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Nitrogen is one of the most important nutrients for tea plants, as it contributes

significantly to tea yield and serves as the component of amino acids, which in

turn affects the quality of tea produced. To achieve higher yields, excessive

amounts of N fertilizers mainly in the form of urea have been applied in tea

plantations where N fertilizer is prone to convert to nitrate and be lost by leaching

in the acid soils. This usually results in elevated costs and environmental

pollution. A comprehensive understanding of N metabolism in tea plants and

the underlying mechanisms is necessary to identify the key regulators,

characterize the functional phenotypes, and finally improve nitrogen use

efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N

source, thus a large amount of nitrate remains activated in soils. The

improvement of nitrate utilization by tea plants is going to be an alternative

aspect for NUE with great potentiality. In the process of N assimilation, nitrate is

reduced to ammonium and subsequently derived to the GS-GOGAT pathway,

involving the participation of nitrate reductase (NR), nitrite reductase (NiR),

glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate

dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible

for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In

this review, we summarize what is known about the regulation and functioning of

the enzymes and transporters implicated in N acquisition and metabolism in tea

plants and the current methods for assessing NUE in this species. The challenges

and prospects to expand our knowledge on Nmetabolism and related molecular

mechanisms in tea plants which could be a model for woody perennial plant

used for vegetative harvest are also discussed to provide the theoretical basis for

future research to assess NUE traits more precisely among the vast germplasm

resources, thus achieving NUE improvement.
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1 Introduction

Nitrogen is an essential mineral nutrient for plant growth and

reproduction. Apart from being a fundamental building block of

proteins and nucleic acids, N also participates in carbon fixation

through photosynthesis as a component of chlorophyll (Bernard

and Habash, 2009). In agricultural production, applying N

fertilizers generally leads to significant yield increases (Suárez

et al., 2002; Liu et al., 2021c), for which N fertilizers’ use is

expected to increase up to 236 million metric tons to meet the

global food demands by 2050 (Beatty and Good, 2018). However,

less than 50% of the applied N as fertilizer is absorbed by plants and

harvested in grains (Raun and Johnson, 1999; Camargo et al., 2005).

Thus, a high amount of “unuse” N supplied as fertilizer is

transferred to water and the atmosphere, resulting in energy

waste, soil acidification, water eutrophication and greenhouse gas

emissions (Godfray et al., 2010; Liu et al., 2010). This negative

environmental consequence of nitrogen fertilization became a huge

challenge for stable and sustainable agricultural production

(Bodirsky et al., 2014). There is an urgent need for research

advances on N metabolism in the ecosystem; in this context, we

need to improve N use efficiency (NUE) by crops, for which the

genetic potential for N uptake and assimilation must be

further explored.

Tea is processed from the leaves of Camellia sinensis (L.) O.

Kuntze and becoming one of the most widely non-alcoholic

beverages consumed worldwide due to its unique taste and

potential health benefits (Wei et al., 2018). Since 2011, the global

planting area of tea have increased steadily and gradually, from 3.84

million hectares in 2011 to 5.09 million hectares in 2020 (Liu et al.,

2023). This perennial evergreen woody plant is cultivated in over 30

countries, and China has the greatest cultivated area (Zhang et al.,

2019b; Lei et al., 2022). In 2022, tea planting area of China reached

3.33 million hectares (Mei and Zhang, 2022). The geographic origin

of the tea plant is assigned to Yunnan province and neighboring

regions in southwestern China (Chen et al., 2005). China has

traditionally been the largest tea producer worldwide with

abundant germplasm resources, and China’s tea have been

exported to more than 140 countries or regions (Wei et al., 2012).

Currently, many cultivated tea varieties are extensively grown in

tropical and subtropical regions across the world, and tea

cultivation may increase the local smallholder income, especially

in mountainous areas, contributing to local economic development

(Yao et al., 2012). The N concentration in young buds and leaves is

about 60-70 g·kg−1 (Ma et al., 2013). Tea plants form new shoots

every season, and multiple picking and pruning have been done. In

agricultural production, tea plants have a high demand for N, which

is generally fulfilled through fertilization, active N uptake,

assimilation and translocation, as well as remobilization

processes. In China, the average annual N inputs reach 300-450

kg·hm−2 to cover tea N demand; an excessive N application rate has

been reported in over 30% of the tea plantation area (Ma et al., 2013;

Ni et al., 2019). These numerical data reinforce the crucial and

urgent need for optimizing the NUE of tea plant. A series of

interconnected processes, including N transport, assimilation and
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remobilization, are involved in NUE, thus the understanding on N

metabolism at molecular level will provide the basis for a more

rational application of N fertilizers during tea production.

Nitrogen is involved in many important metabolic pathways

closely related to the synthesis of amino acids (AAs), caffeine,

polyphenols, and other substances responsible for tea quality

(Tang et al., 2020). Inorganic N sources, including ammonium

(NH4
+) and nitrate (NO3

-), and small organic N-containing

compounds can be uptaken from the soil by the tea plant roots

and subsequently transported to the leaves by ammonium

transporters (AMTs), nitrate transporters (NRTs), and amino

acid transporters (AATs). The absorbed NO3
− is first reduced

into nitrite (NO2
−) in the cytoplasm by nitrate reductase (NR)

and further reduced to NH4
+ in plastids by nitrite reductase (NiR).

Ammonium assimilation involves the conversion of inorganic N to

organic N, mainly through the glutamine-glutamate (GS-GOGAT)

cycle, catalyzed by glutamine synthetase (GS) and glutamine-2-

oxoglutarate aminotransferase/ glutamate synthase (GOGAT)

(Bernard and Habash, 2009; Liu et al., 2022). It is noteworthy

that glutamate and ethylamine are catalyzed by theanine synthetase

(TS) to biosynthesize theanine (g-glutamyl-L-ethylamide), a unique

non-proteinogenic amino acid responsible for umami taste and

healthy beneficial component in tea. Thus, the content of Thea is an

important indicator for cultivar breeding and evaluating NUE.

These processes are schematically illustrated in Figure 1. Further

details on substrates, transporters, enzyme isoforms, and cell

compartments relevant to the N cycle in tea plants are given in

the following sections.

Since the tea plant genome was sequenced (Xia et al., 2020),

many enzymes involved in N metabolism and their encoding genes

were identified. Nitrogen dynamic regulation and physiological

function were widely investigated in tea plant, as these are all

critical aspects to improve NUE. In this article, we outline the

results of recent investigations about the mechanisms underlying:

(1) N absorption and transport in the form of NH4
+, NO3

−, and

AAs; (2) metabolic reduction of nitrate; (3) ammonia assimilation

and theanine (g-glutamyl-L-ethylamide) biosynthesis. We also

discuss the use of genetic, genomic, and phenotyping technologies

for improving NUE by tea plants and stress the relevance of

understanding the genetic basis of tea plant adaptive responses to

different N forms.
2 General nitrogen utilization traits by
tea plants

2.1 Tea plants acquire N preferentially
as NH4

+

Tea plant shows a preferential uptake of N in the form of

ammonium (NH4
+-N). Using the scanning ion-selective electrode

technique, Ruan et al. (2016) found that the NH4
+ influx rate in the

roots of tea plant was higher than that of NO3
−, and the presence of

NH4
+ would promote NO3

− influx rate. The yield of young shoots,

total root length, N uptake rate, and the contents of caffeine,
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theanine (Thea), glutamine (Gln), glutamate (Glu) and aspartate

(Asp) in tea leaves were significantly higher when NH4
+ was the

main N source, compared with NO3
− (Ruan et al., 2007; Ruan et al.,

2010; Ruan et al., 2019; Wang et al., 2022a). NH4
+-N can also

promote phosphorus (P) uptake (Chen et al., 2019) and increase

iron (Fe) and chloride (Cl) contents in mature leaves and sulfur (S)

content in the roots (Tang et al., 2019). As a signaling molecule,

NH4
+ could induce Thea and catechin biosynthesis in a short period

(Liu et al., 2017b; Huang et al., 2018). By sensing NH4
+ levels,

lysine-acetylated and crotonylated proteins profoundly influenced

some primary metabolic processes involved in amino acid

metabolism, photosynthesis, glycolysis, and carbon fixation (Jiang

et al., 2018; Sun et al., 2019).
2.2 Nitrogen concentration influences tea
plant growth and biochemical profile

To obtain an appropriate amount of harvestable product, i.e.,

young buds and leaves, multiple tender shoots are picked from the

plants every year. Adequate N nutrition is necessary to increase the

formation of young shoots, enhance the growth vigor andmaintain the

C/N balance (Ruan et al., 2010). A balanced C/N ratio is also important

to promote chlorophyll biosynthesis (Yang, 2011) and to ensure

adequate availability of free AAs (Liu et al., 2020; Wang et al., 2022a),

thus providing N reserve for reproductive growth (Fan et al., 2019).

