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The study of comorbidity can provide new insights into the pathogenesis of the
disease and has important economic significance in the clinical evaluation of
treatment difficulty, medical expenses, length of stay, and prognosis of the
disease. In this paper, we propose a disease association prediction model
DapBCH, which constructs a cross-species biological network and applies
heterogeneous graph embedding to predict disease association. First, we
combine the human disease–gene network, mouse gene–phenotype network,
human–mouse homologous gene network, and human protein–protein
interaction network to reconstruct a heterogeneous biological network.
Second, we apply heterogeneous graph embedding based on meta-path
aggregation to generate the feature vector of disease nodes. Finally, we
employ link prediction to obtain the similarity of disease pairs. The
experimental results indicate that our model is highly competitive in predicting
the disease association and is promising for finding potential disease associations.
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1 Introduction

It is important to understand the association between diseases for diagnosing, curing,
and taking precautions against diseases (Jin et al., 2019). Since there may be direct or indirect
causal relationships between diseases, patients experience multiple diseases at the same time.
For example, end-stage renal disease (ESRD) is frequently present in HIV-1 patients, while
chronic obstructive pulmonary disease (COPD) is often accompanied by lung cancer,
osteoporosis, cachexia, and cardiovascular disease (Mlynarski et al., 2005; Decramer and
Janssens, 2013). In addition, the tumor-related disease always indicates serious
complications, which has a high comorbidity pattern with hypertension, respiratory
diseases, and cerebrovascular diseases (Ko et al., 2016). Moreover, the main cause of
death in patients with cirrhosis is hepatocellular carcinoma (HCC) (Ji et al., 2015).
Currently, numerous treatment strategies have been investigated in relation to various
diseases (Shao et al., 2013). However, the current medical research on comorbidity is not
perfect, and there is still great uncertainty in the association between many diseases.
Therefore, how to effectively analyze the relationship between diseases and discover
potential comorbidity relationships has become a new research issue.
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Previously, people employed traditional biological experimental
methods to explore the association between diseases. It requires a lot
of human resources and financial support, for the reason that these
methods need to target a great quantity of genes to identify related
diseases (Uffelmann et al., 2021). Fortunately, with the large-scale
integration of various experimental data such as human gene
annotations, disease phenotypes, and protein–protein interaction,
data support has been provided to better elucidate the underlying
biological mechanisms of complex diseases (Silverman et al., 2020;
Graw et al., 2021). Although these biological data are complex, it
becomes simple and clear to represent various biological data forms
through the network, so network-based approaches have emerged as
the main prediction method for the association between diseases
(Wang et al., 2011; Ji et al., 2019; Yue et al., 2020).

The network-based models are based on the hypothesis of ‘guilt-
by-association,’ where genes close to each other in physiology or
functionally often participate in the same biological pathway
(Aravind, 2000; Oliver, 2000). Since measuring the distance
between candidate genes and known disease genes in the
protein–protein interaction (PPI) network is a crucial component
of the network-based model, numerous computerized methods have
been devised (Sharan et al., 2007; Shlomi et al., 2008). Goh et al.
(2007) built a network that links two different genes together if they
are linked to the same disease. Tian et al. (2008) reconstructed a
network by adding protein interactions, gene interactions, and gene
expression correlations to calculate more accurate distances between
genes. Ulitsky and Shamir (2007) further supplemented this by
adding interactions from human cell cycle networks and yeast two-
hybrid experiments. The aforementioned three models all utilize the
direct protein interaction, but they all suffer from insufficient
network data. Based on the assumption that diseases with an
overlapping phenotype have potentially functionally similar
genes, Wu et al. (2008), Li and Patra (2010), and Vanunu et al.
(2010) have found that combining disease phenotype networks and
PPI networks in priority tasks would result in better performance of
the model. Wu et al. (2008) employed the linear regression method
CIPHER to predict the disease gene associations by combining the
PPI network and phenotype network, and analyze the relevance
between the distribution of phenotypic similarity and gene compact
distribution in the protein interaction network. Li and Patra (2010)
proposed the RWRH model to apply the RWR algorithm to the
heterogeneous network they constructed, connecting gene networks
and phenotype similar networks using known gene phenotype
associations. Luo and Liang (2015) further developed RWRHN
on the basis of the RWRH algorithm, enabling it to carry out
random walks on heterogeneous networks to predict potential
candidate genes for genetic diseases. RWRHN is a random walk
algorithm with resistance, and its main contribution is to predict the
background of protein network reconstruction through linking, so
as to obtain a more reliable PPI network. The heterogeneous
network can describe the real world more precisely compared to
homogeneous graphs, so more meta-pathway-based models (Jin
et al., 2019; Xiong et al., 2019; Yang et al., 2019; Zhang et al., 2019;
Deng et al., 2020; Zhang et al., 2020; Zhou et al., 2020; Ata et al.,
2021; He et al., 2021) have been developed to better adapt to
heterogeneous biological networks. Luo et al. (2016) proposed the
RMLM and RMMSe methods for mining meta-path-based
miRNA–target interactions by constructing networks. Jin et al.

