprehensively investigate NPM::ALK-mediated immune escape

mechanisms. A better understanding of the immune evasion

mechanism will help in developing potential alternative or

combinatorial therapeutic interventions for ALK+ ALCL.
2.9 Deregulation of transcription factors in
ALK+ ALCL

Various models have been proposed for the origin of malignant

cells in ALK+ ALCL. The expression of CD4 or CD8 and CD30,

along with clonal T-cell receptor (TCR) rearrangement, suggests

that the malignant cells may originate from activated T cells (93),

while the expression of FoxP3, IL10, and TGFb suggests a

regulatory T cell origin (88), and BATF and BATF3 expression is

associated with a Th17/group 3 innate lymphoid cell origin (94). In

addition, NPM::ALK-transformed CD4+ T lymphocytes and

primary ALK+ ALCL biopsies share characteristics with early T

cell precursors (51). Further, ALK+ ALCL cells overexpress stem

cell transcription factors (OCT4, SOX2, and NANOG) and HIF2A,
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which regulate hematopoietic precursor differentiation and cell

growth. These findings suggest that NPM::ALK signaling may

trigger dedifferentiation to early thymic progenitor-like

characteristics in CD30+ mature CD4+ T cells (95). In another

study utilizing the RAG2-/- mice model, which lacks the machinery

to produce mature T or B cells (96), it was shown that NPM::ALK is

capable of promoting thymic T cell maturation and TCR-

independent tumor formation, suggesting that the initial stage of

ALK+ ALCL development may occur in the thymus (97).

Further, constitutive activation of STAT3 is highly prevalent in

ALK+ ALCL and contributes to its pathogenesis. NPM::ALK

interacts and phosphorylates STAT3 leading to its activation and

nuclear translocation, where it regulates the transcription of a

number of genes known to be involved in apoptosis and cell cycle

progression (Figure 1) (35, 98). In ALK+ ALCL, the activation of

STAT3 is multifactorial. JAK3, a major physiologic activator of

STAT3, is highly activated in ALK+ ALCL lines and primary

tumors (34). JAK3 interacts with NPM::ALK, and its inhibition

decreases the tyrosine kinase activity of NPM::ALK (99, 100).

Constitutive activation of STAT3 in ALK+ ALCL is also

contributed by the downregulation of SH2 domain-containing

protein tyrosine phosphatase-1 (SHP1) in ALK+ ALCL (101,

102) . SHP1 interacts wi th JAK and NPM::ALK and

dephosphorylate crucial tyrosine sites and thus inhibits the kinase

activity (101, 103). ALK+ ALCL from children and adult patients

exhibit loss of SHP1 at a frequency of 50% and 86%, respectively.

Further, SHP1 is methylated and thus silenced in a number of ALK+

ALCL cases (101, 102).

ALK+ ALCL cells also aberrantly express multiple members of

the activator protein-1 (AP-1) family of transcription factors, which

includes proteins of the Jun, Fos, ATF, and Mf subfamilies (104).

AP-1 family proteins regulate a wide range of cellular and biological

activities, including cell cycle and proliferation, apoptosis,

autophagy, and lipid synthesis (105). They also regulate cell

migration and invasion as well as inflammatory response and

immune cell development and activation. Studies have shown that

AP-1 proteins play a pivotal role in promoting cell survival,

proliferation, and suppression of AP-1 proteins can lead to

apoptosis in ALK+ ALCL (94, 106, 107). Since AP-1 family

proteins regulate a myriad of signaling pathways, further

investigation will be required to comprehensively understand

their impact on the ALK+ ALCL pathogenesis.

In addition, C/EBPb, CCAAT enhancer binding protein, a

transcription factor that belongs to the C/ECP leucine zipper

transcription factor family, is highly expressed in ALK+ ALCLs

(108). The overexpression of C/EBPb is mediated through the

NPM::ALK-STAT3 axis and is dependent on the kinase activity of

NPM::ALK (108, 109). Moreover, NPM::ALK also fosters stability

and translation of C/EBPb mRNA via enhancing binding of AU-

binding protein HuR to the 3′-UTR of C/EBPb transcript (110). C/

EBPbmodulates gene expression and miRNA levels to promote the

transformation, proliferation, and survival of the malignant cells in

ALK+ ALCL (111, 112). Therefore, targeting the deregulated

transcription factors and the signaling pathways regulated by

them may serve as novel therapeutic interventions for ALK+ ALCL.
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2.10 Deregulated cytokine signaling in
ALK+ ALCL

Cytokine and cytokine receptor signaling orchestrate the immune

response, hematopoiesis, cell differentiation, and cell growth (113).

