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Abstract: Due to its high computational complexity, fractional order (FO) derivative operators have been 

widely implemented by using rational transfer function approximation methods. Since these methods 

commonly utilize frequency domain approximation techniques, their time responses may not be prominent 

for time-domain solutions. Therefore, time response improvements for the approximate FO derivative 

models can contribute to real-world performance of FO applications. Recent works address the hybrid use 

of popular frequency-domain approximation methods and time-domain approximation methods to deal with 

time response performance problems. In this context, this study presents a hybrid approach that implements 

Continued Fraction Expansion (CFE) method as frequency domain approximation and applies the gradient 

descent optimization (GDO) for step response improvement of the CFE-based approximate model of FO 

derivative operators. It was observed that GDO can fine-tune coefficients of CFE-based rational transfer 

function models, and this hybrid use can significantly improve step and impulse responses of CFE-based 

approximate models of derivative operators. Besides, we demonstrate analog circuit realization of this 

optimized transfer function model of the FO derivative element according to the sum of low pass active 

filters in Multisim and Matlab simulation environments. Performance improvements of hybrid CFE-GDO 

approximation method were demonstrated in comparison with the stand-alone CFE method.  

 

Keywords: CFE approximation method, FO realization, Optimization, Time response improvement  
 

Gradyan İniş Algoritması Kullanarak CFE Tabanlı Yaklaşık Kesirli Dereceli Türev Modellerinin 

Zaman Cevabının İyileştirilmesi İçin Hibrit Yaklaşım Yöntemi 

 

Öz: Yüksek hesaplama karmaşıklığı nedeniyle, kesirli dereceli (KD) türev operatörleri, yaygın olarak 

rasyonel transfer fonksiyonu yaklaşım yöntemleri kullanılarak gerçekleştirilmektedir. Bu yöntemler 

genelde frekans alanı yaklaşım tekniklerini kullandığından, zaman cevapları zaman bölgesi çözümleri için 

yeterince iyi olmayabilir. Bu nedenle, yaklaşık KD türev modellerinin zaman cevaplarının iyileştirilmesi, 

KD uygulamaların gerçek hayattaki kullanım performanslarına katkıda bulunabilir. Son zamanlardaki 

çalışmalar, zaman cevabı performans problemlerinin üstesinden gelebilmek için popüler frekans alanı 

yaklaşımı yöntemlerinin ve zaman alanı yaklaşım yöntemlerinin hibrit kullanımını ele almaktadır. Bu 

bağlamda, bu çalışma, frekans alanı yaklaşımı olarak Sürekli Kesir Açılımı (SKA) yöntemini uygulayan ve 

KD türev operatörlerinin SKA tabanlı yaklaşık modelinin basamak cevabı iyileştirmesi için gradyan iniş 

optimizasyonunu (GİO) uygulayan hibrit bir yaklaşım sunmaktadır. GİO'nun SKA tabanlı rasyonel transfer 
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fonksiyonu modelinin katsayılarını hassas şekilde değiştirebildiği ve bu hibrit kullanımın, SKA tabanlı 

yaklaşık türev operatör modellerinin birim basamak ve impuls cevaplarını önemli ölçüde iyileştirebildiği 

gözlemlenmiştir. Ayrıca, KD türevin optimize edilmiş transfer fonksiyonu, Multisim ve Matlab simülasyon 

ortamlarında alçak geçiren aktif filtrelerin toplamı şeklinde analog devre olarak gerçekleştirilmesini 

göstermekteyiz. Hibrit SKA-GİO yaklaşımının performans iyileştirmesi klasik SKA yöntemi ile 

karşılaştırmalı olarak gösterilmiştir.  

 

Anahtar Kelimeler: SKA yaklaşım yöntemi, KD gerçekleştirme, Optimizasyon, Zaman cevabı iyileştirme 

 

1. INTRODUCTION 

Fractional calculus is widely preferred in different fields for modeling real-world systems 

since it can more accurately express or represent some real-world phenomenon  in daily life 

(Caponetto et al., 2010; Elwakil, 2010; Radwan et al., 2021; Sun et al., 2018; Tepljakov, 2017). 