N metabolism of tea plant is dynamically regulated by

environmental factors. Likewise, the growth of lateral roots was

regulated by N levels: their length and numbers decreased with

increasing N concentrations (Chen et al., 2023; Hu et al., 2023).
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Under N deficiency, the content of N, L-Thea, and chlorophyll

decreased significantly. The activity of many antioxidant enzymes

and leaf CO2 assimilation capacity also diminished (Lin et al., 2016; Lin

et al., 2019). However, low N levels positively regulated the expression

of phosphate transporter genes and promoted flavonoids and

polyphenols synthesis in tea leaves (Lin et al., 2023b). Appropriate N

supply contributes to the aroma and flavor quality of tea infusion. The

activity of the rate-limiting enzyme for N assimilation, GS, increased

with N application level, and the content of total AAs, alcohols, and

ketone compounds conferring aroma also increased, thus promoting

tea products’ integrated quality (Ruan et al., 2010; Deng et al., 2012; Liu

et al., 2021b).The accumulation of caffeine, a component of the bitter

taste and a central nervous system stimulant in tea, can be increased

with the increasing N supply (Ruan et al., 2010). Sufficient N also

promotes flavonol glycoside biosynthesis through the expression of

relevant genes and the accumulation of the corresponding substrate

carbohydrates (Dong et al., 2019). Lipidomic studies revealed that the

content of precursors for the formation of aroma-related substances

such as monogalactosyl diaclyglycerol (36:6 MGDG) and digalactosyl

diacylglycerol (36:6 DGDG) increased when the N fertilizer was

applied at adequate amounts, while an excessive N application led to

overaccumulation of hexenol and hexenal, compounds which cause an

unpleasant grassy smell in tea (Liu et al., 2017a).With the increase inN

supply, more C was allocated to N-containing compounds in mature

tea leaves and roots, leading to a decrease in flavonoid concentration in

the young shoots (Liu et al., 2021a). Long-term N overfertilization

reduced significantly benzyl alcohol and 2-phenylethanol contents in

tea leaves, as well as those of (E)-nerolidol and indoles in withering

leaves, becoming not conducive to the generation of floral and fruity

fragrances (Chen et al., 2021).
FIGURE 1

Molecular mechanism of nitrogen nutrient absorption and utilization in tea plant. NRT, nitrate transporter; NR, Nitrate reductase; NiR, Nitrite
reductase; AMT, Ammonium transporter; GS, Glutamine synthetase; GOGAT, Glutamate synthase; GDH, Glutamate dehydrogenase; Gln, Glutamine;
Glu, Glutamic acid; TS, Theanine synthetase; Thea, Theanine; LHT, Lysine and histidine transporter; CAT, Cationic amino acid transporter; Ala,
Alanine; Pro: Proline; AKG, a-Ketoglutaric acid. Gray background represents the genes just were cloned in vitro; Yellow background represents
functions of these proteins were validated in yeast; The red background represents functions of these proteins were validated in Arabidopsis,
Nicotiana tabacum or Camellia sinensis.
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3 Nitrogen transport in plants

In a wide range of organisms, N transport as NH4
+, NO3

−, and

soluble organic compounds across membranes is mediated by

transporter proteins (Wirén et al., 1997). These transporters can

be divided into high-affinity transporter systems (HATS) and low-

affinity transporter systems (LATS), depending on the specific

substrate affinity. The external N level also regulates the affinities

of transporters. For instance, there are inducible high-affinity

transporter systems (iHATS) and constitutive high-affinity

transporter systems (cHATS) to accomplish NO3
− transport

(Crawford and Glass, 1998; Forde, 2000). These transport

proteins play a vital role in both short- and long-distance

translocation of N inorganic ions and N-organic compounds.
3.1 NH4
+ transport

The membrane- loca l ized ammonium transporter /

methylammonium permease (AMT/MEP) facilitates the import

and export of NH4
+ (Howitt and Udvardi, 2000). In higher

plants, AMT proteins can be divided into two types: AMT1 and

AMT2. Most AMT1 proteins belong to the HATS group and are

synergically involved in NH4
+ transport through the apoplastic and

the symplastic routes (Yuan et al., 2007). AMT2 plays a role in the

translocation of NH4
+ from roots to shoots (Giehl et al., 2017). The

transcription of the gene encoding this protein is tightly controlled

through multiple factors, including external N level, circadian

rhythm, hormone contents, and mycorrhizal symbiosis (Couturier

et al., 2007; Kobae et al., 2010; Li et al., 2012; Li et al., 2016).

To cope with elevated NH4
+ concentrations, the AMT activity

may be post-translationally modified via the reversible

phosphorylation of the cytosolic C-terminal region, thus allowing

rapid adaptation to variable environmental conditions (Yuan et al.,

2013; Wu et al., 2019). In tea plants, CsAMTs expression seems to be

tissue-specific: CsAMT1.2 reached the highest transcript abundance

in roots, while CsAMT1.4 was mainly expressed in flower buds.

However, CsAMT1.1 and CsAMT3.1 were highly expressed in all

tissues, suggesting that these genes might have diverse functions in

NH4
+ transport (Zhang et al., 2018; Wang et al., 2022c; Zhang et al.,

2022a). Likewise, AMTs expression levels are responsive to changes

in NH4
+ availability. In roots, CsAMT1.1 expression peaked at 12 h

after the exogenous NH4
+ resupply, while CsAMT3.1 showed an

upward trend after 24 h and CsAMT1.2 expression level increased at

10 h, with a 2.5-fold change compared to 0 h, and then decreased

again by 24 h. In NH4
+-treated leaves, CsAMT1.1 expression was

up-regulated only after 4 h, exhibiting a 4.75-fold increase, whereas

CsAMT1.2 and CsAMT3.1 expression levels did not change until 24

h later. These data indicate that NH4
+ transport in tea roots is

mainly regulated by CsAMT1.2, while in leaves, the NH4
+ induction

is mainly controlled by CsAMT1.1 in the short term (Tang et al.,

2020). Across different experimental NH4
+ concentrations, most

CsAMTs were expressed at higher levels in leaves than roots, except

for CsAMT1.2, CsAMT1.4, and CsAMT2.1a. Remarkably,

CsAMT1.2 expression was significantly higher in roots than leaves
Frontiers in Plant Science 04
under NH4
+ deficiency (0 mM NH4

+) or at 4 mM NH4
+,

demonstrating the major role of this transporter in NH4
+ uptake.

Other genes involved in NH4
+ transport, such as CsAMT2.1b,

CsAMT3.3 , CsAMT4.1a , CsAMT4.1b , CsAMT4.1c , and

CsAMT4.1d, exhibited similar expression profiles, with a

decreasing trend under low N supply and a notorious induction

under high N supply (Wang et al., 2022c). Furthermore, this report

indicates that CsAMTs expression in tea leaves is differentially

regulated over time by abiotic stresses, including drought and

salinity, as well as after methyl jasmonate treatments. Under these

treatments, specific CsAMTs genes were up-regulated or down-

regulated in different ways, suggesting different functions to cope

with various stresses (Wang et al., 2022c).

