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Aflatoxins, a group of mycotoxins, represent a heterogeneous class of secondary 
metabolites that pose a significant risk to food safety and public health due to 
their potent toxicity. Aflatoxins are widely distributed in the environment, with 
high levels frequently observed in hot and humid conditions. There is an ongoing 
development of various methods for detecting aflatoxins in food and feed 
samples. Herein, a review of these methods is presented with special emphasis 
on molecularly imprinted polymers (MIPs) as selective materials for aflatoxins’ 
detection. The key findings of various methods for real-time analysis of food and 
feed samples are presented and analyzed, providing a comparative assessment of 
their performance. Furthermore, the challenges and limitations of these methods 
are discussed, considering their commercialization prospects and real-world 
requirements.
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1. Introduction

Mycotoxins are a diverse group of extremely poisonous secondary metabolites produced by 
certain species of fungi (molds), such as Aspergillus, Fusarium, and Penicillium (Kumar et al., 
2017; Mahato et al., 2019). Aspergillus molds produce the most potent carcinogens known as 
aflatoxins (Richard, 2007). This class of mycotoxins includes naturally occurring aflatoxins 
produced by Aspergillus molds such as AFB1, AFG1, AFB2, and AFG2, and their derivatives 
such as AFM1 and AFM2 (Tahir et al., 2018). Although there are ~20 different types of aflatoxins, 
the two main groups, i.e., B and G, are commonly found in contaminated food samples. The 
designation of B and G groups is based on their Bluish and Greenish fluorescence properties 
(Kardani et al., 2023). The M group aflatoxins are formed as a result of the hydroxylation of 
AFB1 and AFB2 correspondingly (Yadav et al., 2021). Aflatoxins infect a wide variety of food 
products including crops, dates, cereals and cereal-containing foods, dried fruits, coffee beans, 
cocoa, bakery items, and most importantly eggs, milk, and meat obtained from animals fed with 
contaminated feeds (Wogan, 1966; Jafari, 2018; Almaghrabi, 2022; Ozcelikay et al., 2022).

Aflatoxins are closely related compounds with slight differences in their chemical 
composition. They consist of chemical compounds that are chemically similar to one 
another yet have subtle differences. The bluish and green fluorescence properties of the B 
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and G groups are a result of their corresponding cyclopentane and 
lactone rings, respectively (Liu et  al., 2020). The G family of 
aflatoxins has 3 lactone rings compared to a cyclopentenone ring 
of the B family. Additionally, AFB1 and AFG1 include an 8,9-double 
bond in the form of a vinyl ether at the terminal furan ring, but 
AFB2 and AFG2 do not (Jaimez et  al., 2000), as shown in 
Figure 1A. The order of their toxicity is AFB1 > AFG1 > AFB2 > AFG2. 
AFM1 and AFM2 have low toxicity (Tahir et al., 2018). AFB1 is 
considered the most toxic aflatoxin and it is assumed that the main 
mechanism involved in its carcinogenicity is epoxidation resulting 
in the formation of AFB1-8,9-epoxides that strongly interact with 
DNA (Shan, 2019).

International Agency for Research on Cancer (IARC) has declared 
AFB1 as a group I cancer-causing agent (Marchese et al., 2018). AFB1 
is also a naturally occurring fatal liver carcinogen. It is toxic to 
humans, non-human primates, rodents, poultry, and fish. For instance, 
AFB1 is found to be the most common hepatotoxicant in fish feed 
originating from plants, resulting in the mortality of fish (Dirican, 
2015). AFB1, in its epoxide form, binds to DNA, RNA, and proteins 
with carcinogenic effects (Bbosa et al., 2013; Hamid et al., 2013). De 
Vries et  al. (1989) conducted a diagnostic investigation on 125 
pregnant women in Kenya and reported that 54% of women’s blood 
was contaminated with aflatoxins resulting in stunted growth of 
newborn children, while 37% of aflatoxins were also present in 
umbilical cord blood. The aflatoxins’ influence on growth impairment 
in human children and animals is widely reported and reviewed 
(Khlangwiset et al., 2011; Khoshpey et al., 2011; Smith et al., 2017).

