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Introduction: Cardiovascular disease (CVD) is a group of diseases involving the heart
or blood vessels and represents a leading cause of death and disability worldwide.
Carotid plaque is an important risk factor for CVD that can reflect the severity of
atherosclerosis. Accordingly, developing a prediction model for carotid plaque
formation is essential to assist in the early prevention and management of CVD.
Methods: In this study, eight machine learning algorithms were established, and their
performance in predicting carotid plaque risk was compared. Physical examination
data were collected from 4,659 patients and used for model training and
validation. The eight predictive models based on machine learning algorithms
were optimized using the above dataset and 10-fold cross-validation. The Shapley
Additive Explanations (SHAP) tool was used to compute and visualize feature
importance. Then, the performance of the models was evaluated according to the
area under the receiver operating characteristic curve (AUC), feature importance,
accuracy and specificity.
Results: The experimental results indicated that the XGBoost algorithm
outperformed the other machine learning algorithms, with an AUC, accuracy and
specificity of 0.808, 0.749 and 0.762, respectively. Moreover, age, smoke, alcohol
drink and BMI were the top four predictors of carotid plaque formation. It is
feasible to predict carotid plaque risk using machine learning algorithms.
Conclusions: This study indicates that our models can be applied to routine chronic
disease management procedures to enable more preemptive, broad-based
screening for carotid plaque and improve the prognosis of CVD patients.
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1. Introduction

Cardiovascular disease (CVD) is generally divided into several types, such as coronary

heart disease (CHD), cerebrovascular disease, heart failure, hypertension and so on (1).

CVD is one of the leading causes of death worldwide, with 17.9 million deaths in 2016

and predicted to increase to approximately 23.6 million deaths by 2030 (2, 3). Due to the

changes in lifestyle, aging population and urbanization, the prevalence of CVD in China

has significantly increased (4). Cardiovascular disease afflicts 20% of the adult population

in China, accounting for more than 40% of all deaths (5). Therefore, it is crucial to

identify and diagnose CVD early to reduce the burden on families and society.

Hypertension and atherosclerosis are two well-recognized risk factors for CVD (6, 7).

Current evidence suggests that a person with hypertension has a significant lifetime risk
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of cardiovascular disease by age 30 (8). According to previous

studies, over half of all CVD cases in China are related to

hypertension (4). In addition, atherosclerosis refers to the

formation of carotid plaques in the inner lining of medium and

large arteries. The risk of CVD is 1.3 to 2.8-fold higher among

people with carotid plaques than those without, according to

several large cohort studies (9, 10). Carotid plaque screening was

recommended as part of the CVD risk assessments by the 2016

European Guidelines on CVD Prevention in Clinical Practice

(11). Hence, carotid plaques have become an important measure

of risk in many clinical studies.

In computer science, machine learning (ML) is a kind of

artificial intelligence (AI) that harnesses data-driven techniques

to recognize patterns and predict behavior (12). ML has been

widely applied in multiple medical and health fields, such as

cancer (13), diabetes (14), cardiovascular disease (CVD) (15) and

mental health (16). ML can be used to predict the prevalence

and treatment efficacy of diseases. Generally, the use of machine

learning models can improve patient safety and care quality and

reduce medical expenses (17). Interestingly, machine learning can

predict hypertension based on clinical indicators. In a Swedish

study, LR was used to establish a model to study heart rate,

memory, metabolic characteristics and their relationship with

hypertension (18). Using LR, Elizabeth Held et al. developed a

hypertension risk model based on age, sex, smoking, and genetic

data (19). Moreover, bioinformatics and machine learning

identified immune cell infiltration and diagnostic biomarkers of

carotid plaques (20, 21). The XGBoost algorithm has been

reported to be the best predictive model for primary stroke

prevention in a Chinese study (22). However, the predictive

models for recognizing carotid plaques in CVD have rarely been

documented in the literature, and it is essential to build a model

to directly predict the risk of carotid plaques.