(2019) constructed a heterogeneous network by integrating the
disease–gene association network, miRNA–gene association
network, gene–disease association network, and protein–protein
interactions networks, and then infer disease association by
applying random walk and skip-gram based on the meta-path.
Compared with the aforementioned methods, the Metapath2Vec
algorithm they adopted can better preserve the structural and
semantic interrelationships. However, the application of this
method is limited by the existing large differences between
vertexes or link attributes in heterogeneous networks. With the
success of network embedding methods in analyzing various
networks, researchers are increasingly using heterogeneous
network representation learning methods to extract node (edge)
embeddings in biological networks in order to more fully extract
information from heterogeneous biological networks and thus
obtain better disease association prediction performance. Yang
et al. (2018) proposed an embedded representation model
HerGePred based on the heterogeneous disease gene-related
network. This model restarts random walk on the reconstructed
heterogeneous disease gene network and obtains the low-
dimensional vector representation of nodes in the network,
which improves the prediction performance. Altabaa et al. (2022)
proposed and evaluated the geneDRAGNN method using graph
neural networks, which uses information from gene–gene
interaction networks to predict disease associations.

Although the aforementioned model in the prediction of disease
association study has made great progress, but there are still some
limitations. Some of the models previously mentioned (Goh et al.,
2007; Ulitsky and Shamir, 2007; Tian et al., 2008; Wu et al., 2008; Li
and Patra, 2010; Vanunu et al., 2010) and their similar ones
(Suratanee and Plaimas, 2015; Zhang et al., 2016; Iida et al.,
2020) only employ protein–protein interactions and related genes
to predict, so they will suffer from insufficient data. There are also
some models (Jin et al., 2019; Zhang et al., 2019; Zhou et al., 2020;
Ata et al., 2021) that ignore the content of nodes, or other models
(Deng et al., 2020; He et al., 2021), only to consider both ends of the
meta-paths and ignore the intermediate nodes of each meta-path,
resulting in the loss of information on heterogeneous graphs.
Moreover, some models (Xiong et al., 2019; Zhang et al., 2020)
rely on a single meta-path to gain the target node’s embedding in the
heterogeneous graph, which may lose information about other
meta-paths and lead to sub-optimal performance.

In this paper, we develop a disease association prediction model,
which is based on a cross-species heterogeneous biological network
and a heterogeneous graph embedding method by applying the
meta-path-aggregated graph neural network (DapBCH). Our model
has the following contributions.

1. We construct a cross-species heterogeneous network to alleviate
the problem of insufficient data. The phenotype of model
organisms can be applied to human phenotype studies (Liao
and Zhang, 2008). Therefore, we apply mice as model organisms
and effectively integrate their biological data into heterogeneous
bioinformatics networks. Specifically, DapBCH combines the
human disease–gene network, mouse gene–phenotype
network, human–mouse homologous gene network, and
human protein–protein interaction network to create a more
complete bioinformatics network.
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2. We apply a heterogeneous graph embedding method (MAGNN)
(Fu et al., 2020) to extract the features of disease nodes, which can
fully capture the node content and context structure of the
heterogeneous biological network. Specifically, first, we project
nodes of different dimensions into the same vector space to
address the issue of various node types in heterogeneous
biological networks. Second, we apply the attention
mechanism aggregation in each meta-path to handle the
problem that the aforementioned methods (Jin et al., 2019;
Zhang et al., 2019; Deng et al., 2020; Zhou et al., 2020; Ata
et al., 2021; He et al., 2021) only consider the neighbor nodes in
the meta-path, while information about phenotype-related genes
that are not connected to the target disease node is ignored.
Third, we aggregate the potential vectors obtained from the four
meta-paths to obtain the final node embedding, which tackles the
problem of relying only on a single meta-path in the
heterogeneous biological network and not making full use of
various biological paths.