Aflatoxins, in a higher dose, are toxic to animal cells and can cause 
histological changes at low doses (Qian et al., 2014). On long-term 
exposure to aflatoxins, tumors may form (Wogan, 1966). Owing to 
their carcinogenicity and hepatotoxicity, many scientists are working 
to develop new and innovative methods for detecting these toxins in 
food and feed samples (Chauhan et al., 2016; Hatamabadi et al., 2020; 
Hua et al., 2022). Separation and purification of aflatoxins from food 
products are possible due to their fluorescent behavior in ultraviolet 
light (Zhang and Banerjee, 2020). They are lipophilic in nature and 
soluble in moderately polar solvents such as dimethyl sulfoxide, 
methanol, and chloroform. Previously, these compounds were easily 
separated by using methanol: water as a solvent (Urano et al., 1993).

Thin-layer chromatography (TLC) with LOD of 1.133 ng/band 
(Pradhan and Ananthanarayan, 2020; Salisu et al., 2021) and high-
performance liquid chromatography (HPLC) with LOD of 
0.012 ng/mL (Saini and Abdel-Rehim, 2020; Shuib and Saad, 2022) are 
commonly reported techniques for the separation of aflatoxins from 
other secondary metabolites and their subsequent analysis. On the 
other side, immunochemical methods exhibited LOD values down to 
0.12 pg/mL and include radioimmunoassay (RIA), enzyme-linked 
immunosorbent assay (ELISA), and immunoaffinity column assay 
(ICA), which take advantage of the affinity of monoclonal or 
polyclonal antibodies for the identification and quantification of 
aflatoxins in agricultural products (Gross et al., 2019; Raysyan et al., 
2020; Zhan et al., 2021). Solid phase extraction (SPE) with 0.0048 ng/g 
LOD (Yu et al., 2019; Chen et al., 2021) and optical methods (Kim 
et  al., 2022) are also used for the analysis and quantification of 
aflatoxins in agricultural products. However, before analysis, the 
sample should be cleaned to avoid interference during the application 
of any analysis technique. These conventional methods reveal a low 
limit of detection (LOD), greater selectivity, and precision, but they 

are non-portable, expensive, time-consuming, and need strict 
supervision, which limit their practical applications.

Molecularly imprinted polymer (MIP) sensors with optical, 
electrochemical, and mass-sensitive signal transduction mechanisms 
are non-destructive, rapid, cost-effective, easy-to-operate devices that 
need minimal sample preparation, thereby appearing as excellent 
alternatives for aflatoxins detection in agricultural products (Hua 
et al., 2022). MIP sensors have a high degree of tolerance for harsh 
environmental influence. Alongside remarkable molecular recognition 
capabilities, MIPs resist high temperature and pressure, and 
mechanical strain, and are stable in various solvents, acids, and bases 
(Andersson et  al., 1993; Mosbach and Haupt, 1998; Haupt and 
Mosbach, 2000; Zhang et al., 2006; Ye and Mosbach, 2008). Compared 
to natural or biological receptors that possess natural identification 
sites for aflatoxins, MIPs have a longer shelf-life and can be used again 
and again without being damaged or losing information and 
sensitivity (Kempe et al., 1993; Andersson, 2000; Chen et al., 2011, 
2016). Herein, we present a succinct review of the recent progress in 
MIP sensors toward real-time quantification of aflatoxins in food and 
feed samples.

2. Molecular imprinting

Synthesis of a polymer in the presence of a non-reactive target 
molecule, i.e., the template, results in the formation of molecular 
recognition sites, a process known as molecular imprinting (Haupt 
et  al., 2011; Haupt, 2012). Figure  1B presents a schematic of the 
principle of non-covalent molecular imprinting (Haupt, 2003). The 
polymerization process maintains the spatial configuration of 
functional monomers and the template molecule, which is further 
stabilized by crosslinking. So, the subsequent MIP can recognize the 
target analyte selectively at sites that were inferred from the template 
(Ahmad et al., 2019). MIPs are synthetic polymers that have been 
engineered to have a specific recognition function for a particular 
target such as aflatoxins (Wang et al., 2020). In principle, MIPs can 
be  fabricated for any analyte of concern including small organic 
molecules to biological macromolecules such as proteins, and 
microorganisms (Altintas, 2016; Haupt et al., 2020).