This study aimed to identify the most effective prediction

model for the formation of carotid plaque among Chinese adults

through eight machine learning methods: logistic regression (LR),

support vector machine (SVM), random forest (RF), MLP Neural

Network, XGBoost (Extreme Gradient Boosting), decision tree

(DT), K-Nearest Neighbors (KNN), and Naive Bayes model

(NBM), to screen high-risk populations, take preventive measures

and reduce the prevalence of CVD.
2. Materials and methods

2.1. Study design and data resource

The data used for the machine learning model in this study

came from the physical examination center of a third-class

hospital in southwest China from September 2020 to October

2021. The inclusion criteria were (1) age > 18 years. (2) Patients

without coronary heart disease, stroke, heart disease, cancer and

other serious diseases. Physical examination data were collected

from 4,659 patients, including 1,692 patients with carotid plaques

and 2,967 normal patients. The diagnosis of carotid plaque was
Frontiers in Cardiovascular Medicine 02
based on a doppler ultrasound examination, and personal

information was kept strictly confidential.

This study sought to build a risk prediction model for carotid

plaque formation based on physical examination data and machine

learning techniques to explore the risk factors of CVD and help

clinicians in decision-making. The data processing and model-

building process of machine learning is shown in Figure 1.
2.2. Feature selection

The constituent factors employed for the construction of the

carotid plaque risk prediction model were acquired directly from

outcomes of physical examinations, and demonstrated statistical

significance in the course of data analysis (P < 0.05). According

to the literature (23–25), we selected 14 variables related to

carotid plaque formation. All direct variables were transformed

into categorical variables to facilitate relevant calculations in

machine learning models, and the specific details of the variables

are presented in Table 1.
2.3. Machine learning algorithms

Eight predictive models were used to develop risk models based

on the extracted features to predict the risk of carotid plaque

formation.

Logistic regression (LR): LR is a generalized linear regression

analysis model similar to linear regression modeling, and both

are derived from the exponential distribution family. However,

LR introduces a sigmoid function to normalize the dependent

variable. Besides, the LR algorithm can directly probe the

association between the categorical dependent variable and

independent variables (26), commonly utilized in data mining,

automatic disease diagnosis, economic prediction, etc.

Support vector machine (SVM): SVM is a generalized linear

classification based on supervised learning that can create a

hyperplane between two kinds of data to maximize the margin

(27). SVM is a classifier with sparsity and robustness, which

utilizes hinge loss to compute empirical risk and adds a

normalized term in the solution system to optimize structural

danger.

Random forest (RF): RF is a global learning technology based

on decision tree analysis. The RF algorithm creates multiple

decision trees using the data set obtained by bootstrapping the

original data and randomly selecting a subset of variables in each

step of the decision tree (28). Then, the model selects all

predicted patterns of each decision tree. The RF classifiers were

trained independently, contributing to the fast learning process.

The multilayer perceptron (MLP) Neural Network: MLP is also

named Artificial Neural Network (ANN), a nonlinear mapping

model. The MLP can have multiple hidden layers besides the

input and output layers. The simplest MLP requires a hidden

layer; the input, hidden and output layers can be called a simple

neural network when they connect. A neural network consists of

a series of functions derived from a bionic neural network that
frontiersin.org
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FIGURE 1

The flow diagram of data processing and model building process.
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involve connecting multiple eigenvalues and combining them in a

linear and nonlinear way (29).

XGBoost (Extreme Gradient Boosting): XGBoost is an

optimized distributed gradient enhancement library that is

efficient, flexible and portable. The algorithm for XGBoost is

accomplished under the framework of Gradient Boosting (30).

XGBoost also offers parallel tree promotion, which could

precisely resolve numerous data science issues. For example, the

same code runs in primarily distributed environments (Hadoop,

SGE, MPI) and can solve issues beyond billions of examples.

Decision tree (DT): This decision analysis method is based on

the occurrence probability of various situations; the probability (the

expected value of the net present value is greater than or equal to

zero) can be computed by generating a decision tree (31). The DT

algorithm is a graphical method that objectively applies probability

analysis. Its computational complexity is not high; the output

results are easy to understand and insensitive to the loss of

intermediate values.

