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ABSTRACT

Existence, attractivity, and stability of solutions of a non-

linear fractional differential equation of Riemann-Liouville

type are proved using the classical Schauder fixed point the-

orem and a fixed point result due to Dhage. The results are

illustrated with examples.

RESUMEN

Demostramos la existencia, atractividad y estabilidad de

soluciones de la ecuación diferencial fraccional no-lineal de

tipo Riemann-Liouville usando el clásico teorema de punto

fijo de Schauder y un resultado de punto fijo de Dhage. Los

resultados se ilustran con ejemplos.
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1 The Problem

Dhage [5, 6, 7] and Dhage et al. [10] introduced the class of what they called pulling functions as

follows. For J∞ = [t0,∞) with t0 ∈ R+ = [0,∞) fixed, a continuous function g : J∞ → (0,∞)

is a pulling function if lim
t→∞

g(t) = ∞. We will denote the class of all pulling functions on

J∞ by CRB(J∞). We wish to point out that if g is a pulling function, then its reciprocal g =

g(t) = 1
g(t) is continuous, bounded, and satisfies lim

t→∞
g(t) = 0. Using pulling functions, Dhage

[6, 7, 8] proved some attractivity and stability results for nonlinear Caputo fractional differential

equations. Instead, in this paper we consider fractional differential equations with a Riemann-

Louville fractional derivative and use fixed point techniques, rather than the measure theoretic

approach used in Dhage et al. [9].

Here we will study the nonlinear fractional differential equation

RLD
q
t0

[

a(t)x(t)
]

= f(t, x(t)) a.e. t ∈ J∞, (1.1)

together with the fractional integral initial condition (IC)

lim
t→t

+
0

I
1−q

t
+
0

[

a(t)x(t)
]

= b0, (1.2)

where a ∈ CRB(J∞) ∩ L1(J∞,R) is a pulling function, RLDq is a Riemann-Liouville fractional

derivative of order q with 0 < q < 1, and f : J∞ ×R → R is a Caratheódory function. Our goal is

to characterize the attractivity and stability properties of the solutions of (1.1)–(1.2).

We begin with the following notions from the fractional calculus that are needed in our discussion;

these can be found, for example, in Agarwal et al. [1], Podlubny [13] or Kilbas et al. [12]. Define

the function space

C(J∞,R) =
{

x : J∞ → R | x is continuous
}

,

and let L1(J∞,R) denote the class of Lebesgue integrable functions. In what follows, Γ is the usual

Euler’s gamma function,

Γ(q) =

∫ ∞

0

e−ttq−1 dt,

and [q] is the greatest integer less than or equal to q.

Definition 1.1. Let J∞ = [t0,∞) for some t0 ≥ 0 in R. For any x ∈ L1(J∞,R), the Riemann-

Liouville fractional integral of order q > 0 is defined as

I
q
t0
x(t) =

1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ J∞,

provided the right hand side is pointwise defined on (t0,∞).
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Definition 1.2. If x ∈ L1(J∞,R), the Riemann-Liouville fractional derivative RLD
q
t0
x of x of

order q is defined as

RLD
q
t0
x(t) =

1

Γ(n− q)

(

d

dt

)n ∫ t

t0

(t− s)n−q−1x(s) ds, n− 1 < q < n, n = [q] + 1,

provided the right hand side exists.

Note that if a, x ∈ L1(J∞,R), then
RLD

q
t0
[a(t)x(t)] exists on J∞.

Definition 1.3. A function x is called a classical solution of IVP (1.1)–(1.2) if

(i) x is continuous on J∞, and

(ii) x satisfies (1.1) and (1.2).

The fractional differential equation (1.1) is a scalar multiplicative perturbation of the second type

obtained by multiplying the unknown function under the Riemann-Liouville derivative by a scalar

function. This and other types of perturbations of a differential equation are described in Dhage

[3].

2 Properties of solutions

We set our problem (1.1) in the Banach space BC(J∞,R) of bounded continuous real-valued

functions defined on J∞ with the usual supremum norm

‖x‖ = sup
t∈J∞

|x(t)|.