There is an aberrant cytokine repertoire in ALK+ ALCL (Figure 1).

Integrated unbiased N-glycoproteomic and transcriptomic profiling

of 32 different B cell, T cell, and NK cell lymphoma cell lines has

identified many cytokine receptors, including the interleukin receptor

IL-R, as well as T helper (Th) receptors, expressed by ALK+ ALCL

cells (8). Similarly, the level of IL-2R, Oncostatin M (OSM), IL-6, IL-

8, IL-9, IL-10, IL-17a, IL-22, and soluble CD30 is decreased in either

pediatric or adult ALK+ ALCL patient samples after they reached

complete remission (114–116). There is a correlation between stages

of the disease, presence of the minimal disseminated disease, anti-

ALK antibody titers, and risk of relapse with concentrations of

cytokines including IL-6, interferon-g (IFN-g), IFN-g induced

protein as well as sIL-2R among ALK+ ALCL pediatric patients

(114). Moreover, levels of IL-6 demonstrated an independent

prognostic value with a hazard ratio of 2.9 ± 0.4.

In addition, exogenous NPM::ALK expression leads to

significant reductions of GM-CSF, TNF, and IL2 (51). Inhibition

of NPM::ALK reduces the expression of cytokine receptor proteins,

including IL-1R1, IL-1R2, IL-1RAP, IL-2RA, IL-4, IL-18RA, and IL-

31RB (8). These observations suggest that constitutively activated

ALK signaling contributes to deregulation of cytokine signaling.

Functional studies reveal that NPM::ALK regulates multiple

JAK-STAT pathways, including IL-2/STAT5, and IL-6/STAT3 to

participate in the aberrant cytokine secretion in ALK+ ALCL (8,

117). Particularly, NPM::ALK induces upregulation of STAT3 and

STAT5 expression, which upregulates IL-31RB in ALK+ ALCL

(118). In addition to STATs, NPM::ALK also enhances cytokine

production by inducing the expression of other transcription

factors, such as AP-1. AP-1 binds to promotors of multiple

cytokines and thus regulates IL17F, IL22, IL26, and IL23R genes

in ALK+ ALCL (94, 119).

Besides activation, NPM::ALK also deregulates the cytokine

signaling pathway by suppressing transcription factor function.

Among normal human endothelial cells, STAT1 is one of the

major modulators of IFN-g, which can further antagonize IL-6-

mediated STAT3 activation (120). During activation, STAT1 forms

a homodimer. It can also bind with STAT3 and form a heterodimer.

The gene expression levels and specificities are modulated by the

STAT1 homodimer vs heterodimer ratio (121). In ALK+ ALCL,

NPM::ALK also downregulates STAT1 to antagonize STAT3 and

further decrease the production of antitumor cytokine IFN-g (122).
Further, epigenetic modulation also contributes to cytokine

deregulation in ALK+ ALCL. It has been reported that NPM::

ALK downregulates SHP1 tyrosine phosphatase, a negative

modulator of multiple cytokine signaling pathways, including

Epo-R, IL-4, IL-13, IL-3R, IL-2R, through STAT3-mediated

upregulation of DNA methyltransferase 1 in ALK+ ALCL (102,

123, 124).

The tumor microenvironment also contributes to the formation

of deregulated cytokine repertoire (125, 126). However, the
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composition and cross-talk between the neoplastic cells and tumor

microenvironment of ALK+ ALCL need further investigation.
2.11 Deregulated proteolysis in ALK+ ALCL

Deregulated proteolysis by ubiquitination or sumoylation

contributes significantly to the sustained signaling of oncogenic

proteins (127, 128). The proteasomal degradation process of target

proteins requires small ubiquitin binding to the substrate (127).