K-Nearest Neighbors (KNN): KNN is a nonparametric

statistical method for classification and regression. This method
Frontiers in Cardiovascular Medicine 03
is simple and effective, of which the generated model is based on

the entire training dataset. The prediction result of the new data

point is obtained by searching the K instances (nearest

neighbors) similar to the data point on the whole training set

and summarizing the output variables of these K instances. The

prediction effect of KNN is good and is not sensitive to outliers.

Naive Bayes model (NBM): NBM is a classification method

based on the Bayesian theorem and independent assumption of

feature conditions. The misjudgment rate is very low due to the

knowledge of probability statistics used to classify the sample

datasets (32). NBM comprises prior and posterior probabilities,

which avoids the subjective bias of using only prior probability

and the over-fitting phenomenon of using only sample

information.
2.4. Model development

We randomly separated the data into a training set and

validation set according to a ratio of 2:1; the validation set was
frontiersin.org
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TABLE 1 Features description information.

Features Type Description
Age Continuous Age at health examination

Gender Categorical 0: Female
1: Male

BMI Continuous BMI at health examination

SBP Continuous SBP at health examination

DBP Continuous DBP at health examination

Hypertension Categorical 0: normal
1: hypertensive patients (SBP≥ 140 or DBP≥

90 mmHg)

Family history Categorical 0: no family history of hypertension
1: other situations

Smoke Categorical 0: no long-term smoking habits
1: long-term smoking

Drink Categorical 0: no long-term drinking habits
1: long-term drinking

Urea nitrogen Categorical 0: normal (3.0–7.2 mmol/L)
1: up-regulation (>7.2 mmol/L)

Triglyceride Categorical 0: normal (0.4–2.0 mmol/L) 1: up-regulation
(>2.0 mmol/L)

Total
cholesterol

Categorical 0: normal (3.1–5.7 mmol/L) 1: up-regulation
(>5.7 mmol/L)

HDL-C Categorical 0: normal (1.16–1.55 mmol/L) 1: up-regulation
(>1.55 mmol/L)

LDL-C Categorical 0: normal (1.8–3.36 mmol/L) 1: up-regulation
(>3.36 mmol/L)
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further used to adjust the model parameters to establish several

new models, while the training set was used to evaluate the

performance of the eight predictive models. The main profiles of

the training and validation sets are presented in Table 2. Linear

and tree “weak” classifiers were used to adjust parameters and

select the model with higher accuracy for output in the XGBoost

algorithm. Considering that the total amount was relatively small,

10-fold cross-validation was used to reduce the impact of fitting

on the model and adjust the parameters of machine learning

models for obtaining optimal results when the model allows. All

machine learning algorithms were operated in Python 3.8.
TABLE 2 The main profiles of the training set and test set.

Feature Training set Test set

Positive
(n = 1,077)

Negative
(n = 2,029)

Positive
(n = 615)

Negative
(n = 938)

Age (years) 66.9 (10.7) 51.5 (13.2) 66.63 (10.79) 51.81 (13.87)

Gender (male) 0.320 (0.466) 0.249 (0.432) 0.361 (0.480) 0.285 (0.451)

BMI 24.62 (3.13) 25.68 (2.95) 24.57 (3.40) 25.57 (2.75)

SBP 142.8 (20.2) 131.6 (18.1) 142.1 (20.6) 132.9 (17.7)

DBP 80.09 (11.4) 80.08 (11.4) 80.4 (11.9) 80.6 (11.1)

Hypertension 0.342 (0.338) 0.296 (0.312) 0.364 (0.301) 0.285 (0.316)

Family history 0.399 (0.489) 0.411 (0.492) 0.408 (0.491) 0.409 (0.491)

Smoke 0.940 (0.991) 0.849 (0.976) 0.945 (0.993) 0.846 (0.971)

Drink 0.851 (0.921) 0.887 (0.859) 0.813 (0.890) 0.882 (0.848)

Urea nitrogen 0.176 (0.381) 0.097 (0.296) 0.178 (0.382) 0.108 (0.311)

Triglyceride 0.225 (0.417) 0.339 (0.473) 0.255 (0.436) 0.311 (0.463)

Total cholesterol 0.166 (0.372) 0.146 (0.353) 0.160 (0.366) 0.139 (0.346)

HDL-C 0.304 (0.460) 0.196 (0.397) 0.271 (0.444) 0.201 (0.401)

LDL-C 0.329 (0.470) 0.324 (0.468) 0.322 (0.467) 0.315 (0.464)
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2.5. Validation

Several evaluation criteria were adopted to validate the

performance of the predictive models, including the area under

the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, precision, F-value and Youden index.