It is often used for the system modeling in control engineering, energy systems, electronics, 

mechanics, etc (Chen et al., 2009; Delghavi et al., 2016; Homaeinezhad & Shahhosseini, 2020; 

Sidhardh et al., 2020; Silva-Juárez et al., 2020; Tapadar et al., 2022; Tepljakov et al., 2021; 

Tzounas et al., 2020; Vigya et al., 2021; Yang et al., 2020). However, the practical realization of 

FO systems is not an easy problem because ideal realization of FO elements is computationally 

expansive because of the long-memory effect (Tepljakov et al., 2021). Some approximate 

realization methods have been utilized to partially overcome this problem. The transfer function 

for a FO system model includes FO elements, and these elements are generally written in the form 

of approximate integer order transfer functions in a finite operating frequency ranges by using 

many integer order approximation methods; for instance Carlson, Oustaloup, Continued Fraction 

Expansion (CFE), Matsuda and modified stability boundary locus (MSBL) (Bingi et al., 2019; 

Colín-Cervantes et al., 2021; Deniz et al., 2016, 2020; Krishna, 2011; Tepljakov et al., 2021). 

There are numerous works in literature, and many of them present applications of the 

aforementioned integer order approximation methods(Monje et al., 2010; Tepljakov et al., 2021; 

Tufenkci et al., 2020).  

The CFE approach, which is a well-known integer order approximation method to implement 

FO elements, is basically a series expansion technique and widely used in simulation and 

realization of the approximate FO elements. In this method, continued fractions are used to 

express the FO operator in the form of rational function (Deniz et al., 2020; Krishna, 2011; 

Vinagre et al., 2000). Many studies have been made to realize the FO circuits according to the 

CFE method. However, some drawbacks were encountered in the application of this method. It 

was expressed in previous studies: The time response approximation performance may not be 

satisfactory, and the operating frequency range is not configurable by users, and it can work in 

the low-frequency region (Colín-Cervantes et al., 2021; Deniz et al., 2020).  

For discrete time domain approximation of fractional order elements, a unified method based 

on delta domain has been suggested, and the CFE was used for expansion of fractional power of 

discrete derivative elements that were expressed by using discrete-time frequency variables 

(Dolai et al., 2022; Swarnakar et al., 2019). Detailed surveys of fractional order elements and their 

application potential have been presented in several recent works, and these works reveal growing 

importance of approximation methods in practical realization of fractional order elements (Colín-

Cervantes et al., 2021; Deniz et al., 2020; Shah et al., 2019; Tepljakov et al., 2021). Recently, 

employment of optimization methods has been shown to improve synthesis and approximate 

implementation of fractional order elements and functions. For instance, a genetic algorithm was 

employed in the synthesis of fractional order elements (Kartci et al., 2019). The GDO algorithm 

is applied to improve time-domain approximation performance of MSBL method (Koseoglu, 

2022). Koseoglu’s work was a useful contribution that can enhance practical performance of 

frequency-domain based approximate fractional order element realizations by improving time 

responses of results of other frequency domain approximation methods. 



Uludağ University Journal of The Faculty of Engineering, Vol. 28, No. 2, 2023 

405 

In the current study, the time response of the CFE approximation method has been improved 

with cooperation of the GDO algorithm. Here, similar to Koseoglu’s work, where the time 

response of MSBL transfer function was enhanced by GDO (Koseoglu, 2022), the GDO algorithm 

is used to improve the time-response of the CFE method by optimizing the coefficients of the 

CFE based approximate transfer functions. This hybrid algorithm has been used to improve the 

step response of the CFE approximation method because the step response is very substantial in 

many system design applications such as control system design. We also observed that the 

algorithm can contribute to the frequency domain approximation performance of the CFE method 

to some extent. To realize the obtained approximate derivative model as an analog circuit 

implementation, the transfer functions is decomposed into the sum of the low pass filters form 

according to partial fraction expansion (PFE) and analog realization circuit is designed by using 

active first order filters in the Multisim environment (Bertsias et al., 2019; Koseoglu, Deniz, 

Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021; Yüce & Tan, 2020).  

 

2. METHODOLOGY 

This section briefly introduces the cooperation of CFE method and GDO algorithm. 