Transcriptome data revealed that CsAMT1.2 expression could

be highly induced by NH4
+-resupply; weighted gene co-expression

network analyses and the functional validation in an NH4
+-uptake

defective yeast line further corroborated that the high-affinity

transporter CsAMT1.2 was a “hub gene” in the N metabolic

network of tea plants, controlling NH4
+ uptake from the soil to

the roots (Zhang et al., 2020). Also, Wang et al. (Wang et al., 2022c)

found that 11 yeast transformant lines grew well on 0.3 mM NH4
+

as the sole N source, indicating their high affinity for NH4
+

permeation. The transcriptional regulation of CsAMTs differed

even at the cultivar level (Li et al., 2017). CsAMT1.1 and

CsAMT1.5 expression levels were significantly higher in the roots

of the FuDingDaBaiCha cultivar than Longjin43 cultivar (Zhang

et al., 2022a). After NH4
+ resupply, CsAMT1.2, CsAMT2.2, and

CsAMT2.3 genes were differentially induced in tea cultivars with

different NH4
+-uptake efficiency, indicating the uneven NH4

+

transport capacity among cultivars (Zhang et al., 2018; Zhang

et al., 2022b).
3.2 NO3
− transport

Membrane-bound nitrate transporters (NRTs) are required for

NO3
− uptake in plants. The members of the large NRT family can

be divided into four subfamilies: nitrate transporter 1/peptide

transporter (NRT1/PTR), collectively known as NPF, nitrate

transporter 2 (NRT2), chloride channel (CLC), and slow anion

channel associated/homologue (SLAC/ SLAH) (Krapp et al., 2014).

The NRT1 subfamily harbors many members, acting in NO3
−

transport from roots to shoots (Krapp et al., 2014). NRT transport

activity is also regulated through phosphorylation. AtNRT1.1 is a

dual-affinity protein: phosphorylation of the Thr101 residue by the

CBL-interacting protein kinase 23 changes its substrate affinity (Sun

et al., 2014). NRT2 are HATS proteins and belong to the nitrate/

nitrite porter (NNP) family, mainly expressed in roots. These

proteins have a role in both NO3
− accumulation and NO3

−

transport (Chopin et al., 2007; Li et al., 2007; Kiba et al., 2012).

To date, four CsNRT1 and four CsNRT2/3 genes have been isolated

from tea plants. These genes show tissue-specific expression

patterns and are differentially induced by exogenous NO3
−. It was

reported that CsNRT1.1 and CsNRT1.2 were mainly expressed in

leaves. CsNRT1.7, CsNRT2.5, and CsNRT3.2 had higher expression
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levels in mature leaves than other tissues, while CsNRT1.5,

CsNRT2.4, and CsNRT3.1 transcripts mainly accumulated in tea

roots (Feng et al., 2014; Wang, 2014; Wang et al., 2014; Yang et al.,

2016; Zhang et al., 2021). Further research showed that CsNRT2.4

expression was root-specific and strongly induced by N resupply.

Arabidopsis seedlings overexpressing CsNRT2.4 had a significantly

higher fresh weight and lateral roots length than wild-type

seedlings, especially under low N availability (0.1 mM NO3
−),

pointing out CsNRT2.4 as a high-affinity nitrate transporter that

might improve NO3
− uptake rate (Zhang et al., 2021). Additionally,

Wang et al. (2022b) identified a total of 109 CsNPF members by

analyzing the tea genome; these proteins could be divided into 8

groups according to their phylogenetic relationships, and the

transcription of most of these genes responded to NO3
− supply.

Similarly, CsNRTs expression profiles varied in tea cultivars with

different NUE (Wang et al., 2014). The expression of CsNRT2.4 and

CsNRT3.2 in the cultivar LongJin43 was higher than that observed

in ZhongCha108, indicating higher responsiveness to external

NO3
− supply in the former (Su et al., 2020).

Initially, CLC proteins were thought to be specifically involved

in chloride (Cl-) transport as channels or 2 Cl−/1 H+ antiporters

(Jentsch, 2008). Further research showed that AtCLCa is a

tonoplast-located 2 NO3
−/1 H+ antiporter that drives NO3

−

accumulation in the vacuoles (Jentsch, 2008; Monachello et al.,

2009). As anion channels, SLAC/SLAH proteins showed a strong

preference for NO3
− and have been associated with CO2 and

abscisic acid-dependent stomatal closure (Negi et al., 2008;

Vahisalu et al., 2008). In tea plants, Xing et al. (2020) identified

eight CLC genes across the wide genome of this species and named

them CsCLC1-8. Phylogenetic studies demonstrated that the

proteins encoded by these genes belonged to two subclasses;

further studies showed that CsCLC transporters might participate

in the uptake and long-distance transport of Cl− and F−, as their

expression levels varied in response to the addition of these two ions

at different concentrations. However, the role of CsCLCs in NO3
−

transport has not been elucidated. Similarly, there are no published

reports related to SLAC/SLAH proteins in tea plants.

To summarize the precedent information, Table 1 lists genes

involved in NH4
+ and NO3

− sensing, uptake, and transport in tea

plants reported to date. Further information about the subcellular

localization, sequence data, and functional corroboration

experiments is also provided.
3.3 Amino acid- N transport

Tea plants can directly absorb organic N and transport it to

actively growing parts. The amino acid theanine (Thea) is

synthesized and stored in root cells and then transported from

the root to the flush shoot in spring. These movements, which

include xylem loading/unloading, xylem-to-phloem transfer, and

post-vascular movements into the sink cells, are driven by plasmatic

membrane-localized amino acid transporters (AATs) (Fischer et al.,

1995; Dong et al., 2020; Lin et al., 2023a). Studies on tea plants AAT
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proteins have mostly focused on amino acid permeases (AAP),

lysine and histidine transporters (LHT), and cationic amino acid

transporters (CAT), which play important roles in AAs acquisition

and long-distance transport from source to sink (Guo et al., 2019;

Guo et al., 2020; Li et al., 2020; Liu, 2020).

Six CsAAPs members, CsAAP1, CsAAP2, CsAAP4, CsAAP5,

CsAAP6, and CsAAP8, were identified in tea plants through the

screening of a Saccharomyces cerevisiae mutant library. The

expression of genes encoding these transporters was tissue-specific

and regulated by the season and N levels. Thus, CsAAP1 expression

in roots increased in March and decreased by mid-April and was

highly correlated with root-to-bud Thea transport in seven tea

cultivars (Dong et al., 2020; Li et al., 2020). Besides, shading

promoted CsAAP2, CsAAP4, CsAAP5, and CsAAP8 expression in

young stems and suppressed CsAAP1, CsAAP2, CsAAP4, CsAAP5,

and CsAAP6 expression in the leaves, in accordance with Thea levels

in these tissues. These findings indicate that CsAAP2, CsAAP4,

CsAAP5, and CsAAP8 functions may be related to Thea movements

in the xylem, leading to high Thea accumulation in the stem. The up-

regulated genes might induce Thea transport into the companion

cells in the sieve elements for phloem loading and Thea delivery to

the terminal leaves (Yang et al., 2021).

LHT proteins were investigated more deeply. The CsLHTs

family comprises multiple members, among which CsLHT1 and

CsLHT6, highly expressed in roots, were identified as H+-

dependent high- and low-affinity amino acid transporters in yeast

heterologous systems. The overexpression of CsLHT1 and CsLHT6

in Arabidopsis lines significantly increased the root ability to uptake

exogenous nitrogen supplied as 15N-Gln and 15N-Glu, suggesting

that these transporters may contribute to the use of organic N from

the soil (Guo et al., 2019; Li et al., 2021). Likewise, the heterologous

expression of CsLHT4, CsLHT7, and CsLHT11 in Arabidopsis was

associated with a decline in aerial parts biomass compared with WT

plants, but CsLHT11 overexpressing plants had increased biomass

in the rosette leaves, regardless the N levels. Therefore, this protein

might have a regulatory function relevant to the development of

harvestable, young shoots in tea plants (Huang et al., 2023b).