3. Furthermore, we scientifically verify the predicted comorbidities
by reviewing the literature, demonstrating that DapBCH is
effective in predicting disease associations.

Experiments have demonstrated that DapBCH can more
accurately predict disease associations. Ablation experiments
confirm the correctness of our method, that is, adding mouse
phenotype association data and human–mouse homologous gene
data, as well as selecting multiple meta-pathways, can improve the
accuracy of disease association prediction. Moreover, scientific
validation of our prediction of comorbidity demonstrates that
our model can detect potential disease associations.

2 Materials and methods

2.1 Biological data

The main data used in this paper include the following: (1) the
association between human diseases and genes; (2) mouse–gene
phenotype association; (3) human–mouse homologous gene; (4)
protein interaction group; and (5) a set of known positive
disease–disease associations. Among them, the first three groups
of data are obtained from the MGI database (Eppig, 2017), and the
fourth group of data is obtained from the STRING database (Mering
et al., 2003). The fifth dataset is obtained by integrating three
manually checked datasets (Pakhomov et al., 2010; Suthram
et al., 2010; Mathur and Dinakarpandian, 2012; Žitnik et al.,
2013; Cheng et al., 2014) of disease pairs with high similarity.
The specific dataset of this experiment also includes the mapping
set of EntrezGene ID to GO ID for human gene, the score link
dataset of human gene EntrezGene ID to mouse gene MGI ID, and
the relationship between human gene GO to protein ID. The sources
of all datasets are as follows:

Human disease and gene association: in this experiment, the
association dataset from the mouse genome information (MGI)
database is derived from MGI_DO.rpt.txt.

Mouse–gene phenotype association: in this experiment, as the
mapping set from themouse geneMGI ID to phenotype, it is derived
from MGI_GenePheno.rpt of the MGI database.

Human–mouse homologous gene: in this experiment, the
human gene EntrezGene ID is mapped to the mice gene MGI
ID, and the data are obtained from HMD_HumanPhenotype.rpt
of the MGI database.

A set of known positive disease–disease associations: in this
experiment, one of the datasets that we integrated is from the linked
disease pairs obtained by fusing molecular data by Žitnik et al.
(2013). Another dataset is the confirmed similar disease pairs
collected by Cheng et al. (2014). The last part of the dataset is
the disease pairs extracted by Mathur and Dinakarpandian (2012)
through literature validation. There are 73 diseases and
92 disease–disease associations in this collection of known
disease associations.

Idmapping_selected.Tab: in this experiment, as the mapping set
from EntrezGene ID to GO ID for human genes, it comes from the
database of Georgetown University in the United States (Huang
et al., 2003).

Protein interaction group: in this experiment, as the association
dataset of human genes and proteins, it comes from the Final_GO_
ProteinID_human.txt of the Gene Ontology Resource database
(Consortium, 2004).

9606.protein.links.v11.5.txt: in this experiment, as the score link
dataset of the protein interaction, it is derived from the STRING
database.

2.2 Methods

Our model, DapBCH, constructs a heterogeneous biological
network cross-species and applies the heterogeneous graph
embedding method (MAGNN) to predict disease association. The
key steps of this model are as follows: (1) network construction:
apply the aforementioned biological data to generate node
information and adjacency matrix, and then construct a
heterogeneous graph neural network. The heterogeneous network
includes human–disease gene, mouse–phenotype gene,
human–mouse homologous gene, and protein–protein
interactions; (2) heterogeneous graph embedding: first, we
convert the contents of different types of nodes into the vector
space of the same dimension, then we apply intra-meta-path
aggregation, and finally apply inter-meta-path aggregation on the
four meta-paths to generate the feature vector of disease nodes; and
(3) network-based disease association prediction: apply link
prediction using the acquired disease node feature vectors to
obtain the similarity of disease pairs.

2.2.1 Network construction
We construct a heterogeneous biological network by combining

four different networks: (a) human disease–gene association
network, (b) mouse gene–phenotype association network, (c)
human–mouse homologous gene network, and (d) the human
protein–protein interactions network. We list the contents of
each network of the heterogeneous biological network in Table 1.

Human disease–gene association network. We collect the
experimentally validated human disease–gene associations from
the MGI database. The genes are annotated using the Entrez IDs,
and the diseases are represented using their OMIM identifier. The
human disease–gene associations in database are picked out for
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providing information on humans.We artificially map Entrez to DO
terms and annotate each DO term with its associations. Finally, we
obtain a total of 3,687 gene–disease associations, linking
2,958 human diseases to 3,562 human genes.