Previously, Koseoglu (2022) demonstrated hybrid utilization of the MSBL method and the GDO 

algorithm in order to improve step response of the approximate FO derivative models for MSBL 

method (Koseoglu, 2022). The current study aims to use this hybrid method to integrate the CFE 

method and GDO algorithm and thus improves step response of the CFE-based approximate FO 

derivative models. The mathematical foundations of the CFE method can be found in (Colín-

Cervantes et al., 2021; Deniz et al., 2020; Krishna, 2011; Vinagre et al., 2000).  

To realize the FO element, firstly, the FO derivative function is expressed as an approximate 

rational transfer function by using the CFE method as follows (Deniz et al., 2020; Koseoglu, 

Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021): 

 

𝑠𝛼 ≅
𝑟𝑛𝑠𝑛+𝑟𝑛−1𝑠𝑛−1+𝑟𝑛−2𝑠𝑛−2+⋯.+𝑟2𝑠2+𝑟1𝑠+𝑟0

𝑝𝑛𝑠𝑛+𝑝𝑛−1𝑠𝑛−1+𝑝𝑛−2𝑠𝑛−2+⋯.+𝑝2𝑠2+𝑝1𝑠+𝑝0
                                   (1) 

 

where, the parameter n is the integer order of the approximation method and the parameter 𝛼 ∈
[0,1] is the FO of the derivative function 𝑠𝛼. The 𝑟0 ∙∙∙ 𝑟𝑛 and 𝑝0 ∙∙∙ 𝑝𝑛 are the coefficients of 

numerator and denominator polynomials, respectively. To realize (1), it is decomposed by 

employing PFE and expressed in the form of the sum of the first order filters as follows (Koseoglu, 

Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021): 

 

𝑇𝐶𝐹𝐸(𝑠) =
𝑏1

𝑠−𝑎1
+

𝑏2

𝑠−𝑎2
+

𝑏3

𝑠−𝑎3
+ ⋯ +

𝑏𝑛−1

𝑠−𝑎𝑛−1
+

𝑏𝑛

𝑠−𝑎𝑛
+ 𝑘                        (2) 

 

where 𝑏1 ⋯ 𝑏𝑛, 𝑎1 ⋯ 𝑎𝑛 and k represent residues, poles and the direct gain, respectively. To obtain 

the approximate step response in the time domain, firstly, the step response is obtained in s domain 

as follows (Koseoglu, 2022): 

 

𝑌(𝑠) =
𝑇𝐶𝐹𝐸(𝑠)

𝑠
=

1

𝑠
∙ (

𝑏1

𝑠−𝑎1
+

𝑏2

𝑠−𝑎2
+ ⋯ +

𝑏𝑛−1

𝑠−𝑎𝑛−1
+

𝑏𝑛

𝑠−𝑎𝑛
+ 𝑘)                    (3) 

 

Then, the time domain approximate step response is written by using the inverse Laplace 

transform as (Koseoglu, 2022): 

 

    𝑦(𝑡) =
𝑏1 𝑒

𝑎1 𝑡−𝑏1

𝑎1
+

𝑏2 𝑒
𝑎2 𝑡−𝑏2

𝑎2
+ ⋯ +

𝑏𝑛−1 𝑒
𝑎𝑛−1 𝑡−𝑏𝑛−1

𝑎𝑛−1
+

𝑏𝑛 𝑒
𝑎𝑛 𝑡−𝑏𝑛

𝑎𝑛
+ 𝑘           (4) 

 



Köseoğlu M. Et al.: Hybrid Apprx. Meth. for Time Respns. Imprv. of CFE Bas. Apprx. Fract.Or. Derv. Model 

406 

The exact (analytical expression) step response for FO derivative operator 𝑠𝛼 can be expressed 

as follows: 

 

𝑦𝐹𝑂(𝑡) =
1

𝛤(1−𝛼) ∙ 𝑡𝛼 ,                                                  (5) 

 

where 𝜞(.) represents the Gamma function. Using the expressions (4) and (5), the cost function 

that depends on the difference between the analytical and the approximate step responses is 

defined as 

   

𝐽 =
1

2𝑚
∑ (𝑦𝐹𝑂(𝑡𝑖) − 𝑦(𝑡𝑖))

2𝑚
𝑖=1                               (6) 