Regarding the cationic acid transporters, it was reported that the

CsCAT gene family includes six members, mainly expressed in roots

and stems. It was also found that some CsCATs modify their

expression levels in response to abiotic stress and the exogenous

application of Thea, Gln, and ethylamine hydrochloride, a

precursor of Thea biosynthesis (Feng et al., 2018). CsCAT2 from

tea plant was homologous to glutamine permease 1 (GNP1) from

yeast, and it was found to be localized in the tonoplast as an H+-

dependent amino acid transporter. CsCAT2 was highly expressed in

the roots in winter, and this was negatively correlated with Thea

root-to-shoot translocation, providing evidence that this

transporter may meditate Thea storage in tea cell vacuoles (Feng

et al., 2021). These findings enrich our understanding of N

homeostasis in the form of AAs. Table 2 lists the genes involved

in AAs transport in tea plants. When available, data on subcellular

localization, sequencing, tea cultivars analyzed, specific substrates,

and functional corroboration experiments are supplied.
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TABLE 1 Genes isolated from tea plants in NH4
+ and NO3

− transport.

Gene
name

Sequence
information

Functional verification

References
Gene ID
a

Cultivar
b

Subcellular
localization

System c Function
description

CsAMT1.1
MV344632
KU361592

FD, LJ43
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.2
MW344636
KU361593

FD,LJ43 Plasma membrane
Yeast
in planta
(At.)

A key gene for NH4
+

uptake in roots

(Zhang et al., 2018; Zhang et al., 2022a;
Zhang et al., 2022b)

CsAMT1.3 MW344633 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.4 MW344635 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT1.5 MW344634 FD
Predicted:plasma
membrane

– –
(Zhang et al., 2022a)

CsAMT3.1 KP338998 LJ43
Predicted:plasma
membrane

– –
(Zhang et al., 2018)

CsAMT2.1 MW751970 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsAMT2.2 MW751971 FD Plasma membrane Yeast – (Zhang et al., 2022b; Song et al., 2023)

CsAMT2.3 MW751972 FD Plasma membrane Yeast – (Zhang et al., 2022b; Song et al., 2023)

CsAMT2.4 MW751973 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsAMT2.5 MW751974 FD
Predicted:plasma
membrane

Yeast –
(Zhang et al., 2022b)

CsNRT1.1 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.2 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.5 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT1.7 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT2.4 – ZC302 Plasma membrane
in planta
(Nt. At.)

A key gene for NO3
-

uptake in roots
(Zhang et al., 2021)

CsNRT2.5 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT3.1 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNRT3.2 – ZC302
Predicted:plasma
membrane

– –
(Zhang et al., 2021)

CsNPF2.3 CSS0041711 ZM#6 Plasma membrane in planta
(Nt.)

(Wang et al., 2022b)

CsNPF6.1 CSS0037113 ZM#6 Plasma membrane (Wang et al., 2022b)

CsNRT KJ160503 – – – – (Wang, 2014)

CsNRT1.2 KP453862 LJ43
Predicted:plasma
membrane

– –
(Feng, 2014)
F
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aGene ID, the beginning as “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/genbank/);
bCultivar, FD, FudingDaBaiCha; LJ43, LongJin43; ZC302, ZhongCha302; ZM#6, ZhongMing#6.
cSystem, At, Arabidopsis thaliana; Nt, Nicotiana tabacum.
-, related information not presented or studied in corresponding literature.
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TABLE 2 Genes isolated from tea plants in amino acids transport.

Gene
name

Sequence information Functional verification

Reference
Gene ID a Cultivar

b
Subcellular
localization

Substrate c System
d Function description

CsAAP1 TEA031577.1 SCZ
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

Highly correlated to Thea root-
to- shoot transport

(Dong et al., 2020; Li
et al., 2020)

CsAAP2 TEA009392.1 SCZ
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

–
(Dong et al., 2020; Li
et al., 2020)

CsAAP3
TEA003112.1
MK532959

SCZ; LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2020)

CsAAP4
TEA030129.1
MK532960

SCZ; LJ43
Predicted:plasma
membrane

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast –
(Dong et al., 2020;
Guo et al., 2020)

CsAAP5 TEA033139.1 SCZ –

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast – (Dong et al., 2020)

CsAAP6
TEA013446.1
MK532961

SCZ; LJ43
Plasma membrane
and endoplasmic
reticulum

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast;
in planta
(Nt. At.)

–

(Dong et al., 2020;
Guo et al., 2020; Li
et al., 2020)

CsAAP7
TEA005296.1
MK532962

SCZ; LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2020)

CsAAP7.1 XM_028244216.1 SCZ – – – – (Li et al., 2022)

CsAAP7.2 MG523885 SCZ
Endoplasmic
reticulum

Thea, Ala,
GABA, Ser, Glu,
Asn, Pro

Plays a role in AAs uptake from
soil and Thea long- distance
transport

(Li et al., 2022)

CsAAP8
TEA031424.1
MK532963

SCZ; LJ43
Predicted:plasma
membrane

Thea, Val, Asp,
Glu, Gln, Ala,
GABA

Yeast –
(Dong et al., 2020;
Guo et al., 2020)

CsAAP9 TEA000756.1 SCZ – – (Dong et al., 2020)

CsLHT1 TEA026462.1 SCZ; LJ43 Plasma membrane
Glu, Gln, Ala,
Pro, Asn, Asp,
GABA

H+-dependent high affinity
transporter in uptake AAs from
soil

(Guo et al., 2019; Li
et al., 2021)

CsLHT2 TEA021847.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT3 TEA033469.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT4
TEA029168.1
CSS0010852.1

SCZ; FD
Predicted:plasma
membrane

–
in planta
(At.)

–
(Li et al., 2021; Huang
et al., 2023b)

CsLHT5 TEA016092.1 SCZ
Predicted:plasma
membrane

– – – (Li et al., 2021)

CsLHT6 TEA003706.1 SCZ; LJ43 Plasma membrane
Glu, Gln, Ala,
Pro, Asn, Asp,
GABA

H+-dependent low affinity
transporter in uptake AAs from
soil

(Guo et al., 2019; Li
et al., 2021)

CsLHT7
TEA021821.1
CSS0033052.1

SCZ; FD
Predicted:plasma
membrane

–
in planta
(At.)

–
(Feng et al., 2018; Li
et al., 2021)

CsLHT11 CSS0019144.1 FD –
in planta
(At.)

(Huang et al. 2023b)

CsLHT8.1 – LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2019)

CsLHT8.2 – LJ43
Predicted:plasma
membrane

– – – (Guo et al., 2019)

(Continued)
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4 N utilization

4.1 NO3
− metabolic reduction

NO3
− absorbed by plants is a nitrogen form in a highly oxidized

state, which must be reduced to NH4
+ through metabolic reduction

to be further utilized. In this process, nitrate reductase (NR) is the

rate-limiting enzyme (Jackson et al., 2008). Both NR and NiR are

substrate-inducible enzymes; their function is to transfer electrons

for NO3
− reduction. NO3

− taken up by roots was reduced into

ammonium in mesophyll cells of shoots, and the metabolic

reduction can also be catalyzed in roots (Miller and Cramer,

2005). In rice, the alleles of OsNR2 present differences between

the two most common subspecies, indica and japonica. Thus,

OsNR2 in indica rice promotes NO3
− uptake through

OsNRT1.1B, conferring to this subspecies increased yield and

greater NUE compared with japonica rice (Gao et al., 2019).

In tea plants, studies have mainly focused on the activity and

expression of CsNR and CsNiR. The activity of NR was related to

NO3
− content. Besides, this activity was lower in the less vigorously

growing organs, such as the larger roots, older leaves and stems. In

the new shoots, the in vitro NR activity decreased with the degree of

leaf development, being highest in the first leaf and lowest in the fifth

one (Wang and Su, 1990; Wu and Wu, 1993). NR activity was also

responsive to trace elements including copper (Cu) and zinc (Zn).