Similarly, SUMOylation is another post-translational modification

characterized by the reversible conjugation of small ubiquitin-like

modifiers (SUMOs) with the target protein. SUMOylation

modification often competes with ubiquitin for substrate binding

and is believed to protect candidate proteins from proteasomal

degradation (128). Studies suggest that the SUMOylating of NPM::

ALK antagonizes its ubiquitination and subsequent degradation

prolonging its oncogenic signaling (129). Further, the removal of

sumoylation by SENP1 (a sentrin-specific family of proteases)

promotes NPM::ALK protein turnover and ensues a decrease in

cell viability, cell proliferation, and colony formation ability. It can

be surmised that targeting NPM::ALK degradation may have

therapeutic benefits in ALK+ ALCL that are resistant to NPM::

ALK kinase inhibitors. In this regard, several efforts are underway to

develop ALK protein degraders at different levels of preclinical or

clinical settings (130–133).
3 Pathobiology of ALK- ALCL

ALK- ALCL is a CD30+ large T-cell lymphoma that typically

affects the older population and has variable prognosis (134, 135).

Currently, ALK- ALCL is subdivided into three classes, namely
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systemic ALCL, breast implant-associated ALCL, and primary

cutaneous ALCL. Depending upon the genetic lesions acquired,

the pathogenic mechanisms and disease aggressiveness may vary.
3.1 Pathobiology of systemic ALK- ALCL

In ALK- ALCL, two gene rearrangements and identified

recurrent mutations subclassify ALK- ALCL into three more

categories, namely fusion involving DUSP22::IRF4, fusions

involving TP63 gene, and other types of ALK- ALCL (Figure 2).
3.1.1 DUSP22-rearranged ALK- ALCL
Rearrangement of DUSP22 occurs near the DUSP22::IRF4 locus

on 6p25.3 (136). The FRA7H fragile site on 7q32.3 is the most

affected gene in the translocation t (6;7)(p25.3,q32.3). DUSP22

rearrangements are detected at a frequency of 30% in ALK-

ALCL cases using fluorescence in situ hybridization (FISH). This

rearrangement leads to downregulation of DUSP22, and

upregulation of the microRNA miR-29 on 7q32.3 but does not

affect the expression of IRF4. This subgroup lacks the expression of

genes associated with JAK-STAT3 signaling, but results in

overexpression of the immunogenic cancer-testis antigen, marked

DNA hypomethylation, and exhibits a reduced expression of PD-L1

and high expression of CD58 and HLA class II (137). Further, a

novel recurrent mutation in MSCE116K, a gene encoding musculin,

has been recently identified in DUSP22 rearranged ALK- ALCL.

This mutation induces the CD30-IRF4-MYC signaling axis

(Figure 2) and drives cell proliferation (138). Interestingly,

DUSP22 inhibits interleukin-6 (IL-6)-induced STAT3 activation,

and its downregulation is another mechanism by which STAT3

signaling may be activated in ALK- ALCL (139). Notably, the 5-year
FIGURE 2

Schematic illustration of genomic rearrangements that contribute to pathogenesis of ALK- ALCL ( ) represents ALK- ALCL harboring DUSP22-

rearrangement and associated signaling pathways. ( ) represents ALK- ALCL harboring TP63-rearrangement and associated signaling pathways.

( ) represents various driver oncogenic fusions involving tyrosine kinase and transcription factors, as well as high-frequency mutations that

constitute an independent subgroup of ALK- ALCL.
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overall survival of DUSP22-rearranged cases is approximately 85-

90%, which is significantly higher than other ALK- ALCL (140).

3.1.2 TP63-rearranged ALK- ALCL
The TP63 gene, a member of the p53 family, is expressed either

as a full-length isoform carrying a transactivator domain (TP63) or

as an amino-deleted isoform (DNp63) (141). P63 triggers multiple

signaling in cancer-specific contexts, including regulation of the cell

cycle, apoptosis, stemness, and tumorigenesis (142). Approximal

8% of ALK- ALCL show rearrangement of TP63 in 3q28, frequently

with TBL1XR1 as a result of an inversion (3)(q26q28) (Figure 2)

(143). Rearrangements involving DUSP22 and TP63 are mutually

exclusive. TP63-rearranged ALK- ALCL exhibits the worst

prognosis within the ALCL subtypes, with a 5-year overall

survival rate of 17%. The biological significance of the genetic

rearrangement of TP63 in ALK- ALCL is yet to be determined.