Accuracy is the most commonly used classification performance

indicator, indicating the model’s accuracy. Sensitivity is the

percentage of positive samples predicted to be positive. Specificity

refers to the ratio of the number of negative samples identified

by the model to the total number of negative samples. These

parameters could be calculated as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

Precision ¼ TP
TPþ FP

F � value ¼ 2� Precision� Sensitivity
Precisionþ Sensitivity

Youden index ¼ Sensitivity þ Specificity � 1

Where the TP is the number of positive samples determined as

positive (true positive), FN is the amount of positive determined

as negative (false negative), TN is the amount of negative

determined as negative (true negative), FP is the number of

negative samples judged as positive (false positive) (23). A

receiver operating characteristic (ROC) curve was generated by

obtaining the coordinate points under different thresholds and

connecting various coordinate points with the true positive rate

TP as the vertical axis and the false positive case FP rate as the

horizontal axis. The AUC refers to the area under the ROC

curve, which is less than 1. The larger the AUC value, the higher

the accuracy of the classifier.
2.6. Model interpretation

Traditional interpretation methods for machine learning

algorithms only reflect the importance of features and exhibit a

limited ability to judge how the features are related to the final

predicted result. To solve this problem, the Shapley Additive

Explanations (SHAP) tool was used to better explain the

prediction model, which is an additive interpretation model. The

model generated a predicted value for each predicted sample, and

a SHAP value was assigned to each feature in the sample. The

absolute value reflects the importance of the feature, of which the

positive and negative values reflect the positive and negative

effects in predicting the risk of carotid plaque. A SHAP value

greater than 0 indicated that the feature improved the predicted

value and played a positive role.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1178782
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 3 Baseline characteristics of the participants.

Features Positive Negative P-value
N 1,692 2,967 /

Age 67.09 (10.89) 53.46 (13.44) <0.001

Gender 563 (33.27%) 688 (23.19%) <0.001

BMI 24.61 (3.22) 25.39 (3.05) <0.001

SBP 142.7 (20.47) 133.54 (19.03) <0.001

DBP 80.10 (11.57) 80.25 (11.38) 0.017

Hypertension 548 (32.38%) 869 (29.29%) <0.001

Family history 662 (39.13%) 1,213 (40.87%) 0.005

Smoke 820 (48.47%) 1,308 (44.09%) <0.001

Drink 835 (49.33%) 1,697 (57.19%) <0.001

Urea nitrogen 309 (18.27%) 300 (10.11%) <0.001

Triglyceride 397 (23.45%) 984 (33.16%) <0.001

Total cholesterol 272 (16.08%) 421 (14.18%) <0.001

HDL-C 494 (29.18%) 586 (19.75%) 0.039

LDL-C 552 (32.62%) 947 (31.92%) <0.001
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3. Results

3.1. Baseline characteristics

Overall, the model error decreased as the number of features

increased. However, in practical terms, it is challenging to

implement an excessive number of features. Accordingly, the

number of features should be adequate. Based on the risk factors

of hypertension collected in a previous study (29), laboratory

variables were added according to the results of physical

examination, which is used to obtain more accurate predictive

results. After feature extraction and selection, several variables

such as age, gender, BMI, family history, smoke, alcohol drink,

SBP, DBP, hypertension and so on were finally chosen as input

features of the machine learning models. The above features were

strongly associated with carotid plaque formation (P < 0.05). The

results are summarized in Table 3.
3.2. Model parameters

Based on the feature parameters selected above, we used the

training set to determine the optimal hyperparameters of eight

machine learning algorithms, including the value of k (the

number of closest points) in the KNN method, tree depth in

the DT model, learning rate in XGBoost algorithm, etc. The

hyperparameter results of the various models with optimal

performance are summarized in Table 4, including the default

values in some machine learning algorithms.
3.3. Comparison of model performance

After building models based on the training set, their

performance was assessed using the test set (Table 5).