 

where the parameter m is the total sampling point number for time ti. For more accurate results, 

the step response was sampled in the interval of 0.001 s to 100 s with a time increment of 0.001 

s. This cost function is minimized by the GDO algorithm that was expressed as follows (Koseoglu, 

2022): 

 

𝜕𝐽

𝜕𝑎𝑗
= −

𝑏𝑗+𝑎𝑗𝑏𝑗 𝑡 𝑒
𝑎𝑗 𝑡

−𝑏𝑗𝑒
𝑎𝑗 𝑡

𝑎𝑗
2 ∙ 𝑒𝑟 ;   

𝜕𝐽

𝜕𝑏𝑗
= −

𝑒
𝑎𝑗 𝑡

−1

𝑎𝑗
∙ 𝑒𝑟  ;   𝑗 = 1 ∙∙∙ 𝑛  ;  

𝜕𝐽

𝜕𝑘
= − 𝑒𝑟         (7) 

 

By using these partial derivatives (sensitivity derivatives), the coefficient updates by using GDO 

can be written as (Koseoglu, 2022): 

 

𝑎𝑗
𝑞+1 = 𝑎𝑗

𝑞 − 𝜂
𝜕𝐽(𝑎𝑗

𝑞)

𝜕𝑎𝑗
 ; 𝑏𝑗

𝑞+1 = 𝑏𝑗
𝑞 − 𝜂

𝜕𝐽(𝑏𝑗
𝑞)

𝜕𝑏𝑗
 ;   𝑗 = 1 ∙∙∙ 𝑛  ; 𝑘𝑞+1 = 𝑘𝑞 − 𝜂

𝜕𝐽(𝑘𝑞)

𝜕𝑘
     (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  

A flowchart of the CFE-GDO approximation method 
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A flowchart of hybrid CFE-GDO approximation method is shown in Figure 1. In summary, 

the GDO method performs fine-tuning of both denominator and numerator coefficients of the 

CFE based approximate transfer function. The initial values for the transfer function coefficients 

are calculated by using the classical CFE approximation method, and GDO method is used to 

optimize these coefficients (Figure 1) to improve the step response obtained by the approximate 

model. To illustrate application of the proposed algorithm, the derivative operator s0.5 is 

approximated by using CFE-GDO method in the following section.  

 

3. NUMERICAL RESULTS AND DISCUSSIONS 

This section is composed of two subsections. The first subsection shows the use of the 

proposed CFE-GDO approximation method to obtain an approximate rational transfer function 

model for FO derivative operator s0.5. Results of the CFE-GDO method are compared with results 

of the classical CFE method, and contributions of the proposed CFE-GDO algorithm are 

demonstrated. In the second subsection, analog circuit realization results of this CFE-GDO based 

approximate model are demonstrated in the Matlab Simulink environment and Multisim analog 

circuit simulation environment (Matlab-R2020b, 2020; NI-Multisim-14.1, 2017).  

3.1. Approximate Modeling Results for FO Derivative s0.5 

In this section, we present an illustrative example to approximate the FO derivative s0.5. In 

the first step, the 5th order approximate transfer function was obtained for s0.5 by classical CFE 

method (Krishna, 2011) as follows:  

 

      𝑇𝐶𝐹𝐸(𝑠) =
11∙𝑠5+165∙𝑠4+462∙𝑠3+330∙𝑠2+55∙𝑠+1

𝑠5+55∙𝑠4+330∙𝑠3+462∙𝑠2+165∙𝑠+11
                             (9) 

 

Then, the CFE-GDO algorithm was performed to improve the step response of the model given 

in (9). For the GDO algorithm, 𝜼=0.004 was taken as the learning coefficient, and the number of 

iterations was taken as 𝑖𝑡 = 2 ∙ 105. For these initial configurations, the cost function decreased 

and converged as shown in Figure 2, and the optimized 5th order approximate transfer function of 

the CFE-GDO method, To, was obtained as: 

 

𝑇𝑂(𝑠) =
10.95∙𝑠5+161.5∙𝑠4+436.8∙𝑠3+286.4∙𝑠2+32.59∙𝑠+0.2453

𝑠5+54.95∙𝑠4+325.8∙𝑠3+432.4∙𝑠2+126.7∙𝑠+4.442
           (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 