3.1.3 Other types of ALK- ALCL
In ALK- ALCL, oncogenic mutations in JAK1 and/or STAT3

(Figure 2), which contribute to the consistent activation of the

STAT3 signaling pathway, has been identified in nearly 20% of

cases. In addition, oncogenic fusion genes involving a transcription

factor and a tyrosine kinase, such as NFkB2::ROS1, NCOR2::ROS1,
NFkB2::TYK2, and PABPC4::TYK2 have been identified in ALK-

ALCL (144). These fusion chimeras result in increased STAT3

activity and develop ALCL phenotype via STAT3 signaling,

suggesting that intercepting STAT3 activation may have a

therapeutic advantage (94). A recent deep-targeted next-

generation sequencing of 47 ALK+ and 35 ALK- ALCL

demonstrated that, on average, ALK- ALCL harbor 4.2

mutations/patient compared to 2.6 mutations/patient for ALK+

ALCL. Among all the mutations, STAT3 and JAK1 mutations are

the most frequent (26%) in ALK- ALCL. The mutations that

predicted poor prognosis of ALK- ALCL includes TP53, STAT3,

EPHA5, JAK1, PRDM1, LRP1B, and KMT2D (46).

Approximately 25% of ALK- ALCL expresses an oncogenic

truncated ERB-B2 receptor tyrosine kinase-4 (ERBB4) that is not

detected in ALK+ ALCL and PTCL-NOS and may likely form

another subgroup of ALK- ALCL. ERBB4 expression is mutually

exclusive of DUSP22 , TP63 , and ROS1 rearrangements.

Pharmacologic inhibition of ERBB4 partly controls ALCL cell

growth and disease progression in an ERBB4-positive patient-

derived tumor graft model (145).

Hence , bet ter unders tanding and target ing these

rearrangements and mutation-mediated signaling pathways may

serve as novel therapeutic interventions for different subtypes of

ALK- ALCL.
3.2 Pathobiology of breast implant-
associated ALCL

Breast implant-associated ALCL (BI-ALCL) is a distinct

subtype of mature T-cell lymphoma. A persistent chronic

inflammation occurring post-breast implants, particularly those
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with a textured outer shell, has been documented as the

underlying cause of the disease (146). Cross-talk between the

malignant cells and reactive cells in the microenvironment is

thought to contribute to the formation of an inflammatory milieu

characteristic of BI-ALCL. Elevated levels of IL-1b, IL-6, and TNF-

a, the macrophage-activating cytokines, have been detected after

culturing peripheral blood mononuclear cells obtained from healthy

donors to the surfaces of the silicone breast implants for 4 days

(147). However, no T-cell activation or specific effector cell subtype

skewing has been observed. In addition, elevated expression of IL-

13, IgE+ eosinophils, and mast cells in the microenvironment of

primary BI-ALCL specimens suggests that allergic inflammation

may contribute to the development of BI-ALCL (148).

Tumors display complex karyotypes with losses of

chromosomes 1p,4q, 8p, 10p, 15, 16, 20 and gain of

chromosomes 2, 9p, 12p, 19p, and 21 in BI-ALCL patients (149,

150). Targeted sequencing of 180 genes in 11 cases identified highly

recurrent activating STAT3 mutations and recurrent deletions of

1p22 involving RPL5, a tumor suppressor that regulates cell

proliferation. In addition, abnormalities were identified in TGF-b,
PKC, WNT/b-catenin pathway, and inflammasome signaling.

Amplifications involving TNFRSF11A and PDGFRA were also

identified (151). Genomic profiling of BI-ALCL using a variety of

sequencing platforms did not detect any genomic rearrangements

involving ALK, DUSP22, and TP63, suggesting less heterogeneity in

the genetic manifestation than other subtypes of ALCL (152).

Predominant JAK-STAT pathway, TP53, and DNMT3A could be

molecular drivers of BI-ALCL (153). JAK1 mutations were found in

13% (3/23) of cases, with the most frequent point mutation

involving G1097(D, V or S) identified in 44% (4/9) of cases (152,

154, 155). The frequency of STAT3mutations was 26% (6/23), with

the most predominant mutations identified involving S614R (155).