We take T : BC(J∞,R) → BC(J∞,R) to be a continuous operator and we study the operator

equation

T x(t) = x(t), t ∈ J∞. (2.1)

Next, we describe various properties of solutions of the operator equation (2.1) in the space

BC(J∞,R).

First, we define the concepts of global attractivity and stability of the solutions as given in Banas

and Dhage [2].

Definition 2.1. A solution x = x(t) of (2.1) is called globally attractive if

lim
t→∞

(x(t) − y(t)) = 0 (2.2)

for each solution y = y(t) of (2.1) in BC(J∞,R).
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That is, solutions of (2.1) are globally attractive if for arbitrary solutions x(t) and y(t) of (2.1) in

BC(J∞,R), we have that condition (2.2) is satisfied. If (2.2) is satisfied uniformly in BC(J∞,R)

in the sense that for every ǫ > 0 there exists T > 0 such that, for t ≥ T ,

|x(t)− y(t)| ≤ ǫ (2.3)

for all solutions x, y ∈ BC(J∞,R) of (2.1), then solutions of (2.1) are said to be uniformly globally

attractive on J∞.

Definition 2.2 (Banas and Dhage [2]). A solution x ∈ BC(J∞,R) of equation (2.1) is called

asymptotic if lim
t→∞

x(t) = 0. If the limit is uniform with respect to the solution set of the operator

equation (2.1) in BC(J∞,R) (i.e., for each ε > 0 there exists T > t0 ≥ 0 such that |x(t)| < ε for

all solutions x of (2.1) in BC(J∞,R) and for all t ≥ T ), we say that solutions of equation (2.1)

are uniformly asymptotic on J∞.

Definition 2.3. If all the solutions of the operator equation (2.1) are asymptotic and uniformly

globally attractive, we will say that they are uniformly asymptotically attractive or stable on J∞.

In order to state the required fixed point techniques to be used in our proofs, we introduce the

following concepts.

Definition 2.4 (Dhage [4]). A nondecreasing upper semi-continuous function ψ : R+ → R+ is

called a D-function if ψ(0) = 0. The class of all D-functions on R+ is denoted by D.

Definition 2.5 (Dhage [4]). Let X be a Banach space with norm ‖ · ‖. An operator T : X → X

is called D-Lipschitz if there exists a D-function ψT ∈ D such that

‖T x− T y‖ ≤ ψT

(

‖x− y‖
)

(2.4)

for all x, y ∈ X.

If ψT (r) = kr, k > 0, T is called a Lipschitz operator with Lipschitz constant k. Also, if 0 ≤ k < 1,

then T is called a contraction on X and k is referred to as the contraction constant. In addition, if

ψT (r) < r for r > 0, then T is called a nonlinear D-contraction on X , and the set of all nonlinear

D-contractions will be denoted by DN .

We say that an operator T : X → X is compact if T (X) is a compact subset of X . The operator

T is called totally bounded if for any bounded subset S of X , T (S) is a totally bounded subset of

X . Moreover, T is called completely continuous if T is continuous and totally bounded on X . We

note that every compact operator is totally bounded, but the converse may not be true; the two

notions are equivalent on bounded subsets of X . Additional details on different types of nonlinear

contractions and compact and completely continuous operators can be found, for example, in

Granas and Dugundji [11].
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In an effort to prove our main existence results, we need the following fixed point theorems.

Theorem 2.6 (Schauder [11]). Let S be a closed, convex, and bounded subset of a Banach space

X, and let T : S → S be a completely continuous operator. Then the operator equation T x = x

has a solution.

Theorem 2.7 (Dhage [3]). Let X be a Banach space and let T : X → X be a nonlinear D-

contraction. Then the operator equation T x = x has a unique solution.

3 Existence, attractivity, and stability of solutions

Definition 3.1. A function β : J∞ × R → R is called Carathéodory if

(i) the map t 7→ β(t, x) is measurable for each x ∈ R, and

(ii) the map x 7→ β(t, x) is continuous for each t ∈ J∞.

The following lemma is often used in the study of nonlinear differential equations.

Lemma 3.2 (Carathéodory). Let β : J∞×R → R be a Carathéodory function. Then the function

t→ β(t, x(t)) is measurable for each x ∈ C(J∞,R).