Interestingly, the integrated algorithm XGBoost outperformed all
TABLE 4 The concrete results of hyperparameter in each machine learning a

Machine learning algorithm Hyper-parameter name
Logistic regression Penalty term

SVM Kernel

Random forest n_estimator
max_features
bootstrap
max_deep

MLP Solver
Activation
Hidden_layer_sizes

XGBoost Booster
n_estimators
Learn rate

Decision tree Criterion
max_features
max_deep

KNN N_neighbors
Algorithm
metric

Naive Bayes Model
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models, with an AUC value of 0.808. In contrast, the DT model

was associated with the worst performance (AUC value 0.72).

The ROC curves of the eight machine-learning models are

shown in Figure 2. Besides, the confidence interval (CI) of LR,

SVM, RF, MLP, XGBoost, DT, KNN and NBM is [0.768, 0.796],

[0.790, 0.814], [0.781, 0.810], [0.775, 0.789], [0.796, 0.815],

[0.704, 0.770], [0.738, 0.780], [0.747, 0.785], respectively.

According to the results of CI, it is obvious that the results of

our models are stable and reliable.

The classification confusion matrix of the eight prediction

models is shown in Figure 3. Among the top 4 models, the

XGBoost model yielded the best performance in terms of TN,

FP, FN and TP (510, 159, 104 and 273) compared to the SVM

model (541, 140, 134 and 231), RF model (560, 138, 128 and

220) and MLP neural network model (540, 141, 144 and 221,

respectively).

In addition to the AUC value, the accuracy, sensitivity and

specificity of models are important indicators for evaluating a

model’s performance. For the four models with the best
lgorithm.

Value range Value
[None, L1, L2] L2

[rbf, linear, ploy] linear

[10,20,50,100,200]
[3,4,5,6,7,8,9,10]

[true,false]
[5,6,7,8,9,10]

100
7

false
8

[SGD, Adam, RMSprop]
[relu,logistic,tanh]

–

Adam
Relu

=[10,100,10]

[gbtree, gblinear]
[20,50,100,200]
[0,1,0.01.0.001]

Gbtree
100
0.1

[gini, ID3, C4.5]
[6,8,10,12,14]
[6,8,10,12]

Gini
12
8

[5,15,30,50,100,200]
[kd_tree, ball_tree]

[Manhattan distance, Euclidean distance]

30
kdtree

Euclidean distance

[GaussianNB, MultinomialNB, BernoulliNB] GaussianNB
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TABLE 5 The performance of each machine learning models.

Model AUC Accuracy Sensitivity Specificity Precision F-value Yuden Index
LR 0.782 0.719 0.562 0.809 0.628 0.593 0.371

SVM 0.802 0.738 0.633 0.794 0.623 0.628 0.427

RF 0.798 0.746 0.632 0.802 0.615 0.623 0.434

MLP 0.794 0.728 0.605 0.793 0.610 0.608 0.398

XGBoost 0.808 0.749 0.724 0.762 0.632 0.675 0.486

DT 0.72 0.72 0.563 0.812 0.637 0.598 0.375

KNN 0.788 0.729 0.523 0.84 0.637 0.574 0.363

NBM 0.79 0.705 0.566 0.786 0.608 0.586 0.352

FIGURE 2

ROC curves of the eight machine learning models.

Bin et al. 10.3389/fcvm.2023.1178782
performance mentioned above (XGBoost, SVM, RF and MLP),

the accuracy rate was 0.749, 0.738, 0.746 and 0.728, the

sensitivity was 0.724, 0.633, 0.632 and 0.605, and the specificity

was 0.762, 0.794, 0.802 and 0.793, respectively. Based on the
FIGURE 3

The confusion matrix of the eight machine learning models, including (A–H)
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above result, the XGBoost model yielded the best comprehensive

performance.