Instead of direct imprinting of target molecules, MIPs can 
be  designed using structural analogs or dummy templates. For 
instance, due to toxicity and high cost of aflatoxins, 
5,7-dimethoxycoumarin (DMC) (Guo et al., 2019), quercetin (Liang 
et  al., 2019), 7-acetoxy-4-methylcoumarin (Rui et  al., 2019), and 
6-phenyl-4-methylchroman-2-one (Song et al., 2019) have been used 
as dummy template molecules for the synthesis of MIPs. DMC is the 
most common dummy template for AFB1 (He et  al., 2021). MIP 
synthesis requires a template molecule, functional monomers, and a 
crosslinker to create selective and responsive materials, as shown in 
Figure  1B. Sergeyeva et  al. (2017) created a virtual library of 24 
organofunctional monomers that interact with AFB1 and AFB2 via 
non-covalent bonding to test their efficacy. Acrylamide is one of the 
potent monomers that can interact well with AFB1 (Kamaruzaman 
et  al., 2021). Thus, molecular imprinting provides plentiful 
opportunities in the design of an efficient MIP sensor to ensure the 
monitoring of aflatoxins in real samples.

MIPs can be produced using various methods such as bulk or 
surface imprinting, suspension, emulsion, and electropolymerization. 
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For instance, Díaz-Bao et al. (2016) used bulk polymerization method 
to prepare an AF-MIP using 5,7-dimethoxycoumarin (DMC) as a 
template, methacrylic acid (MAA) as a monomer, ethylene glycol 
dimethacrylate (EGDMA) as crosslinker, 2,2′-azobis-(2-
methylbutyronitrile) (AIBN) as initiator and toluene/methanol 

(90,10) as porogen. The developed MIP was applied to extract 
aflatoxins from spiked samples of baby formulas and cereal-based 
baby food. In another report, Song et al. (2019) prepared MIPs by 
suspension polymerization by applying 6-methyl-4-phenylchroman-
2-one as the pseudo-template, methacrylic acid, and glycidyl 

FIGURE 1

(A) Chemical structure of various aflatoxins. (B) The principle of non-covalent molecular imprinting: functional monomers self-assemble around the 
template molecule through non-covalent interactions, followed by polymerization in the existence of a crosslinker that results in the formation of a 
three-dimensional polymer network structure with embedded imprinted sites. Upon removal of the template molecule, the resulting binding cavities 
or imprints exhibit specific recognition and binding capabilities toward the target molecule. Adapted with permission from Haupt (2003); Copyright 
American Chemical Society.
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methacrylate as the co-monomers, 2,2′-azobisisobutyronitrile as 
initiator and polyvinyl alcohol as stabilizing agent. The MIPs produced 
have a recovery rate of 96% and demonstrate effective performance in 
detecting AFB1 in soy sauce.

3. MIP sensors for aflatoxins

3.1. Electrochemical sensors

Electrochemical sensors measure the concentration of target 
molecules and translate chemical information into an electrical signal 
in the form of a change in current or potential (Suryanarayanan et al., 
2010; Karimi-Maleh et al., 2020). Other than a transduction principle, 
electrochemistry or electrochemical devices serves as an important 
tool for the fabrication of MIPs. Hutchins and Bachas (1995) were the 
first to report an electrochemically synthesized MIP. They developed 
a potentiometric sensor for the nitrate ions and demonstrated the 
influence of electrochemical elements on nitrate identification but 
experienced much intervention from hydroxide and thiocyanate ions. 
Later, electropolymerization of several molecularly imprinted 
conductive polymers remained an attractive approach to bind MIP 
particles with the transducer surface (Moreira Gonçalves, 2021). 
Nevertheless, the electrochemical synthesis of MIPs is beyond the 
scope of current work, and this section mainly focuses on MIP-based 
electrochemical sensors for aflatoxins and their analytical 
performance outcomes.

For instance, Jiang et  al. (2015) fabricated an electrochemical 
sensor for highly specific, precise, and sensitive detection of AFB1 via 
electropolymerization of p-aminothiophenol (PATP)-modified gold 
nanoparticles in the presence of AFB1 as the template. Linear sweep 
voltammetry (LSV) was employed for the detection of AFB1 in an 
electrolyte solution containing a redox probe, i.e., [Fe(CN)6]3−/4–. The 
electrochemical sensor revealed a linear response in the concentration 
range of 1 fg/mL–1 μg/mL along with a very low limit of quantification 
(LOQ) equivalent to 0.3 fg/mL. Compared to the non-imprinted 
electrochemical sensor, the MIP sensor exhibit 10-fold increased 
sensitivity towards AFB1 (Jiang et al., 2015).