Mouse gene–phenotype association network. We collect mouse
gene–phenotype associations from the MGI database. Because our
evaluation set uses human gene identifiers, we use human–mouse
homologous genes to connect our mouse phenotypes to the network.

Human–mouse homologous gene network. We collect the
human and mouse gene associations from HMD_
HumanPhenotype.rpt in the MGI database, which include the
mouse orthologs of human genes and human orthologs of mouse
genes. We map each mouse gene to their human direct homologs
and obtain 10,491 human genes, where the mouse direct homologs
have phenotype associations.

The human protein–protein interaction network. Physical
protein–protein interactions are extracted from the STRING
database. We artificially map protein to GO terms based on
Idmapping_selected.Tab, Final_GO_ProteinID_human.txt, and
9606.protein.links.v11.5.txt. We map the proteins to Idmapping_

selected.Tab and screen out these entries that are not mapped to the
database to obtain the desired association table of protein
interactions relevant to this experiment. Furthermore, we extract
the confidence score of the interaction group from the STRING
database and delete the interactions with confidence less than 400.
The protein–protein interaction network we obtained consists of
13,281 proteins and 229,534 interactions. For the extracted directly
connected protein pairs, their corresponding coding genes are
connected by unweighted edges in the PPI network, and we set
the weight to 1.0.

The heterogeneous biological network across species we built is
shown in Figure 1.

2.2.2 MAGNN
MAGNN is a graph neural network based on the meta-path for

heterogeneous graph embedding. It mainly includes three steps:
node content transformation, intra-meta-path aggregation, and
inter-meta-path aggregation to generate node embedding. A key
assumption of our model is that diseases (genes or phenotypes) that
are physically or functionally close to each other in the network have

TABLE 1 Description of each network of the heterogeneous biological information network.

Network Node Association Source

Human disease–gene network Human diseases 2,958

Human genes 3,562 3,687 MGI

Mouse gene–phenotype network Mouse genes 12,319

Mouse phenotype 8,801 77,644 MGI

Human–mouse homologous gene network 10,491 MGI

Human protein–protein interaction network Proteins (genes) 13,281 229,524 STRING

TABLE 2 Experimental results (%) of using our method and four network embedding methods to identify the performance of the disease association.

Method Metapath2vec DeepWalk HAN HeteWalk MAGNN

AUC 85.68 73.21 90.87 88.23 92.62

AP 85.86 72.15 90.54 87.81 93.13

FIGURE 1
Heterogeneous biological network by assembling four types of networks.
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higher similarity. If these two diseases are related, the genes related
to these two diseases should be close to each other in the gene
phenotype network or the protein network. This allows us to depend
on the existing edges to dig unknown disease-related associations.
Therefore, we select fourmeta-paths, namely, M1 (disease→ human
gene → disease), M2 (disease → human gene → human gene →
disease), M3 (disease→ human gene→mouse gene→ human gene
→ disease), and M4 (disease → human gene → mouse gene →
phenotype→mouse gene→ human gene→ disease), for extraction
of disease node embeddings.

2.2.3 Heterogeneous graph embedding
Different network embedding techniques have been proposed

for extracting embeddings in complex network structures (Li et al.,
2015; Hamilton et al., 2017; Vaswani et al., 2017; Shi et al., 2018).
Most of the existing network embedding methods can only be
applied to homogeneous networks, where both node types and
edge types are the same in their networks. However, in order to
describe the disease association network more realistically and
accurately, different genes and phenotypes are integrated into
biological networks with different features in our work.
Therefore, we need to first project node features of different
types (e.g., disease and phenotype) in heterogeneous biological
networks into the same latent vector space. Specifically, we
designed a parametric weight matrix W. For a node d ∈ DA of
type A ∈ A, we obtain

hd′ � WA · xA
d , (1)

where hd′ ∈ Rd′ is the projected latent vector of node d, xd ∈ RdA

is the initial vector, andWA ∈ Rd′×dA is the parameter weight matrix
of A-type nodes.