Foliar spraying of Cu and Zn increased the content of N-containing

compounds and the activity of NR (Han and Wu, 1992). Under the

same conditions, CsNR andCsNiR expression levels in tea roots were

more strongly influenced by NH4
+ than NO3

− (Tang et al., 2020).

CsNR expression in tea roots was higher than in other tissues and

was up-regulated by environmental stresses (Zhou, 2014). However,

the expression level of this gene significantly differed across various
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cultivars (Zhou et al., 2013). On the other hand, the expression of

CsNiRwas higher inmature leaves than in new shoots and roots, and

in roots, this gene expression was up-regulated after a short period of

N resupply. The change in gene expression was slower in leaves, and

this responsiveness also varied in different cultivars representing

diverse genotypes (Zhang et al., 2016). Most of these findings

correspond to earlier experiments; the experimental evidence for

CsNR and CsNiR functions in tea plants is still scarce.
4.2 Ammonia assimilation

Both NH4
+ absorbed directly by plant roots and NH4

+/NH3

formed through NO3
- reduction can be derived to AAs synthesis

using various keto acids generated through respiration; this process is

known as ammonia assimilation. In higher plants, more than 95% of

the NH4
+/NH3 pool is assimilated via the GS-GOGAT cycle.

Glutamine synthetase (GS) is the key enzyme in this pathway,

playing a major role in fixing NH4
+ to the d-carboxyl group of Glu

to form Gln (Thomsen et al., 2014). Tea plants have a particular

ammonia-assimilation route; their roots can biosynthesize a unique

amino acid, Theanine (Thea), a homolog of Gln (Lin et al., 2023a).

Glutamate synthase (GOGAT) catalyzes the conversion of Gln and 2-

oxoglutarate to Glu, thus providing Glu for ammonia assimilation

(Bernard and Habash, 2009; Valderrama-Martıń et al., 2022). When

plants germinate, senesce, and begin to form seeds, glutamate

dehydrogenase (GDH) can catalyze the reversible amination/

deamination so that the GS-GOGAT cycle allows NH3 reuse,

necessary for ammonia detoxification (Fontaine et al., 2012; Zhou

et al., 2015). Through these pathways, N absorbed by roots is

incorporated into proteins, nucleic acids, and other substances

needed for plant growth.
TABLE 2 Continued

Gene
name

Sequence information Functional verification

Reference
Gene ID a Cultivar

b
Subcellular
localization

Substrate c System
d Function description

CsCAT1 KY709681 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT2 KY709679 SCZ Tonoplast
Thea, Asp, Glu,
Ala, Gln, Val

Meditate Thea storage
(Feng, 2017; Feng
et al., 2018; Feng et al.,
2021)

CsCAT5 KY709680 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT6 KY709682 SCZ – – – –
(Feng, 2017; Feng
et al., 2018)

CsCAT8 KY709684 SCZ – Thea, Glu, Gln, – –
(Feng, 2017; Feng
et al., 2018)

CsCAT9 KY709683 SCZ – Thea, Glu, Gln – –
(Feng, 2017; Feng
et al., 2018)
aGene ID, the beginning as “TEA” and “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/
genbank/);
bCultivar, SCZ, ShuChaZao; LJ43, LongJing43; FD, FudingDaBaiCha.
cSubstrate, Thea, theanine; Glu, glutamate; Gln, glutamine; Asp, aspartate; Asn, Asparagine; Ala, alanine; Val, valine; Pro, proline; Ser, serine; GABA, g-aminobutyric acid.
dSystem, At, Arabidopsis thaliana; Nt, Nicotiana tabacum.
-, related information not presented or studied in corresponding literature.
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4.2.1 Glutamine synthetase (GS) and theanine
synthetase (TS)

Two isoforms of GS were first identified by ion exchange

chromatography: cytosolic GS (GS1) and plastidic GS (GS2)

(Bernard and Habash, 2009). GS1 is localized in the cytoplasm of

non-photosynthetic tissues and is mainly involved in assimilating

NH4
+ absorbed from the soil and released from the plant N cycle.

GS2 is localized in the chloroplast stroma and is the main isoform in

chlorenchyma, having a major role in NH4
+ assimilation within the

photorespiratory pathway and NO3
- reduction in plastids

(Swarbreck et al., 2011; Thomsen et al., 2014).

GS has been studied in tea plants extensively. It may be noticed

in the GenBank database that the Japanese researchers Tanaka and

Taniguchi were the first to clone three CsGS1 genes from tea roots

in 2011: CsGS1.1 (AB115183), CsGS1.2 (AB115184), and CsGS1.3

(AB117934), but the functions of these genes had not been reported

(Lin et al., 2023a). Tang et al. (2018) cloned three CsGS1 genes from

the leaf of the cultivar Longjing43; the information obtained from

the sequence analysis showed that the 3’/5’-untranslated region

differed from those obtained previously, and CsGS1.1 and CsGS1.3

were mainly expressed in roots, while CsGS1.2 was mainly

expressed in mature leaves. NH4
+ or NO3

− supply also influences

the expression levels of these genes. The expression of CsGS1.1 in

leaves was up-regulated only by NO3
− in a similar manner as

AtGLN1.2, indicating that its role in ammonia assimilation

originates from NO3
− reduction (Lothier et al., 2011; Guan et al.,

2014). However, under the NH4
+ treatment, the expression of

CsGS1.2 was induced in both leaves and roots, and CsGS1.3

expression was only significantly increased in leaves (Tang et al.,

2018). Further research indicated that GS activity in tea plants was

quickly inhibited upon methionine sulfoximine addition, leading to

the reprogramming of AAs and nitrogenated lipids. This change

involved a decrease in the biosynthesis of all other AAs and

nitrogenated lipids, whereas the content of NH4
+, Thea, and

glycolysis and tricarboxylic acid cycle-related metabolites

increased, indicating that the inhibition reduced N reutilization in

the leaves (Liu et al., 2019).

L-theanine (g-glutamyl-L-ethylamide), also known as L-Thea, is

a distinctive non-proteinogenic amino acid that contributes an

umami taste and exhibits anti-depression benefits (Liu et al.,

2017d). Thea accumulation was dynamically regulated by

developmental growth, and environmental factors, including N

supply, temperature, light intensity, and salt stress (Ashihara,

2015). The synthesis of L-Thea is a unique and highly

characteristic aspect of nitrogen assimilation in tea plants.

Deciphering the underlying molecular mechanism of L-Thea

synthesis will provide valuable guidance for fertilization and

breeding strategies. Theanine synthetase (TS), an essential enzyme

for Thea metabolism, catalyzes the biosynthesis of Thea from

ethylamine and Glu, mainly in tea roots (Fu et al., 2021a). The

structure and properties of L-Thea are similar to those of L-Gln, and

some studies have confirmed that TS is highly homologous to GS

(Cheng et al., 2017). As indicated before, CsTS1 (DD410895) and

CsTS2 (DD410896) were firstly isolated through cDNA library

screening. CsTS1 is mainly expressed in the new shoots, roots,

and mature leaves, while CsTS2 reached higher expression levels in
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shoots (Deng et al., 2008). Both genes are involved in Thea

biosynthesis; this was validated through a heterologous expression

system (Lin et al., 2023a).