We will make use of the following conditions in the remainder of our paper.

(H1) The function f is bounded on J∞ × R with bound Mf .

(H2) The function f is Carathédory on J∞ × R.

(H3) There exists a D-function ψf ∈ D such that

|f(t, x)− f(t, y)| ≤ ψf (|x − y|)

for all x, y ∈ R and t ∈ J∞.

The following lemma will play an important role in obtaining our existence results.

Lemma 3.3. For any function h ∈ L1(J∞,R), the function x ∈ BC(J∞,R) is a solution of the

fractional differential equation

RLD
q
t0

[

a(t)x(t)
]

= h(t) a.e. t ∈ J∞, (3.1)

satisfying the initial condition

lim
t→t

+
0

I
1−q

t
+
0

[

a(t)x(t)
]

= b0, (3.2)
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if and only if x satisfies the nonlinear fractional integral equation

x(t) =
b0

Γ(q)

(t− t0)
q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1h(s) ds (3.3)

for all t ∈ J∞.

Proof. Applying the Riemann-Liouville fractional integral operator Iqt0 to (3.1), we obtain

a(t)x(t) −
I
1−q
t0

[a(t)x(t)]

Γ(q)

∣

∣

∣

∣

∣

t=t0

(t− t0)
q−1 = I

q
t0
h(t) =

1

Γ(q)

∫ t

t0

(t− s)q−1h(s) ds

for all t ∈ J∞, or

x(t) =
b0

Γ(q)

(t− t0)
q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1h(s) ds.

That is, if x(t) is a solution of (3.1)–(3.2), then x(t) is a solution of (3.3).

Now let x(t) be a solution of (3.3). Then,

a(t)x(t) =
b0

Γ(q)
(t− t0)

q−1 +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s) ds. (3.4)

Applying the Riemann-Liouville fractional derivative operator to this expression gives

RLD
q
t0

[

a(t)x(t)
]

= RLD
q
t0

[

b0

Γ(q)
(t− t0)

q−1

]

+ h(t)

since RLD
q
t0
I
q
t0
h(t) = h(t). Also, since RLD

q
t0
(t− t0)

q−1 = 0, x(t) satisfies equation (3.1).

From (3.4),

I
1−q
t0

[a(t)x(t)
]

= I
1−q
t0

[

b0

Γ(q)
(t− t0)

q−1

]

+ I
1−q
t0

(Iqt0h(t)).

Now I
1−q
t0

(Iqt0h) = It0h =

∫ t

t0

h(s)ds and lim
t→t+0

∫ t

t0

h(s)ds = 0. Also, by [1, Proposition 1],

I
1−q
t0

[

b0

Γ(q)
(t− t0)

q−1

]

=
b0

Γ(q)
I
1−q
t0

(t− t0)
q−1

=
b0

Γ(q)

Γ(q)

Γ(q + 1− q)
(t− t0)

q+1−q−1 =
b0

Γ(q)

Γ(q)

Γ(1)
= b0.

Hence,

lim
t→t

+
0

I
1−q
t0

[a(t)x(t)
]

= b0,

and so (3.2) is satisfied. This proves the lemma. �
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We need to introduce the following class of functions. Let

A =

{

f ∈ C([t0,∞), (0,∞)) : lim
t→t0

(t− t0)
q−1

f(t)
<∞ and lim

t→∞

tq

f(t)
= 0

}

,

and we assume in what follows that the function a in equation (1.1) belongs to the class A ∩

CRB(J∞).

Remark 3.4. If a ∈ CRB(J∞), then a ∈ BC(J∞,R+) and so the number ‖a‖ = sup
t∈J∞

a(t) exists.

Also, the function w : R+ → R+ defined by w(t) = a(t) tq is continuous on J∞ and satisfies the

relation lim
t→∞

w(t) = 0, so the number

W = sup
t≥t0

w(t) (3.5)

exists.

Our main existence and global attractivity result is contained in the following theorem.

Theorem 3.5. Assume that conditions (H1)–(H2) hold. Then (1.1) has a solution defined on J∞

and the solutions of (1.1) are uniformly globally asymptotically attractive.