Based on the performance of the XGBoost model, we

computed the importance of each feature based on the absolute

SHAP value (Figure 4). The negative and positive contributions

of the feature are indicated in blue and red, respectively. The

SHAP summary plot is also presented in Figure 5. The most

important characteristic was age, followed by smoke, alcohol

drink, BMI, hypertension and triglyceride, SBP, DBP, urea

nitrogen, LDL-C, total cholesterol, HDL-C, gender and family

history.
4. Discussion

Cardiovascular diseases are a group of disorders involving the

heart or blood vessels and remain a major cause of death and

disability worldwide, accounting for about one-third of deaths

each year. Hypertension is a primary risk factor for

cardiovascular disease, and the risk assessment of hypertensive

patients is the basis for developing primary and secondary

prevention measures. Nowadays, evaluating target organ damage

is an important part of the evaluation of hypertensive patients.
LR, SVM, RF, MLP, XGBoost, DT, KNN and NBM, respectively.
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FIGURE 4

The feature importance ranking based on the SHAP value for the XGBoost model.
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Embodying subclinical target organ damage in hypertensive

patients, carotid plaque formation can reflect the severity of

atherosclerosis in the body and is an important risk factor for

major cardiovascular diseases such as myocardial infarction and

stroke. Therefore, a direct risk assessment and prediction of

carotid plaque formation would be more effective. To our

knowledge, most risk prediction models associated with

cardiovascular disease have been based on hypertension (33–35).

Herein, we established a carotid plaque risk prediction model

using machine learning to lay the groundwork for hypertension

and cardiovascular disease prevention in China, given the

scarcity of related studies.

In the past, the early identification and treatment of diseases

were highly challenging, often requiring the consensus of many

human medical experts. With the advent of artificial intelligence,

building disease risk prediction models based on machine

learning has become a new method of early identification of

high-risk populations. From the point of view of saving medical

costs, the predictive models could realize early detection and

intervention, which could identify individuals at risk of

developing carotid plaque before they exhibit symptoms or

complications. Early detection allows for timely interventions,

such as lifestyle modifications or medication, which can help

prevent the progression of the disease and the need for more

expensive treatments or hospitalizations in the future. Then, the
Frontiers in Cardiovascular Medicine 07
predictive models could help identify individuals who are more

likely to develop carotid plaque, allowing healthcare providers to

prioritize resources and target screening efforts. By focusing on

high-risk individuals, unnecessary screenings and tests for low-

risk individuals can be minimized, thereby reducing overall

healthcare costs. For example, according to the charging

standards of the hospital (a tertiary A-level hospital at the

prefecture-level city), the cost of physical examination in this

project is only 72 RMB/person, while the charge for a carotid

ultrasound is 185 RMB/person. Based on the optimal calculation,

the 4,659 patients counted in this work could save more than

520,000 RMB, and this is only the conclusion obtained from the

data of one hospital. Finally, the predictive models could analyze

a wide range of patient data, including demographics, medical

history and lifestyle factors to generate personalized treatment

plans. The healthcare resources can be utilized more efficiently,

potentially reducing costs associated with ineffective or

unnecessary treatments.

In this study, eight machine learning algorithms were used to

establish a risk prediction model for carotid plaque, and the

input features were from physical examination data that are

convenient to obtain. Among the eight models, XGBoost yielded

the best performance (AUC value 0.808 and accuracy 0.749),

suggesting that the machine learning models based on 13 key

features were reliable and practical.
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FIGURE 5

The SHAP summary chart of the important risk factors. Each dot represents a sample, with the red color implying a high feature value and blue one
implying a low value. A higher SHAP value means a higher risk of incident carotid plaque.
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Compared with traditional statistical methods, machine

learning models enable the most accurate predictions possible

due to their ability to successfully build predictive models using

small amounts of data with high feature dimensions but exhibit

limitations, including poor interpretability and the inability to get

a complete picture of the internal structure of the model, which

is also known as the “black box”. This is further explained by the

fact that as the complexity of the defined mathematical objects

(neural networks) increases, we do not have a perfect theory to

describe the expressibility, training dynamics, and various other

properties of artificial neural networks at the whole system level.