The change in the cost function as the number of iterations increases 
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When (9) and (10) are considered, one can observe that the coefficients of numerator and 

denominator have changed slightly during the GDO optimization. This fine-tuning on the 

coefficients has enabled the optimized transfer function to yield more accurate impulse and step 

responses in comparison with those obtained by classical CFE method as seen in Figures 3 and 4, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: 

The comparison of analytical (exact) impulse responses with approximate impulse responses 

based on CFE and CFE-GDO methods 

 

 Root Mean Squared Error (𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑦𝐹𝑂(𝑡𝑖) − 𝑦(𝑡𝑖))

2𝑚
𝑖=1  ) and Mean Absolute 

Percentage Error (𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑦𝐹𝑂(𝑡𝑖)−𝑦(𝑡𝑖)

𝑦𝐹𝑂(𝑡𝑖)
|𝑚

𝑖=1  ) performances were calculated for the impulse 

response. The RMSE is a measure of accuracy that is more sensitive to larger errors. MAPE is a 

measure used to evaluate the performance of regression or forecasting models. RMSE values for 

both CFE and CFE-GDO methods were about 125.526, and RMSE performances are very close 

to each other for impulse responses. Slight difference between results of the models can be better 

evaluated by considering the MAPE performance. MAPE value for the CFE-GDO method was 

calculated as 19.297 while this value is 57.123 for the classical CFE method. Considering the 

exact impulse response, Figure 3 clearly shows the improvement of the derivative s0.5 due to the 

CFE-GDO method and supports the improvement in MAPE values.  

Figure 4 also clearly shows a considerable improvement in the step response of the classical 

CFE method by using the CFE-GDO method. In figure, the CFE diverges from the exact 

(analytical calculation) step response for the FO derivative s0.5. The RMSE values were calculated 

as 5.540·10-3 for the CFE-GDO algorithm and 5.854·10-3 for the CFE method. When the MAPE 

values were considered, the degree of the improvement was revealed better. The calculated MAPE 

values were 2.147 for the CFE-GDO and 21.848 for the CFE. Such improvement in time response 

of the approximate model is very important for more accurate modeling and realization of the FO 

systems and this can significantly contribute to the FO system practice.  

Furthermore, to investigate frequency domain approximation performance, Figure 5 

compares the frequency responses of the CFE and the CFE-GDO methods. The magnitude and 

phase responses in the figure indicate that the CFE-GDO can provide frequency domain 

approximation in a wider frequency range, particularly by expanding the lower frequency part of 

the CFE approximation. 
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Figure 4: 

The comparison of step responses with CFE and CFE-GDO based models of FO derivative s0.5 

 

Table 1. Comparative Magnitude and Phase Response error values for CFE and CFE-

GDO methods 

Frequency 

Response 

Magnitude Response Phase Response 

CFE CFE-GDO CFE CFE-GDO 

RMSE 3.128·10-1 2.950·10-1 7.222 5.193 

MAPE 3.910 4.078 8.018 5.542 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: 

The comparison of exact magnitude and phase responses with approximate magnitude and 

phase responses based on CFE and CFE-GDO methods 
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For better evaluation of frequency domain approximation performances, the RMSE and 

MAPE values for both CFE and CFE-GDO methods were calculated within the frequency interval 

𝜔 ∈ [0.01 100] 𝑟𝑎𝑑/𝑠. Table 1 shows RMSE and MAPE values, and these values also indicate 

considerable improvements in frequency responses arising from the CFE-GDO method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 

The Multisim circuit schematic that realizes 𝑇𝑜(𝑠) function in the sum of the filter form 

(Koseoglu, 2022) 

 

3.2. Analog Circuit Realization Results 

To demonstrate an analog circuit implementation of CFE-GDO based approximation of the 

FO derivative s0.5 by using the analog circuit in Figure 6, we used PFE of the 𝑇𝑜(𝑠) and performed 

analog circuit design according to the sum of the low-pass filter realization techniques (Bertsias 

et al., 2019; Koseoglu, 2022; Koseoglu, Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz, 

Alagoz, Yuce, et al., 2021; Yüce & Tan, 2020). The PFE of 𝑇𝑜(𝑠) is obtained as 

 