Proof. Since a(t) ∈ A ∩ CRB(J∞), there exists d0 > 0 such that

∣

∣

∣

∣

(t− t0)
q−1

a(t)

∣

∣

∣

∣

≤ d0 on J∞. Set

X = BC(J∞,R) and define a closed ball Br(0) in X centered at the origin 0 with radius r given

by

r =
|b0|d0
Γ(q)

+
Mf W

Γ(q + 1)
,

whereMf is from (H1) andW is given in (3.5). By an application of Lemma 3.3, (1.1) is equivalent

to the hybrid fractional integral equation

x(t) =
b0

Γ(q)

(t− t0)
q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds (3.6)

for all t ∈ J∞. Define the operator T on Br(0) by

T x(t) =
b0

Γ(q)

(t− t0)
q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds, t ∈ J∞. (3.7)

Then (3.6) is transformed into the operator equation

T x(t) = x(t), t ∈ J∞. (3.8)

We will show that the operator T satisfies all the conditions of Theorem 2.6 with S = Br(0) ⊂

BC(J∞,R). Now from the continuity of the integral, it follows that the function t → T x(t) is
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continuous on J∞ for each x ∈ Br(0). Furthermore, by condition (H1),

|T x(t)| ≤
b0d0

Γ(q)
+

Mf

a(t)Γ(q)

∫ t

t0

(t− s)q−1 ds ≤
b0d0

Γ(q)
+

Mf

Γ(q)
|a(t)|

∫ t

t0

(t− s)q−1

≤
b0d0

Γ(q)
+

Mf

Γ(q + 1)
|a(t)|tq ≤

b0d0

Γ(q)
+

Mf

Γ(q + 1)
W

for all t ∈ J∞ and all x ∈ Br(0). Taking the supremum over t,

‖T x‖ ≤
b0d0

Γ(q)
+

MfW

Γ(q + 1)
= r

for all x ∈ Br(0). As a result, T maps Br(0) into itself.

To show that T is a completely continuous operator on Br(0), we first show that it is continuous

there. To do this, fix ǫ > 0 and let {xn} be a sequence in Br(0) converging to x ∈ Br(0). Then,

|(T xn)(t)− (T x)(t)| ≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
∣

∣f(s, xn(s))− f(s, x(s))
∣

∣ ds

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

|f(s, xn(s))|+ |f(s, x(s))|
]

ds

≤
2Mfa(t)

Γ(q)

∫ t

t0

(t− s)q−1 ds ≤
2Mf

Γ(q + 1)
w(t). (3.9)

Since a ∈ A, there exists T > 0 such that w(t) ≤
ǫΓ(q + 1)

2Mf

for t ≥ T . Thus, for t ≥ T , from (3.9),

we see that

|(T xn)(t)− (T x)(t)| ≤ ǫ as n→ ∞.

Let t ∈ [t0, T ]. Then, by the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

T xn(t) = lim
n→∞

[

b0

Γ(q)

(t− t0)
q−1

a(t)
+
a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, xn(s)) ds

]

=
b0

Γ(q)

(t− t0)
q−1

a(t)
+
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

lim
n→∞

f(s, xn(s))
]

ds

= T x(t) (3.10)

for all t ∈ [t0, T ]. Moreover, it can be shown as below that {T xn} is an equicontinuous sequence

of functions in X . Now, using arguments similar to those given in Granas et al. [11], it follows

that T is a continuous operator on Br(0) into itself.

Next, we show that T is a compact operator on Br(0). To accomplish this, it suffices to show

that every sequence {T xn} in T (Br(0)) has a convergent subsequence. Similar to what we did

above, we can show that ‖T xn‖ ≤ r for all n ∈ N. This shows that {T xn} is a uniformly bounded

sequence in T (Br(0)).
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To show that {T xn} is also an equicontinuous sequence in T (Br(0)), let ǫ > 0 be given. Since

lim
t→∞

w(t) = 0, there exists T1 > t0 ≥ 0 such that

w(t) <
ǫΓ(q + 1)

9Mf

(3.11)

for all t ≥ T1.