By performing genome studies, Wei et al. (Wei et al., 2018)

found that the predicted CsGSⅠ sequence shared high homology

with that of PtGS (Pseudomonas taetrolens), and PtGSI has been

engineered for Thea production at high levels, for which CsGSⅠ
was renamed as CsTSⅠ. The function of CsTS and CsGS was

investigated in depth through the transient overexpression in

Nicotiana benthamiana leaves or the stable expression in

Arabidopsis and knockdown in tea plants. The expression pattern

and distribution of CsTSⅠ correlated with Thea and Gln contents

in different tissues. CsTS I mainly accumulated in root tip

epidermal, pericycle, and procambium cells to form cytoplasmic

proteins. When fed with 10 mM ethylamine, CsTSI-overexpressing

Arabidopsis seedlings showed a significantly higher Thea content

than wild-type seedlings. Further research allowed the construction

of CsTSI RNAi and CsTSI overexpressing chimerical tea seedlings

with transgenic hair roots; the results demonstrated that the content

of Thea decreased and that of Gln increased, thus proving that

CsTSI biosynthesized Gln and Thea used glutamate as an acceptor

and ammonium or ethylamine as a donor, respectively (Wei et al.,

2018; Fu et al., 2021b; She et al., 2022). Fu et al. (2021b) used a non-

aqueous fractionation method and could determine that, in roots,

L-Thea biosynthesis mainly occurred in the cytosol through the

action of the key and cytosolic enzyme L-Thea synthetase CsTSI,

whereas in shoots, both the cytosol and chloroplasts were the major

sites for L-Thea biosynthesis, and CsGS1.1 and CsGS2 were, most

likely, the fundamental L-theanine synthetase. CsGS2 was identified

as a key enzyme regulating Thea biosynthesis in chloroplasts, L-

Thea content and distribution in leaf tissues would be affected by

light, as long-term shading treatment led to a decrease in the

proportion of L-Thea in the plastids by reducing CsGS2

expression levels. Thus, new shoots could accumulate more L-

Thea. In contrast, CsGS1.2 expression in albino new shoots was

higher than that found in common cultivars as a way to compensate

for the low CsGS2 expression in undeveloped chloroplasts. These

findings indicate that the mechanism underlying Thea synthesis

might differ across tea genotypes (Yu et al., 2021).

4.2.2 Glutamate synthase (GOGAT) and
glutamate dehydrogenase (GDH)

There are two isoforms of GOGAT in plants, with different

functions: ferredoxin-dependent GOGAT (Fd-GOGAT) and

nicotinamide adenine dinucleotide-dependent GOGAT (NADH-

GOGAT) . Fd-GOGAT ass imi la tes ammonia through

photorespiration in leaves, while NADH-GOGAT accumulates in

non-green tissues, playing a role in ammonia assimilation in root

(Suzuki and Knaff, 2005; Konishi et al., 2014).

GDH is abundant in plant tissues; this enzyme catalyzes

ammonia conversion to Glu and also deaminates Glu to a-
ketoglutarate. GDH-mediated ammonia assimilation and as a

stress-responsive enzyme, GDH detoxified the intracellular high

ammonia and biosynthesize Glu (Lea and Miflin, 2003; Fontaine

et al., 2012; Zhou et al., 2015). CsGOGAT was found to have

significantly higher expression in the leaf than in the root (Chen
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et al., 2015). Under N starvation, CsGOGAT expression increased,

and CsGDH expression decreased significantly; these changes were

correlated with leaf N content (Lin et al., 2014). CsGOGAT also

have a regulatory role in AAs changes in postharvest tea plant

leaves. The Thea content changed in spreading tea leaves under

different treatments, and CsGOGAT was involved in Thea

metabolic pathway, regardless of external light and temperature.

Also, CsGOGAT would interact with CsTS I and CsNiR during N

metabolism (Liu et al., 2017c). In tea plant, all CsGDHs identified to

date belong to the NADH-GDH group. Accumulation of CsGDH2

transcripts seemed to be flower-specific compared with the other

five plant tissues analyzed; CsGDH1 was mainly expressed in

mature leaves and roots, and CsGDH3 in new shoots and roots.

Under high NH4
+ supply, CsGS inhibition resulted in a significant

up-regulation of CsGDH3 and CsGDH2 in roots and leaves,

indicating the synergistic effect of CsGSs and CsGDHs in the

process of ammonia assimilation (Tang et al., 2021). The

expression of CsGDH2.1 in shoots increased greatly in the late

spring; further investigation revealed that Glu was a signal for Thea

hydrolysis, and CsGDH2.1-mediated Glu catabolism negatively
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regulated Thea accumulation in the new shoots in the late spring,

improving green quality by targeting to reduce CsGDH2.1

expression (Chen et al., 2022).

Summing up, studies directed to analyze the genes related to N

metabolism in tea plants mostly focused on their function in

regulating AAs biosynthesis. Knowledge about the functioning

and regulation of the enzymes involved in these processes is

mostly based on transcript analyses. There are still many gaps in

our understanding of their functions, especially for NR, NiR, and

GOGAT, concerning NO3
− reduction, N assimilation,

remobilization, and reassimilation of photorespiratory NH3. It is

noteworthy that, apart from the transcriptional regulation, post-

translational modifications (PTMs) can also be critical for the

regulation of many proteins relevant to N metabolism in

plants (Liu et al., 2022). Therefore, more detailed studies will

deepen our understanding of NUE determinants and allow

further optimization of NUE under actual tea garden

production scenarios.

Genes involved in ammonia assimilation by tea plants and their

most relevant data are shown in Table 3.
TABLE 3 Genes involved in ammonia assimilation in tea plant.

Gene
name

Sequence information Functional verification

References
Gene ID a Cultivar b Subcellular

localization
System c Functional

description

CsNR JX987133 LJ43 – – – (Zhou et al., 2013)

CsNiR – LJ43 – – – (Zhang et al., 2016)

CsGS1.1

AB115183
KY649469
TEA015580.1
MG778703

‘Sayamakaori’
posterity
LJ43
JX

Cytosol and
nucleus

E. coli
in planta (At.)

Biosynthesizes Thea and Gln
(Cheng et al., 2017; Tang et al., 2018; Wei
et al., 2018; Fu et al., 2021b; Yu et al.,
2021)

CsGS1.2

AB115184
KY649470
TEA032123.1
MG778705

‘Sayamakaori’
posterity
LJ43; JX

Cytosol
E. coli
in planta (At.)

CsGS1.3

AB117934
KY649471
TEA032217.1
MG778704

‘Sayamakaori’
posterity
LJ43; JX

Mitochondria
E. coli
in planta (At.)

CsGS2
TEA028194.1
MG778706

JX
Chloroplast,
mitochondria

E. coli
in planta (At.)

Thea synthetase in
chloroplasts

(Cheng et al., 2017; Wei et al., 2018; Fu
et al., 2021b; Yu et al., 2021)

CsGS EF055882 – – – – (Rana et al., 2008)

CsGS JN602372 JLP – – – (Lin et al., 2014)

CsTSⅠ TEA015198.1 SCZ Cytosol
in planta
(At. Tea plant
hairy roots)

Thea synthetase in cytosol. (Wei et al., 2018; Fu et al., 2021b)

CsTS1 DD410896 – – E. coli Biosynthesizes Thea after
supply with ethylamine

(Cheng et al., 2017; Fu et al., 2021b)

CsTS2 DD410895 – – E. coli (Cheng et al., 2017; Fu et al., 2021b)

CsTS3 JN226569 AJB
Predicted:
cytoplasm
peroxisome

– – (Li et al., 2011; Chen et al., 2015)

CsGOGAT JN602373 JLP – – – (Lin et al., 2014)

(Continued)
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5 An overview of nitrogen use
efficiency assessment by tea plants

Nitrogen use efficiency (NUE) is a complex trait influenced by the

interaction between environmental factors and intrinsic plant factors;

this variable can be approached at different levels and calculated in

different ways (Santa-Marıá et al., 2015). Initially, NUE was defined as

the crop yield per unit of applied N, a parameter also termed partial

fertilizer productivity (PFP) (Moll et al., 1982). Under specificN supply

conditions, NUE can be divided into two components: nitrogen uptake

efficiency (NUpE) and nitrogen utilization efficiency (NUtE) or

nitrogen physiological efficiency (NPE). NUpE may be defined as

the total amountN absorbed andNUtE as the dry weight or grain yield

per unit of absorbed N, accounting for the results at this growth stage

(Williams et al., 2021). Tea germplasm resources are abundant in

China; the genetic diversity of this plant, resulting from a long time of

artificial domestication and cultivar-breeding improvement, has

determined quite different N requirements (Zhang et al., 2018).