𝑇𝑂−𝑃𝐹𝐸(𝑠) =
−434.259

𝑠+48.4029
+

−5.0257

𝑠+4.8166
+

−0.50697

𝑠+1.3398
+

−0.11549

𝑠+0.35138
+

−0.006782

𝑠+0.04047
+ 10.9450        (11) 

 

This equation shows partial fraction terms that include the residues, poles and the constant 

value. Each partial fraction term, which is shown in Table 2, is realized by using low pass filters 

with operational amplifiers that were shown in Figure 6. The constant value is realized as a 

constant gain element by using a basic inverting amplifier. A comprehensive explanation on the 

realization method was also presented in (Koseoglu, 2022; Koseoglu, Deniz, Alagoz, & Alisoy, 

2021; Yüce & Tan, 2020). 
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Table 2. PFE terms and corresponding component values for analog realization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: 

The comparison of analytical step responses with approximate step responses based on the CFE 

method, the CFE-GDO method and its realizations 

 

When a 0.1 V step input is applied to the designed circuit for 100 s simulation time, the step 

responses of the analog circuit from Multisim simulation and Simulink simulation are shown in 

Figure 7 in comparison with the exact step response, the numerical step responses of the CFE 

approximate model (𝑇𝐶𝐹𝐸(𝑠)) and the CFE-GDO based approximate model (𝑇𝑜(𝑠)). The Simulink 

simulation environment uses ideal component models. Therefore, Simulink simulation results are 

very similar to the step response of 𝑇𝑜(𝑠) transfer function model. The Multisim simulations allow 

the use of the non-ideal component models, and its simulation results are more realistic. 

In Figure 8, the response of the designed circuit is shown for a square input wave with a 

frequency of 1 rad/s. As expected for an FO derivative circuit, sharp rises of falls at the circuit 

output were observed at edges of the square wave, and this validates the derivative operation of 

the circuit for the square waveform.  

When the overall results are considered, it is observed that the proposed method can 

contribute to time responses (the step and impulse responses) of the CFE method, and this 

contribution can be useful for practical system applications such as control engineering 

Term Component Values PFE Terms 

1 C1 = 10−5 F, R11 = 230.277 Ω, R12 = 2.066 kΩ −434.259

𝑠 + 48.4029
 

2 C1 = 10−5 F, R21 = 19.898 kΩ, R22 = 20.762 kΩ −5.0257

𝑠 + 4.8166
 

3 C1 = 10−5 F,R31 = 197.251 kΩ, R32 = 74.636 kΩ −0.50697

𝑠 + 1.3398
 

4 C1 = 10−5 F, R41 = 865.905 kΩ, R42 = 284.592 kΩ −0.11549

𝑠 + 0.35138
 

5 C1 = 10−5  F, R51 = 14.7455 MΩ, R52 = 2.47079 MΩ −0.006782

𝑠 + 0.04047
 

6 Rk1 = 1 kΩ, Rk2 = 10.945 kΩ 10.9450 
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applications.  It is also seen that the configuration of the learning coefficient in the GDO algorithm 

is difficult, and it needs trial and error for proper setting of these parameters in order to obtain 

effective results from the CFE-GDO method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: 

The comparison of square wave responses of CFE method and the CFE-GDO based methods 

 

4. CONCLUSIONS 

In this study, time domain performance of the CFE approximation method is further 

improved by adopting the GDO algorithm. The CFE-GDO method is used for fine-tuning of 

transfer function coefficients of the CFE method, and this hybrid method is implemented to 

compute more accurate step responses from approximate transfer function models of the FO 

derivative elements (𝑠𝛼). We demonstrated analog circuit implementation for the CFE-GDO 

based approximate model of FO derivative function s0.5.  Simulation results clearly indicated 

improvement in step and impulse responses by using CFE-GDO method for analog system 

applications.  

As a future work, the improvements of the proposed hybrid approximation method on the other 

approximation methods can be investigated for realization of both integral and derivative 

operators. On the other hand, some other optimization methods may be tested for more accurate 

realization. Rounding errors (Round-off errors) of circuit element values can negatively affect 

approximation performance, and it can reduce performance of analog circuit realization in 

experimental studies. This problem can also be addressed in application works. 
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