In our work, in addition to the content of two disease nodes at
the start and end of the meta-path, the intermediate nodes of the
meta-path, such as the human gene node and the mice phenotype
node, are also important for calculating the similarity of the two
diseases. For example, in our disease network containing diseases,
human genes, and proteins, M1 disease → human gene → disease
(DGD) and M2 disease → human gene → human gene → disease
(DGGD) are two meta-paths that describe different relationships.
The DGDmeta-path describes two diseases associated with the same
gene, while the DGGD meta-path links diseases associated with a
pair of genes coding for directly linked proteins. Therefore, we can
consider a meta-path as a higher-order approximation between two
nodes. Furthermore, the intra-meta-path aggregation and attention
mechanisms of MAGNN are applied to each meta-path, which can
fully capture the contextual structure and content of the nodes of our
heterogeneous biological network.

Based on the meta-path P, we define the target disease node as d
and the neighbor node as g ∈ N P

d . In addition, we define the
corresponding meta-path instance as P(d, g), and the
intermediate nodes of the meta-path P(d, g) as mP(d,g){ } �
P(d, g)\ d, g{ }.

In the intra-meta-path aggregation, we need to convert the
feature vectors of all nodes of the meta-path instance into a
vector hP(d,g) through a special meta-path encoder. The meta-
path instance is treated as a set in the normal mean and linear
encoders, so the information embedded in the structure of the meta-

path is ignored. Relational rotation (Sun et al., 2019) provides us a
better way to extract meta-path information. The relational rotation
encoder is defined as follows:

o0 � ht0′ � hg′
oi � hti′ + oi−1 ⊙ ri

hP d,g( ) �
on

n + 1
,

(2)

where Ri is the relation between node ti−1 and ti. Given hP(d,g) =
(t0, t1, . . ., tn), where t0 = d and tn = g, let ri represent the relation
vector of Ri. hti′ and ri are both complex vectors, and ⊙ is the
element-wise product.

Then, we need to define the parameterized attention (Velickovic
et al., 2017) vector aP of the meta-path P and apply the attention
mechanism to perform weighted aggregation of all meta-path
instances based on the meta-path P of the target node d.

ePdg � LeakyReLU aTP • hd′‖hP d,g( )[ ]( )
αP
dg � exp ePdg( )∑s∈NP

d
exp ePds( )

hPd � σ ∑
g∈NP

d

αPdg • hP d,g( )⎛⎜⎜⎝ ⎞⎟⎟⎠.

(3)

Here, ePdg is the importance weight of the meta-path instance
P(d, g) for node d. αPdg is the result of softmax normalization of the
importance weights related to all meta-path instances of meta-path
P, that is, the normalized attention coefficient. Then, we apply αPdg
and the vector representation hP(d,g) of the corresponding meta-
path instance to perform weighted aggregation. Finally, the vector
representation hPd based on the meta-path P of the target node d is
the output through an activation function.

Through intra-meta-path aggregation, we finally obtain hPid that
contains all the intermediate information on the Pi-meta-path about
the target disease node d, where Pi includes four meta-paths, namely,
M1 (DGD), M2 (DGGD), M3 (DGMMGD), and M4
(DGMPMGD).

One meta-path P can describe one composite relationship
between two objects. However, the similarity between diseases is
affected by many factors in bioinformatics, and diseases are not only
related to genes but also related to phenotypes and proteins.
Therefore, we consider multiple meta-paths and further inter-
meta-path aggregation, using the attention mechanism to
aggregate the potential vectors obtained from the four meta-paths
to get the final node embedding so as to better capture the complex
structural information on heterogeneous networks.

If the node of node type A hasMmeta-paths, the target node dA
will have a set of vectors: hP1

d , hP2
d , . . . , hPM

d{ }. Similarly, each node
belonging to node type A will have such a set of vectors. Each meta-
path vector of all nodes with node type A needs to be converted and
averaged, respectively, as follows:

spi �
1
DA| | ∑

d∈DA

tanh MA • hPi
d + bA( ), (4)

where meta-path Pi ∈ PA , and MA and bA are learnable
parameters.

In a heterogeneous biological network, different meta-paths are
not equally important, so we need to assign appropriate weights to
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different meta-paths by employing the attention mechanism to
extract the information in the network more accurately.

We apply the attention mechanism to find the target node dA
new feature vector mixed with all meta-path information as follows:

ePi � qTA • sPi,

βPi
� exp ePi( )∑P∈PA

exp eP( ),
hPA
d � ∑

P∈PA

βP • hPd ,
(5)

where qA is the parameterized attention vector of type node A.
βPi

is the corresponding weight of meta-path Pi uniformly
normalized to type node A. After calculating βPi

corresponding
to each meta-path, the corresponding target nodes dA of hPd are

weighted sum to obtain hPA
d , and finally hPA

d containing the
information of four meta-paths.