To improve the transparency of the model, we applied the SHAP

method for the XGBoost algorithm to quantitatively explain the

contribution of each feature to the whole model. This approach

could measure the impact of each feature on the predictive model.

Age, smoke, drink and BMI were the top four most important

characteristics, consistent with the literature (28, 29, 36, 37). Early

identification of key risk factors is important for risk assessment

and prevention of carotid plaque, hypertension and

cardiovascular disease. In the present study, age accounted for

the largest proportion of the feature weight. It has been shown

that the elasticity of blood vessels deteriorates with age (38),

which could prompt the development of atherosclerosis. An
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article published in The Lancet Global Health revealed that 200

million Chinese people are expected to suffer from carotid

plaque by 2020 (39). The detection rate of carotid plaque in

patients over 45 years of age with diagnosed stroke or transient

ischemic attack is 80%, which is close to 100% at age 60. Smoke

and drink ranked second and third in the whole features. An

increasing body of evidence suggests that nicotine in cigarettes

can increase the level of low-density lipoprotein that causes

atherosclerosis, reduce the level of high-density lipoprotein that

protects arteries from atherosclerosis, and increase blood pressure

(40, 41), leading to atherosclerosis. Heavy drinking can decrease

cerebral blood flow, damage the liver, and affect lipid metabolism

(42). Besides, alcohol increases cardiac excitability, leading to

increased heart rate and contraction, conducive to increased

blood pressure.

Besides, BMI is an important risk factor. There is an increasing

consensus that obesity can heighten peripheral blood vessel

resistance, increasing blood pressure and further contributing to

carotid plaque formation (43, 44). A study showed that the

arteries of obese subjects began to stiffen when they were

teenagers (45). Solving the problem of obesity as early as possible

is critical for vascular health, and regular exercise to keep BMI in

the normal range is necessary. Among the numerous indicators
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of obesity, BMI is most closely related to the formation of carotid

plaque (46), followed by hypertension, triglyceride, DBP, SBP, urea

nitrogen, LDL-C, total cholesterol, HDL-C, gender and family

history.

The XGBoost machine learning model established in the

present study exhibited good predictive performance with

important public health implications. Data from routine physical

exams can help doctors screen people at high risk for carotid

plaque and take preventive measures to prevent them from

developing more dangerous cardiovascular diseases. In addition,

XGBoost and other models used in this study are nonlinear

ensemble algorithms. There is no need to select variables in

advance, even the number of potential variables is large (47).

Potential variables can be further discovered through large-scale

population data, which is also a big advantage brought by

machine learning.

Despite the above promising findings, the current research still

has some limitations. Firstly, the dataset utilized for model training

in this work was obtained from the cross-sectional data of physical

examinations, which cannot predict the absolute risk of disease and

limits the generalizability of the results. Besides, the data from the

cross-sectional study was collected at the same point in time, so it

does not reflect causation or temporal correlation. Secondly, our

data came from a third-class hospital in southwest China,

suggesting that our conclusions only reflect the relevant

characteristics of the residents in a specific area. Given that diet

and climate vary greatly in different regions, it remains unclear

whether the established machine learning models can be

extended to the whole country. Thirdly, the sensitivity of the

model in this work is not particularly high, which may result in

some omissions when using it as a screening tool. We expect to

improve the overall performance of the predictive models by

using more training data and improving the machine model

algorithm in the future. Moreover, the number of features was

relatively small, and the prediction models may lack universality.

Generally, a greater number of features lead to a more accurate

model.
5. Conclusions

Overall, we developed and compared eight machine learning

models for predicting carotid plaque risk. The results showed
Frontiers in Cardiovascular Medicine 09
better performance of the XGBoost algorithm than other

machine learning methods with an AUC, accuracy, sensitivity

and specificity of 0.808, 0.749, 0.724 and 0.762, respectively. In

addition, age, smoke, drink and BMI were the features with the

most significant weight in the prediction model. The training set

for all models consisted of routine physical examination results,

which can be easily applied to chronic disease health

management systems and could assist clinicians in targeted

carotid plaque prevention and early intervention.
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