El Hassani et  al. (2020) developed AFB2 sensors either by 
electrochemically depositing ZnO nanoparticles on screen-printed 
gold electrodes and covering them with chitosan and AFB2 
(CS-ZnO) or by depositing another layer of AFB2-imprinted 
polypyrrole (PPy/CS-ZnO). They reported extremely low LODs of 
1.9 and 0.6 fM with CS-ZnO and PPy/CS-ZnO sensors, respectively. 
The sensors also demonstrated good recovery (86–99%) of 
aflatoxins in milk samples. Recently, Wood and Mugo (2022) 
fabricated a hypodermic needle-based electrochemical sensor with 
DMC-imprinted polyaniline at multiwalled carbon nanotubes and 
cellulose nanocrystals infused on the surface of a needle. The sensor 
was used to detect AFB1 in real milk samples spiked with a known 
concentration of aflatoxins and revealed exceptional sensitivity 
toward AFB1 with a 3 nM LOD.

Photoelectrochemical (PEC) sensor makes use of light to initiate 
an electrochemical reaction on the MIP surface that results in an 
electrical signal, e.g., a change in photocurrent, that is proportional to 
light intensity and can be used to determine the concentration of 
aflatoxins in a sample. PEC sensors have found applications in various 
fields, including environmental monitoring, biomedical sensing, and 
industrial process control (Shi et al., 2019; Qiu and Tang, 2020). The 

most recent reports suggest that MIP-PEC devices can detect AFB1 
and other mycotoxins in food and feed samples with great accuracy 
and specificity (Mao et al., 2023; Wu et al., 2023). For instance, Mao 
et al. (2023) created water-stable CsPbBr3 perovskite quantum dots 
embedded on reduced graphene oxide (rGO) and rolled into CsPbBr3/
rGO nanoscrolls by a solvent-assisted self-rolling process. Molecularly 
imprinted poly(methacrylic acid) thin film was then deposited on 
CsPbBr3/rGO/ITO electrodes to detect 0.001–1,000 ng/mL AFB1. The 
MIP-PEC sensor exhibited <1 pg/mL LOD and a 92.0%–109.4% 
recovery of AFB1 with a relative standard deviation 
(RSD = 1.3%–6.1%).

3.2. Optical sensors

Optical sensors involve a broad class of detectors that can analyze 
the optical characteristics of a substance, e.g., phosphorescence 
(Madurangika Jayasinghe et al., 2020), fluorescence (Chmangui et al., 
2019; Guo et al., 2019), scattering (Fan et al., 2023), refractive index, 
etc., and transform them into an electronic signal. By monitoring the 
optical responses resulting from the formation of a MIP-analyte 
complex, MIP optical sensors offer a practical and diverse solution for 
monitoring small molecules (Saylan et al., 2019; Fang et al., 2021). 
Yarynka et al. (2021) and Sergeyeva et al. (2022) published several 
reports on the optical/fluorescent detection of aflatoxins. They 
developed a smartphone-based optical biomimetic sensor using MIPs 
from acrylamide and 2-acrylamido-2-methyl-1-propansulfonic acid 
monomers that could selectively detect AFB1 in wheat and maize 
flour samples (Sergeyeva et al., 2019). Recently, Chi and Liu (2023) 
utilized silanes (tetraethoxysilane, and aminopropyltriethoxy silane) 
as functional monomers and aptamer-modified CdTe/ZnS quantum 
dots as an optical signal probe to prepare a fluorometric sandwich 
biosensor. The sensor was used to monitor AFB1 levels in various 
edible oils, e.g., peanut, corn, and olive, and exhibited good reliability 
down to 4.0 pg/mL. A similar method was reported earlier but with 
lower sensitivity (Guo et al., 2019).