Apart from the JAK-STAT pathway, the second most frequent

alterations in BI-ALCL were identified in epigenetic modifiers,

including TET2, TET3, ARID4B, KDM5C, KDM6A, KMT2C/D,

CHD2, CREBBP and SMARCB at the frequency of ~55-75% (150,

154). Currently, the first line of therapy involves surgical removal of

the implant in combination with radiotherapy and standard

chemotherapy. However, therapeutic targeting of JAK/STAT

pathway and epigenetic deregulations may be considered as

alternative therapeutic opportunities for BI-ALCL.
4 Pathobiology of primary cutaneous
anaplastic large cell lymphoma

Primary cutaneous anaplastic large cell lymphoma (pc-ALCL)

is a CD30+ lymphoproliferative disorder that manifests in the skin.

The malignant cells exhibit large anaplastic and pleomorphic

morphology with expression of CD30 in approximately 75% of

cells. It has a relatively good prognosis in the absence of high-stage

disease. The disease is currently classified as a subtype of primary

cutaneous lymphoid proliferations and lymphomas that encompass

a spectrum of other diseases, including lymphomatoid papulosis

(LyP) (5). Morphologic features of pc-ALCL partly overlap with
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other diseases, such as LyP (156–158) and reactive lymphoid

hyperplasia (159). Therefore, genetic characterization of the

disease is critical for correct diagnosis.

The majority of pc-ALCLs lack genomic rearrangements in

ALK, DUSP22, and TP63. Although unusual, ALK-positive cases

with only skin lesions have been identified, the frequency of these

cases and ALK fusion partners are yet to be further determined

(156, 160, 161). Array comparative genomic hybridization analysis

of pc-ALCL demonstrates that nearly 40% of cases exhibit

chromatin imbalances targeting region encompassing genes RAF1

(3p25), CTSB (8p22), FES (15q26.1), FGFR1 (8p11), NRAS (1p13.2),

MYCN (2p24.1), and CBFA2 (21q22.3) (162). Further, highly

recurrent genomic loss of chromosomes 6q16-6q21, 6q27, and

13q34, as well as gain on the chromosome 7q31 and 17q, were

also detected (163). In addition, a recurrent translocation involving

IRF4::MUM1 at chromosome 6p25.3 was identified at the frequency

of approximately 20 to 25% in pc-ALCL. However, the protein

expression of IRF4 and MUM1 is also detected in systemic ALCL,

and therefore, examining the expression of IRF4 and MUM1 by

IHC does not reliably distinguish pc-ALCL from systemic ALCL

(157). Further, we identified a novel recurrent NPM::TYK2 gene

fusion in a proportion of primary cutaneous CD30+

lymphoproliferative disorders (15%), which activates STAT1/3/5

signaling and promotes cell proliferation (164). Importantly, a

transgenic conditional knock-in Cd4-CreNPM::TYK2fl/fl mouse

model demonstrates spontaneous development of CD30+ mature

T-cell lymphoma with 90% penetrance (165). Hence, targeting

TYK2 may serve as a therapeutic intervention for neoplasms

harboring the NPM::TYK2 rearrangement.
5 Conclusions and future perspectives

Our understanding of ALK+ ALCLs has provided opportunities

for targeted therapies such as small molecular inhibitors of ALK

(crizotinib, alectinib, and ceritinib) and antibody-drug conjugates

targeting the tumor-specific expression of CD30. Given that a

significant fraction of patients experience relapse or refractory

responses, there is a continued need for the development of novel

therapeutic approaches that target aberrant signaling and/or

immune evasion mechanisms. ALK- ALCLs remain a genetically

heterogeneous group of mature T-cell lymphoma. The
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identification of gene rearrangements involving TYK2, DUSP22,

TP63, and ERBB4, and genetic alterations characteristic of distinct

subsets of ALK- ALCLs, will facilitate improved stratification of

disease outcomes. The discovery of novel gene rearrangements

within the ALK- ALCL category and their functional

consequences will be crucial for precision therapeutics. BI-ALCL

demonstrates a predominant role of activated JAK-STAT3 signaling

as the major driver of disease partly due to recurrent point

mutations in JAK1 and STAT3. Further, the contribution of

epigenetic modifiers in conjunction with JAK-STAT3 signaling in

the propagation of BI-ALCL has not been functionally explored and

warrants further investigation. Moreover, an integrated approach of

genetic, epigenetic, and proteomic profiling may offer an

opportunity to identify novel therapeutic targets for ALCL.

Despite studies that have identified the role of cytokine

deregulation in ALCL, the composition of the microenvironment

and its role in regulating tumor cell survival mechanisms remains

largely unexplored.
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