Additionally, because tea production does not target grain yield,

dissimilar NUE assessment criteria were adopted. Here, we integrate

the results of several studies and present four approaches to assessNUE

by tea plants.
Frontiers in Plant Science 11
5.1 Biomass accumulation

By the end of the 20th century, it was reported that the rate of

increase in tea ground stem diameter and height and dry matter

production in different cultivars varied under sufficient N supply

compared to no N application (Ruan et al., 1993). Under low N

supply, tea plants’ height, root and shoot dry weight, and leaf SPAD

values were significantly decreased (Wang et al., 2015). Wang et al.

(2004) measured the added-N content in the biomass and the

growth of new shoots in six tea cultivars under four N levels

(based on 15N isotope labeling techniques), and redefined five

interdependent traits—nitrogen use efficiency (NE), nitrogen

uptake efficiency (NUE), nitrogen physiological utilization

efficiency (NPE), nitrogen economic efficiency (NEE) and N

responsiveness—according to growth characters and harvesting

organs. They found that the biomass increase was significantly

correlated with NEE, the weight of the new shoots was significantly

(positively) correlated with NE, NUE, and NEE, while NUE was the

main determinant of NE. These authors indicated that by

comparing the NE values of different cultivars, it is possible to

detect which cultivar can achieve the highest NUE for a given level

of N supply.
TABLE 3 Continued

Gene
name

Sequence information Functional verification

References
Gene ID a Cultivar b Subcellular

localization
System c Functional

description

CsGOGAT1 TEA003892.1 – – – – (Wei et al., 2018; Li et al., 2019)

CsGOGAT2 TEA026779.1 – – – – (Wei et al., 2018; Li et al., 2019)

CsGOGAT3 TEA030315.1 – – – – (Li et al., 2019)

CsFd–
GOGAT

– LJ43 – – – (Liu et al., 2017c)

CsNADH–
GOGAT

– LJ43 – – – (Liu et al., 2017c)

CsGDH JN602371 JLP – – – (Lin et al., 2014)

CsGDH1 TEA034004.1 LJ43 – – – (Tang et al., 2021)

CsGDH2 TEA009809.1 LJ43 – – – (Tang et al., 2021)

CsGDH3
TEA034006.1
TEA006665.1

LJ43 – – – (Tang et al., 2021)

CsGDH2.1 CSS0034454.1 SCZ Mitochondria

Yeast
in planta (Nt.)
asODN in tea
plant

Negatively regulates theanine
accumulation in the late–
spring

(Chen et al., 2022)

CsGDH2.2 CSS0007238.1 SCZ Mitochondria
Yeast
in planta (Nt.)

– (Chen et al., 2022)
aGene ID, the beginning as “TEA” and “CSS” can be found in the tea plant genome database (http://tpia.teaplants.cn), others are GenBank accession numbers (https://www.ncbi.nlm.nih.gov/
genbank/);
bCultivar, LJ43, LongJing43; JX, JinXuan; SCZ, ShuChaZao; JLP, JiuLongPao; AJB, AnJiBaicCha.
cSystem, E. coli, Escherichia coli; At, Arabidopsis thaliana; Nt, Nicotiana tabacum; asODN, antisense oligonucleotide.
-, related information not presented or studied in corresponding literature.
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5.2 Root-related traits

The root is the main organ for nutrient uptake and plays a direct

role in N acquisition (Lynch, 2007; Zhu et al., 2011). Root

development and activity are responsive to soil N levels (Ju et al.,

2015). Studies on plant response to N concentration gradients using

different tea cultivars suggested that N concentration has a

significant effect on root/shoot ratio, and this ratio could be used

as a screening index to detect low-N-tolerant cultivars (Wang et al.,

2015). On the other hand, the differences among cultivars in root-

related parameters such as root dry weight, root volume, or root

active uptake area were greater than those of root activity. Likewise,

root volume and active uptake area varied significantly across N

levels. Further correlation studies provided evidence that these

parameters may be considered as promising indices for selecting

and breeding tea cultivars with high NUE (Wang et al., 2005).
5.3 NH4
+ influx kinetics

In the early 1950s, Epstein and Hagen (1952) applied the

Michaelis-Menten equation for the first time to describe the

absorption process of ionic nutrients by plants. In this equation,

Vmax represents the maximum uptake rate; this value is directly

proportional to the uptake rate for ions, and Km is inversely

proportional to the affinity of the cell membrane for nutrient ions

(Zhang et al., 2018). Because tea roots show a preference for NH4
+

uptake as the nitrogen source, the kinetic parameters of this cation

are usually used to define tea adaptability to N availability.

According to current studies on NH4
+ dynamics, tea cultivars

may be classified into three categories: (1) cultivars with high Km

and high Vmax can produce high yields in soils with elevated N

contents; TeiGuanYin, HuangDan, and Yubukita cultivars belong

to this type; (2) cultivars with low Km and low Vmax may display a

good performance in soils with low N concentrations; YingShuang

and MaoXie belong to this type; (3) cultivars with high Km and low

Vmax are the most flexible concerning N levels, being appropriate

for both high and low N conditions; ZhongCha#302 and

FuDingDaBaiCha belong to this type (Wang et al., 2005; Liu,

2016; Zhang et al., 2018; Zhang et al., 2022b). Notably, N flux

was calculated as the N content in the roots based on 15N labeling in

most studies, and there are still many cultivars falling into different

groups in different studies due to different number of tested

cultivars and methodological approaches. Though NH4
+ influx

kinetics allowed a better understanding of N use by tea plants,

more precise methods, such as non-invasive procedures based on

micro-test technology, will be useful for future experiments (Ruan

et al., 2016; Su et al., 2020).
5.4 Activity and gene expression of N-
assimilation-related enzymes

The leaves are the main assimilation organs of inorganic N. The

accumulation of N-assimilates and the enzymes and genes
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regulating these metabolic processes could indicate NUE-related

sub-traits (Sun et al., 2019). Some studies showed that GS activity

varied among cultivars and N levels and was positively correlated

with N assimilation rate and NUpE (Wang et al., 2005; Du et al.,

2015). Lin et al. (2017; 2018) examined the activity of some

antioxidant enzymes and found increased activities in the low N-

tolerant cultivar HuangDan in a nitrogen-deficient environment.

This was linked to the maintenance of high photosynthetic rates

and to the adequate output of N-assimilates in the leaves. Still, by

combining genes, enzymes, and assimilates and exploring their

affiliation links, it was possible to evaluate NUE traits

comprehensively. Zhou (2012) measured soluble sugars, soluble

proteins, total N content, N-related enzymatic activities, and the

expression of AAs biosynthetic genes. Their results suggested that

the differences in these indicators varied in the five cultivars tested

as the N concentration increased and membership function could

be used to evaluated the NUE of each cultivar synthetically. Also,

CsAMTs expression profiles in response to NH4
+ differed among

cultivars (Zhang et al., 2018; Zhang et al., 2022b). Still, it was

possible to detect that CsNRT2 participated in NO3
− transport

under low N conditions (Hu et al., 2023; Lin et al., 2023b). The

AuTophaGy-related genes CsATG8e and CsATG3a were linked to

an improved plant ability for N recycling and tolerance to low N

levels (Huang et al., 2020; Huang et al., 2023a). These genes emerge

as promising indicators and may contribute to identifying higher

NUE among various germplasm resources.