On the other hand, surface plasmon resonance (SPR) sensors 
translate surface-bound analyte interactions into a change in the 
refractive index (Wei et  al., 2019; Akgönüllü et  al., 2022). The 
phenomenon is observed when incident light reaches a metal film, i.e., 
usually Au or Ag, at the interface of media with different refractive 
indices. Akgönüllü et al. (2020, 2021) fabricated MIP-SPR sensors for 
the detection of AFB1 and AFM1 using hydroxyethyl methacrylate 
(HEMA) and N-methacryloyl-1-phenylalanine (MAPA) as functional 
monomers, respectively. They integrated Au nanoparticles with 
MIP-SPR sensors to demonstrate excellent LOD of 1.04 pg/mL for 
AFB1 in peanut and corn samples, and 0.4 pg/mL for AFM1 in milk 
samples. Hence, these MIP-SPR sensor systems provide an efficient 
point-of-care solution for food safety checks.

3.3. Mass sensors

A mass-sensitive transducer such as a quartz crystal 
microbalance (QCM) has been combined with MIPs to monitor 
aflatoxins (Susilo et al., 2021). The gadget measures surface-analyte 
interactions by monitoring the changes in resonance frequency 
(Mujahid et al., 2019), and has several advantages including high 
sensitivity and real-time output. In recent years, QCM-based 
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sensors have emerged as a potentially useful technology for the 
investigation of molecular interactions on solid surfaces and the 
measurement of chemicals and biomolecules (Nasrullah et al., 2021, 
2022). With the use of Au nanoparticles doped molecularly 
imprinted poly(2-aminothiophenol) layer and covalent organic 
frameworks (COF), Gu et al. (2019) developed a QCM sensor for 
the detection of AFB1. The crosslinked MIP/COF-Au layer 
contained recognition sites that allowed selective detection of AFB1, 
while COF provided a greater surface area and enhanced sensitivity. 
The sensor could detect AFB1 down to 2.8 pg./mL level. Also, the 
minimum recovery of AFB1  in real samples including peanuts, 
pistachio, rice, and wheat was in the range of 87–95.1%, which 
demonstrated the sensor’s potential for real-time monitoring of 
aflatoxins. Albeit, MIP-QCM sensors offer label-free detection of 
aflatoxins and can be  miniaturized or fabricated in an array to 
simultaneously detect multiple analytes (Iqbal et al., 2010), they are 
not researched enough to monitor multiple aflatoxins in solution or 
food/feed samples.

4. Limitations and challenges

A performance comparison of different types of MIP sensors is 
provided in Table 1. Evidently, in the recent past, the designed MIP 
sensors have realized great results in the laboratory and with real 
samples. These include a broad linear detection range, e.g., from 10−15 
to 10−6 mol/L (Jiang et  al., 2015), very low LOD, i.e., <1 fg/mL (El 
Hassani et  al., 2020), and identification and a minimum of >98% 
recovery of AFB1 from real samples (Mao et al., 2021; Wang et al., 
2021; Chen et al., 2023). Hence, MIP sensors exhibit superior results 
compared to certain analytical and spectroscopic methods such as 
surface-enhanced Raman spectroscopy (Fan et  al., 2023), 
phosphorescence (Madurangika Jayasinghe et  al., 2020), and 
fluorescence spectroscopy (Chmangui et al., 2019; Guo et al., 2019). 
Particularly, the use of MIP in electrochemical sensors has 
demonstrated high sensitivity, selectivity, ease of fabrication, and utility, 
making them a promising option for field use. However, we are still far 
from the practical realization of these MIP-electrochemical sensors for 
in-field analysis of crops and/or monitoring food and feed quality.

The major challenges of MIP sensors include the following: (a) the 
steps and materials involved in the synthesis and fabrication of 
MIP-based selective materials that could increase cost and reduce the 
reproducibility of the devices; (b) the need for significant quantities of 
the target analyte during MIP synthesis that poses a health hazard 
because of the potent toxicity of aflatoxins; and (c) the difficulty in 
regenerating sensors, i.e., difficulty in removing the template that 
reduces the reusability of devices. On the other hand, some inherent 
limitations of bulk polymerization to synthesize MIPs include the 
uneven distribution of recognition sites and residual analyte traces after 
MIP creation, which may hinder the reproducibility of the devices and 
results, whereas the decay of recognition sites over time could affect the 
devices’ stability and shelf-life. Furthermore, the cost and toxicity of the 
nanostructured materials integrated with MIPs to enhance their 
sensing properties may also challenge their commercial prospects.