Let t, τ ∈ J∞ be arbitrary. If t, τ ∈ [t0, T1], then we have

|T xn(t)− T xn(τ)| ≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γ(q)

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γ(q)

∫ t

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

a(τ)

Γ(q)

∫ t

t0

(τ − s)q−1f(s, x(s)) ds −
a(τ)

Γ(q)

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(τ)

∣

∣

∣

∣

+
Mf

Γ(q)

∫ t

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds+
Mf

Γ(q)

∣

∣

∣

∣

∫ t

τ

∣

∣

∣
a(τ)(τ − s)q−1

∣

∣

∣
ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(τ)

∣

∣

∣

∣

+
Mf

Γ(q)

∫ T

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds+
Mf ‖a‖

Γ(q + 1)
|(τ − t)q| . (3.12)

Since the function t 7→ a(t)(t− s)q−1 is continuous on the compact interval [t0, T1], it is uniformly

continuous there. Therefore, for the above ǫ there exist δ1 > 0 and δ2 > 0, depending only on ǫ,

such that

|t− τ | < δ1 implies
∣

∣a(t)(t − s)q−1 − a(τ)(τ − s)q−1
∣

∣ < min

{

ǫΓ(q)

9b0
,
ǫΓ(q)

9MfT1

}

,

and

|t− τ | < δ2 implies |(t− τ)q | <
ǫΓ(q + 1)

9Mf‖a‖
.

Let δ3 = min{δ1, δ2}. Then, if t, τ ∈ [t0, T1] with |t− τ | < δ3, from (3.12) we have

|T xn(t)− T xn(τ)| <
ǫ

3

for all n ∈ N.
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Now, if t, τ > T1, then there is a 0 < δ4 < δ3 such that if |t− τ | < δ4,

|T xn(t)− T xn(τ)| ≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(t)

∣

∣

∣

∣

+
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

+
a(τ)

Γ(q)

∣

∣

∣

∣

∫ τ

t0

(τ − s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)
q−1

a(t)
−

(τ − t0)
q−1

a(t)

∣

∣

∣

∣

+
Mf

Γ(q + 1)

[

w(t) + w(τ)
]

<
ǫ

9
+

2ǫ

9
=
ǫ

3

for all n ∈ N. Similarly, if t, τ ∈ R+ with t < T1 < τ and |t− τ | < δ < δ4, then

|T xn(t)− T xn(τ)| ≤ |T xn(t)− T xn(T1)|+ |T xn(T1)− T xn(τ)| <
ǫ

3
+
ǫ

3
=

2ǫ

3

for all n ∈ N. As a result, |T xn(t) − T xn(τ)| < ǫ for all t, τ ∈ J∞ with |t − τ | < δ and for all

n ∈ N. This shows that {T xn} is an equicontinuous sequence in Br(0). An application of the

Arzelà-Ascoli theorem implies that {T xn} has a uniformly convergent subsequence on the compact

set Br(0).

Since T (Br(0)) is closed, {T xn} converges to a point in T (Br(0)), so T (Br(0)) is relatively

compact. Therefore, T is a continuous and compact operator on Br(0). An application of Theorem

2.6 shows that the operator equation T x = x, and hence (1.1), has a solution on J∞ belonging to

Br(0).

To prove the attractivity of solutions, let x, y ∈ Br(0) be any two solutions of (1.1) on J∞. Then,

|x(t)− y(t)| ≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
∣

∣f(s, x(s))− f(s, y(s))
∣

∣ ds

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

|f(s, x(s))|+ |f(s, y(s))|
]

ds ≤
2Mf

Γ(q + 1)
w(t)

for all t ∈ J∞. As in (3.11), for any ǫ > 0 there exists T1 > t0 such that

w(t) <
ǫΓ(q + 1)

2Mf

for t ≥ T1. Thus,

|x(t)− y(t)| < ǫ

for all t ≥ T . Hence, the solutions of (1.1) are uniformly globally attractive on J∞.