Finally, we output the disease node embedding in the required
dimension through linear transformation and non-linear activation
function:

hd � σ Wo • hPA
d( ). (6)

We select four meta-paths related to disease nodes in the
heterogeneous biological network so that the node embedding of
the target disease can aggregate the information on multiple meta-
paths through inter-meta-path aggregation. After obtaining the
vector representation of disease nodes by the aforementioned
method, the vector representation of gene nodes and phenotype
nodes is obtained in the same way for subsequent training of the

FIGURE 2
Process of DapBCH to obtain a disease node vector. (A) Project the different types of node features of biological networks into the same latent
vector space. (B) Aggregate the context structure and content in the meta-path of biological networks into nodes. (C) Employ the attention mechanism
to aggregate the potential vectors obtained from the four meta-paths to get the final node embedding.
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model. Figure 2 simply demonstrates the embedding generation of a
single disease node.

2.2.4 Disease association prediction
We apply link prediction to predict disease association. Link

prediction is the analysis of existing network structures and known
associations to uncover missing connections and predict possible
connections. In generating the disease node embedding, we
optimized our model by minimizing the loss function described
in the following equation:

L � − ∑
d1 ,d2( )∈Ω

log σ hT · hd2( ) − ∑
d1′,d2′( )∈Ω−

log σ −hTd1′ · hd2′( ), (7)

where σ(·) is the sigmoid function, Ω is the set of positive node
pairs of known disease associations, and Ω− is the complement of
negative node pairs without disease associations. We optimize our
model to reduce the score of unknown disease pairs and improve the
score of known disease–disease associations. Since our model is an
end-to-end training model, its parameters are continuously adjusted
during the training process, allowing us to successfully complete the
optimization task.

In a train-generated disease embedding hd1 and another disease
node embedding hd2, we calculate the probability of a
disease–disease association as follows:

pd1d2 � σ hTd1 · hd2( ). (8)

Finally, the disease associations are ranked using the disease
association probability pd1d2 predicted by the model. The higher the
pd1d2 association probability, the higher the likelihood that the
disease pair is associated.

2.3 Experimental indicators

In order to evaluate the experimental results and better compare
and analyze the experimental results under different experimental
settings, the area under the curve (AUC) and average precision (AP)
are selected as experimental indicators.

AUC refers to the area covered by the ROC curve and is used in
the visual performance of the evaluation model, the AUC value in
the [0, 1] interval; the bigger the AUC value is showed, the better the
performance of the model.

AP refers to the area enclosed by the P–R curve, reflecting the
comprehensive performance between the model’s accuracy in
identifying positive examples and its coverage ability for positive
examples. The AP value is in the range of [0,1]. The higher the AP
value, the better the algorithm is in predicting the disease–disease
association.

2.4 Comparison algorithm

The experimental comparison algorithms in this paper mainly
include the following:

1) Metapath2vec (Dong et al., 2017): it is a classical heterogeneous
network representation learning method that reconstructs the

heterogeneous neighbors of a node through a single meta-path-
guided random walk, which is then transmitted to the
heterogeneous skip-gram model to obtain node embeddings
for downstream tasks. Among other things, it obtains a single
meta-path from each defined type of node by random walk, and
this meta-path represents the structural information on this
node. The model relies on manually pre-selecting a meta-
path, so the four defined meta-paths are tested separately in
the experiments, and the meta-path with the best results is
demonstrated.

2) DeepWalk (Perozzi et al., 2014): it is also a pioneering
algorithm. Perozzi et al. used deep learning for large-scale
network analysis for the first time, combining the traditional
random walk in the graph theory with the skip-gram model
and using stochastic gradient descent to learn parameters,
resulting in a simple and efficient network representation
learning algorithm. We apply it to heterogeneous graphs by
ignoring the heterogeneity of the graph structure and
removing all node content features.

3) HAN (Wang et al., 2019): it uses an attention mechanism to
integrate meta-path-specific node embedding, which learns a
single vector representation of each node from several meta-
path-based homogeneous graphs.

4) HeteWalk (Xiong et al., 2019): it is a representation learning
method that generates node vectors through a heterogeneous
skip-gram model, which is based on random walks guided by
meta-paths and link weights. HeteWalk preserves the existing
relationships by maximizing the conditional probability of each
node pair appearing in the node sequence. In this case, the node
sequence is created based on meta-paths.