To overcome these limitations and challenges, the researchers 
must develop novel, non-toxic, and greener methods for the synthesis 
of MIPs and nanomaterials that are stable, easy to fabricate, and 
reusable for practical applications. While combining MIPs with 

various functional nanomaterials can enhance the sensitivity of 
various MIP sensors, developing new synthetic methodologies can 
expedite MIP synthesis without compromising their sensitivity and 
selectivity. Computational approaches may help identify more suitable 
and interactional monomers for different aflatoxins depending on the 
structure and affinity of the pendent functional groups (Sergeyeva 
et al., 2019, 2022). Various templating strategies, i.e., direct or dummy 
templates, and their competing benefits need to be understood to 
optimize sensor response and avoid selectivity issues.

On the other hand, developing disposable MIP sensors can solve 
several issues. For example, the need to regenerate sensors or 
imprinted cavities, and reusability problems would be prevented along 
with the reduced cost of the device, which again can be achieved using 
electrochemical principles. Overall, the development and 
implementation of MIP-based electrochemical sensors have the 
potential to improve their effectiveness and usefulness, especially if 
combined with novel nanomaterials and new synthesis methodologies. 
The ultimate goal should be  to create MIP-modified disposable 
nanosensors that can be applied to the in-field analysis of food and 
feed samples and routine monitoring of food quality and that have a 
broader commercialization scope.

5. Outlook

Aflatoxins are highly toxic carcinogenic substances that can 
contaminate agricultural products, posing a significant threat to human 
health. The conventional methods used for detecting aflatoxins in 
agricultural products are limited by their lack of portability, high cost, 
meticulous surveillance, and destructive analysis. MIP sensors offer a 
high degree of selectivity towards targeted toxins and can tolerate harsh 
environmental influences during in-field analysis. Among MIP sensors, 
electrochemical sensors are the most efficient tools for detecting 
aflatoxins in agricultural products, and MIPs in combination with 
other nano-sized reinforcements can further boost their sensitivity. 
MIP sensors also offer several advantages, including quick 
performance, user-friendly operation, non-tedious sample preparation, 
and non-destructive analysis. In addition, MIP sensors utilize a wide 
range of signal-transducing mechanisms and tailor-made binding sites, 
which results in high recognition specificity and sensitivity with 
picomolar-femtomolar LODs. MIPs combined with optical, SERS, and 
QCM transducers also hold great potential for detecting aflatoxins and 
are becoming increasingly popular for detecting these toxins with high 
sensitivity and accuracy. However, MIP sensors for aflatoxins still 
require improvements for commercial development and real-world 
applications such as better reproducibility, recovery of recognition sites, 
reusability, and affordability. Despite the imperfections of complexity, 
degradation of recognition sites, and cost-optimization, MIP sensor 
development holds great promise for the detection and monitoring of 
aflatoxins in food and feed samples to reduce health risks.
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TABLE 1 Performance comparison of various types of MIP aflatoxin sensors reported in recent years.

Selective 
materials

Methods Analyte
Pretreatment 

methods
Linear 
range

LOD

Food or feed samples

Ref.
Sample

Recovery 
(%)a

Polyphenol/p-C CV, DPV AFB1 Centrifugation 5–100 pM 1.7 pM Cinnamon 98.2 Chen et al. (2023)

PANI/CNC-CNT CV AFB1 – 2.5–24.9 nM 3 nM Milk –
Wood and Mugo 

(2022)

PDOP/Apt/Cu2O EIS AFB1 No pretreatment 0.05–3.5 ng/L 12 pg/L Milk 97.0
Roushani et al. 

(2022)

PANI DPV AFB1 SPE filtration 0.001–500 ng/mL 0.313 pg/mL Corn 91.6 Singh et al. (2021)

PPy/CS-ZnO DPV, EIS AFB2 Pasteurization 0.1–1,000 fg/mL 0.2 fg/mL Milk 86.0
El Hassani et al. 