Finally, since a belongs to A, for any ǫ > 0, there exists T2 > T1 such that

∣

∣

∣

∣

b0

Γ(q)

(t− t0)
q−1

a(t)

∣

∣

∣

∣

<
ǫ

2
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for t ≥ T2. Then for any solution x of (1.1) defined on J∞,

|x(t)| ≤

∣

∣

∣

∣

b0

Γ(q)

(t− t0)
q−1

a(t)

∣

∣

∣

∣

+
a(t)

Γ(q)

∫ t

t0

(t− s)q−1|f(s, x(s))| ds ≤
ǫ

2
+

Mf

Γ(q + 1)
w(t) < ǫ

for all t ≥ T2, that is, solutions are uniformly globally asymptotically attractive and stable on J∞.

This completes the proof of the theorem. �

In our next theorem, we wish to show that the uniformly globally asymptotically attractive solution

of (1.1) obtained from Theorem 3.5 is unique.

Theorem 3.6. Assume that conditions (H1)–(H3) hold with

supt0≤t a(t) t
q

Γ(q)
ψf (r) < r, r > 0. (3.13)

Then (1.1) has a unique uniformly stable solution defined on J∞.

Proof. Set X = BC(J∞,R) and define the operator T : X → X by (3.7). We want to show that

T is a nonlinear D-contraction on X . Let x, y ∈ X ; then by (H3), we obtain

|T x(t) − T x(t)| ≤
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1
∣

∣f(s, x(s)) − f(s, y(s))
∣

∣ ds

∣

∣

∣

∣

≤
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1ψf

(

|x(s)− y(s)|
)

ds

∣

∣

∣

∣

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1ψf

(

|x− y|
)

ds

≤
w(t)

Γ(q + 1)
ψf

(

|x− y|
)

≤
W

Γ(q + 1)
ψf

(

|x− y|
)

for all t ∈ J∞. Taking the supremum over t in the above inequality yields

‖T x− T y‖ ≤
W

Γ(q + 1)
ψf

(

|x− y|
)

for all x, y ∈ X , where
W

Γ(q)
ψf (r) < r for r > 0 in view of condition (3.13). This shows that T is

a nonlinear D-contraction on X . By Theorem 2.7, we obtain that the solution of (1.1) obtained in

Theorem 3.5 is unique. �

Example 1. Consider the initial value problem of fractional Riemann-Liouville type











RLD
q
1

[

(tq + 1)etx(t)
]

=
ln(|x(t)| + 1)

x2(t) + 2
, t ∈ J∞ = [0,∞),

lim
t→0+

I
1−q

0+

[

(tq + 1)etx(t)
]

= 1.
(3.14)
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Here we have t0 = 0, a(t) = (tq + 1)et, and f(t, x) =
ln(|x| + 1)

x2 + 2
for (t, x) ∈ [0,∞) × R. Clearly,

a(t) → ∞ as t → ∞ and (H1) holds with Mf = 1. It is easy to see that lim
t→0

tq−1

(tq + 1)et
= 0 and

lim
t→∞

tq

(tq + 1)et
= 0, so a ∈ A. Hence, by Theorem 3.5, (3.15) has a solution and the solutions are

uniformly globally asymptotically attractive and stable on [0,∞).

Example 2. Consider the problem











RLD
q
1

[

(tq + 1)etx(t)
]

= f(t, x(t)), t ∈ J∞ = [0,∞),

lim
t→0+

I
1−q

0+

[

(tq + 1)etx(t)
]

= 1,
(3.15)

where

f(t, x) =











ln(|x|+ 1), if − 5 ≤ x ≤ 5,

ln 6, otherwise.

Now, for −5 ≤ x ≤ 5,

|f(t, x)− f(t, y)| = | ln(|x| + 1)− ln(|y|+ 1)| = ln
|x|+ 1

|y|+ 1
= ln

1 + |y|+ |x| − |y|

|y|+ 1

= ln

(

1 +
|x| − |y|

|y|+ 1

)

≤ ln

(

1 +
|x− y|

|y|+ 1

)

≤ Ψf (|x− y|).

We can then take our D-function to be ψf (r) = ln(1 + r) and Mf = ln 6. Since

supt≥t0
a(t) tq

Γ(q)
ψf (r) ≤ ψf (r) = ln(1 + r) < r, r > 0, (3.16)

condition (3.13) is satisfied. Therefore by Theorems 3.5 and 3.6, solutions of (3.15) exist, are

unique, and are uniformly globally asymptotically attractive on R+.
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