Although multiple investigations have addressed NUE of tea

plants, most NUE-related traits were identified based on individual

morphology, physiological processes, relevant biochemical

components, or gene expression patterns. Nevertheless, there are

no universal standards for grading NUE in tea plants, and some

cultivars have shown heterogeneous results. The measurement of

biomass is time-consuming and susceptible to environmental

changes. And only the processes of N uptake, transport or

utilization not the comprehensive NUE have been measured in

tea plants. The practicability of method also depends on the number

of tested cultivars. Most importantly, NUE estimates are

complicated and current evaluation methods are not

comprehensive enough to cover and explain the meaning of

NUE. The methodological l imitat ions st i l l res ist our

understanding of N metabolic mechanisms. Therefore, analyses

combining omics data and molecular and genetic approaches will

be useful to elucidate further heritability and inheritance in this

species with a point of great value to improve NUE by tea plants.
6 Conclusions and perspectives

N is the driving factor for tea yield and quality. Facing the

practical problem of the disproportionate amount of N fertilizers

applied and the low N utilization rate by tea plantations, a

comprehensive study on the process of N transport, absorption,

and utilization is necessary to increase NUE, to improve quality

features such as aroma and flavor, and, ultimately, to promote the

sustainable development of the industry.
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Currently, it is clear that tea plants show a preferential uptake

and assimilation of NH4
+ over NO3

−, and more NH4
+ availability

allows tea plants to produce more AAs, which further act as

signaling molecules involved in other metabolic pathways. In

addition, great progress has been made in the elucidation of the

N primary metabolism network. Genes contributing to N transport

and assimilation have been cloned and sequenced, and the

functions of many genes have been identified by transgenic

experiments in yeast, Arabidopsis, and Nicotiana tabacum.

However, the current methods to assess tea NUE under actual

productive settings have limitations. For instance, some basic

indices related to plant physiological performance and gene

expression were proposed, but these approaches are time-

consuming and inappropriate for large-scale field cultivar

assessment. One drawback is that a stable transgenic system has

not been established yet; hence, we cannot knock out or overexpress

genes to provide functional evidence in homologous systems.

Therefore, there is an urgent need to develop an efficient and

stable gene transformation system for tea plants, even more

considering that the N metabolism network is regulated by

mult iple genes . Future research should consider the

following issues.

Firstly, most research on N uptake and utilization by tea plants

has focused on ammonia assimilation and AAs biosynthesis.

However, NH4
+-based fertilizers and urea are widely applied in

tea gardens, and these N forms are expected to be converted to

NO3
− by nitrification, entailing the risk of leaching. It has been

reported that NO3
- was the main chemical form of N loss by

leaching: about 51%-63% of the added N is lost in this way (Zheng,

2022). Therefore, the biological significance of NRT, NR, and NiR

in N utilization is not negligible. In rice, the nitrate sensor NRT1.1B

could perceive NO3
− signal at the plasma membrane and facilitated

SPX4 degradation by recruiting NBIP1, resulting in the cytoplasm-

to-nuclear shuttling of OsNLP3 to transduce NO3
− response (Hu

et al., 2019). Also, in Arabidopsis, the phosphorylation state of

NRT1.1 regulates the nitrate signaling for lateral root growth, and

the non-phosphorylable NRT1.1T101A would activate Ca2+-CPKs-

NLPs signaling pathway by inducing its endocytosis under high

NO3
− concentration (Zhang et al., 2019a).

Secondly, although significant progress has been made in recent

years regarding our understanding of the transcriptional regulation

of the GS-GOGAT cycle, there are few reports on how transcription

factors (TFs) regulate the expression of these downstream genes.

The latest research revealed that the lateral organ boundaries

domain gene CsLBD39 negatively regulated NO3
− transduction

(Teng et al., 2022). Functional studies on the regulation of N

metabolism by TFs need to be further expanded in both scope

and depth. Additionally, PTMs also influence NUE through their

effects on relevant proteins in plants. Phosphorylation and

dephosphorylation of NR are involved in regulating NR activity,

and phosphorylation, oxidation, tyrosine nitration, and S-

nitrosylation of GS protein are also key mechanisms for GS

function in many crops, including wheat, rice, and maize (Liu

et al., 2022). A recent study in tea plants found that CsALT, CsTSI,

CsGS, and CsAlaDC, proteins involved in Thea synthesis, were

modified through ubiquitination, implying that these enzymes’
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stabilities were regulated by this modification (Wang et al.,

2021b). Consequently, to establish a comprehensive N

mechanism network for tea plant, N transport, reduction and

assimilation requires precise regulation at both the transcriptional

and post translational levels, many efforts need to be made to

explore the PTMs, particularly to identify the modification sites that

may be relevant for N use regulation by tea plants.

Furthermore, plants can respond to changes in N uptake by

adjusting leaf expansion and photosynthetic rates, as well as

chlorophyll content. In senescent leaves, N assimilation decreased;

this was associated with the degradation of proteins and nucleic

acids; the released N was remobilized to developing tissues. The

expression of genes related to GS/GOGAT cycle during leaf

senescence was widely investigated; most of these genes were

expressed in phloem companion and parenchyma cells in cereals,

suggesting that GS/GOGAT cycle plays a vital role in N

remobilization from senescent organs to developing organs (Havé

et al., 2017; Liu et al., 2022). In addition, NH4
+, NO3

−, AAs, and

peptide transporters also can be up- or down-regulated during leaf

senescence. Thus, many aspects of N metabolic pathways would be

influenced by N recycling and remobilization (Breeze et al., 2011). It

is reasonable to hypothesize that there are some other undiscovered

factors and pathways, for example, components of C metabolism

that regulate N remobilization. Tea production involves the pruning

and picking of the tender leaves every season; this leads to a more

active N turnover between the senescent leaves and the new shoots.

Hence, for tea plants, an overview of the mechanisms involved in N

recycling and remobilization is important to improve N resorption

efficiency and also to reduce the use of N chemical fertilizers, which

are responsible for a large part of greenhouse gas emissions.

Finally, along with the deciphering of the tea genome in multiple

cultivars (Wang et al., 2021a), whole genome resequencing could

provide more efficient single nucleotide polymorphisms (SNPs)

markers to construct a high-density linkage map of tea populations.

Such maps will lay a foundation for further investigations of

quantitative trait loci (QTL) mapping and genome-wide association

studies (GWAS) in order to reveal the molecular basis for important

agronomic traits. In rice, forward genetics approaches revealed that

allelic variation at OsNR2 and OsNRT1.1B resulted in the nitrate-use

divergence between indica and japonica subspecies and were used to

improve the NUE of rice (Hu et al., 2015; Gao et al., 2019). Multiple

attempts have beenmade to detect relevantQTLs or variation sites and

quality-related traits in tea plants, including biochemical components,

leaf area (An et al., 2021), seed setting rate (Wei et al., 2021), bud flush

timing (Tan et al., 2022), and AAs (Huang et al., 2022), caffeine (Ma

et al., 2018), and flavonoid (Xu et al., 2018) contents. However, fewer

attempts to unravel nutrient uptake and utilization traits in the context

of genotype-to-phenotype mapping research have been reported.

Nutrient-related traits are generally regulated by multiple genes and

environmental factors, so it is difficult to quantify their phenotypes

precisely. More attempts need to reveal the processes of N cycling, and

to define the phenotypic indicators that reflect each step of N

metabolism. For example, chlorate (ClO3
−) is an analogic tracer for

NO3
− and the resistance ability toClO3

− is an efficient indicator for fast

screening the process of NO3
− transport and reduction divergency (Hu

et al., 2015). How to apply this method in woody plants is a challenge
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that needs to be considered in future research. Population genetics can

help us to explore better the gene regulatory loci affecting NUE-related

traits and to identify the TFs or promoters which are able to regulate or

activate the transcription of downstream structural genes. Exploiting

interpopulation genetic variation in different germplasms will be

instrumental for cultivar improvement. Thus, the use of precise

phenotyping methods on population is challenging but necessary for

future studies of discovering genetic variation associated with NUE-

related traits.

Therefore, future studies should focus on the regulation

mechanisms of NO3
− uptake and reduction in tea plants to

increase the utilization of NO3
− from the soils and reduce

leaching losses, a point of great significance for the genetic

improvement directed to high NUE cultivars as well as for

developing a sustainable tea plantations.
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