(2020)

P4ATP/Au NPs LSV AFB1 – 3.2 fM–3.2 μM 1 fM – – Jiang et al. (2015)

PODP/Au-Pt/

CNT
CV, DPV AFB1

Fresh sample’s 

spiking
0.1 nM – 10 μM 30 pM

Rapeseed oil 95.5
Wang et al. (2014)

Hogwash oil 104.1

PMAA/Bi2S3/

Bi2O2CO3

PEC AFB1 SPE centrifugation
0.01–1,000 ng/

mL
2.95 pg/mL

Maize 97.9
Wu et al. (2023)

Sesame oil 96.8

PMAA/CsPbBr3/

rGO
PEC AFB1 SPE centrifugation

0.001–1,000 ng/

mL
0.72 pg/mL Peanut 92.0 Mao et al. (2023)

PMAA/CuO-g-

C3N4

PEC AFB1 Centrifugation
0.01–1,000 ng/

mL
6.8 pg/mL Maize 98.7 Mao et al. (2021)

P(33DT-co-

3TPCA)/IL-ZnO
PEC AFB1 SPE centrifugation 0.1–10 ng/mL 0.058 ng/mL

Rice 98.7
Wang et al. (2021)

Peanut 93.5

PSi/p-C, CdTe/

ZnS-Apt
Fluorescent AFB1 Microfiltration 0.01–20 ng/mL 4.0 pg/mL

Peanut oil 94.1

Chi and Liu (2023)Corn oil 91.9

Olive oil 92.4

PAc/Ag NPs Fluorescent AFB1 SPE centrifugation 0.3–25 ng/mL 0.3 ng/mL Maize 90
Sergeyeva et al. 

(2022)

PAc Fluorescent AFB1 Filtration 15–300 ppb 15 ppb
Wheat, Maize & 

Rye Flour
93.7

Yarynka et al. 

(2021)

PAc & PAMPSA Fluorescent AFB1 Filtration 15–500 ng/mL 15 ng/mL
Wheat & Maize 

Flour
87.0

Sergeyeva et al. 

(2019)

PAc Fluorescent AFB1 SPE filtration 20–160 ng/mL 14 ng/mL
Wastewater 

from food plant
>100

Sergeyeva et al. 

(2017)

PMAPA/Au NPs SPR AFM1 Centrifugation 0.0003–20 ng/mL 0.4 pg/mL Milk –
Akgönüllü et al. 

(2021)

PHEMA/Au NPs SPR AFB1 SPE centrifugation 0.0001–10 ng/mL 1.04 pg/mL
Peanut 86.5 Akgönüllü et al. 

(2020)Corn 91.2

PHEMA/Ab2-Au 

NPs
SPR AFM1

Incubation, 

centrifugation
0.1–1,000 ng/mL 18 pg/mL Milk –

Karczmarczyk 

et al. (2016)

PVAc QCM AFB1 – 5–40 ppb 0.63 ppb – – Susilo et al. (2021)

P2ATP/COF-Au 

NPs
QCM AFB1

SPE filtration, 

centrifugation
0.05–75 ng/mL 2.8 pg/mL

Peanut 87.0

Gu et al. (2019)
Pistachio 95.0

Rice 88.6

Wheat 95.1

Ab2, secondary antibody; Apt, aptamer (oligonucleotide); CNC, cellulose nanocrystals; CNT, carbon nanotubes; COF, covalent organic framework; CS, chitosan; CV, cyclic voltammetry; DPV, 
differential pulse voltammetry; EIS, electrochemical impedance spectroscopy; LSV, linear sweep voltammetry; MIP, molecularly imprinted polymer; NPs, nanoparticles; p-C, porous carbon; 
P(33DT-co-3TPCA), poly(3,3′-dithiophene-co-3-thiophenecarboxylic acid); P2ATP, poly(2-aminothiophenol); P4ATP, poly(4-aminothiophenol); PAc, polyacrylamide; PAMPSA, poly(2-
acrylamido-2-methyl-1-propansulfonic acid); PANI, polyaniline; PDOP, polydopamine; PEG, poly(ethylene glycol); PHEMA, poly(2-hydroxyethyl methacrylate); PMAPA, poly(N-
methacryloyl-1-phenylalanine); PMMA, poly(methacrylic acid); PODP, poly(o-phenylenediamine); PPy, polypyrrole; PVAc, poly(vinyl acetate); PSi, polysilane from tetraethyl orthosilicate/
aminopropyltrimethoxysilane; QD, quantum dots; rGO, reduced graphene oxide. All polymers mentioned herein were imprinted with the respective aflatoxin or dummy template molecules. 
aFor consistency and performance comparison, only the minimum values of aflatoxin’s recovery from food and feed samples are reported in this table.
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