3 Results

In this section, we conduct two experiments to validate our
model. In the first experiment, we compare our method with four
state-of-the-art network embedding methods. Through this
experiment, it is confirmed that our method is more suitable
than other methods for predicting disease association.

In the second experiment, we perform a series of ablation
experiments. Our ablation experiments remove certain parts of
the heterogeneous biological network to better understand the
importance of this part of the network to the overall network. If
worse result is obtained after the ablation experiment, it means
that the part of the network worked. The first experiment not
only evaluates the performance of each different meta-path but
also evaluates the overall four meta-paths, and then compares
and analyzes. The second setup is to remove mouse
phenotype–gene association information in the heterogeneous
network. The third experimental setup builds on the second
experiment by continuing to remove the human–mice
homologous gene network to generate experimental results for
each model. The fourth experiment is set to delete the PPI
network and compare the results with the whole network. The
results of ablation experiments show the effectiveness of the
model organism information and PPI information we added,
and the integration of multiple different meta-paths can also help
improve the prediction of disease association performance.
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3.1 Comparison experiment and ablation
experiment

First, we compare our method with four network embedding
methods, namely, Matepath2vec, DeepWalk, HAN, and
HeteWalk. In each comparison experiment, we conduct a 10-
fold cross-validation, that is, the unconnected disease pairs
(unknown associations) are first partitioned into 10 equally
sized folds, among which nine folds are selected as the
training data and the remaining one fold is selected as the test
data. After 10 folds are completed, 10 iterations of training and
verification are performed. In this way, in each iteration, different
folds of data are reserved for verification, and the remaining nine
folds are applied for learning. The model learnt subsequently is
used to predict the data in the verification fold (Singh and Panda,
2011). For Metapath2vec, DeepWalk, HAN, and HeteWalk, we
follow the original settings in their previous experiments. The
window size of Metapath2vec, DeepWalk, and HeteWalk is set to
5, the walk length to 100, the number of walks per node to 40, and
the negative sample count to 5. Among them, the discard rate of
HAN and our proposed model is set to 0.5, the number of
attention heads is set to 8, and the dimension of the attention
vector in the meta-path aggregation is set to 128. For fair
comparison, the embedding dimension of all models
compared to 64 is set. Since Metapath2vec requires us to
select only one meta-path in each experiment, we apply the
M4 meta-path for it in the experiment. Each embedding
model is run independently 10 times, and the average value of
each model is calculated as the final prediction result. We employ
the AUC and AP to compare the performance of the models. We
investigate whether the similarity of known disease pairs used for
optimization could be prioritized in the model as a way to
generate AUC values. We report the results of each
embedding model run in Table 2.

Next, we perform ablation experiments and design four different
setups to confirm the effectiveness of adding biological information

and to demonstrate that multiple meta-paths can improve the
accuracy of predictions. The four experimental settings are as
follows:

1) The first experiment not only evaluates the performance of each
different meta-path but also evaluates the overall four meta-
paths, and then compares and analyzes. The M4 meta-path with
better performance is applied to the Metapath2Vec model in that
experiment. Figure 3 shows the performance results related to the
prediction of disease association when selecting each single meta-
path and all meta-paths.

2) The second experimental setup removes the mouse
phenotype–gene association network in the heterogeneous
network we conducted, that is, only M1, M2, and
M3 meta-paths are selected in the multiple meta-path
model. The M3 meta-path with better performance is
applied to the Metapath2Vec model in this experiment. We
show the performance results of removing the mouse
gene–phenotype information network vs. the whole
network in Figure 4.

3) The third experimental setup continues the second experiment
by removing the human–mouse homologous gene network, that
is, only M1 andM2meta-paths are selected in the multiple meta-
path model. The M2 meta-path is applied to the Metapath2Vec
model in this experiment. Figure 5 shows the performance results
of the network and the complete network without all mouse-
related information.

4) The fourth experiment is set to remove the PPI network, that is,
only M1, M3, and M4 meta-paths are selected in the multiple
meta-path model. The M4 meta-path is applied to the
Metapath2Vec model in this experiment. We show the
performance results for the network with PPI network
information removed vs. the full network in Figure 6.

As in the first comparative experiment, each embedded model
runs independently for 10 times in each ablation experiment.

FIGURE 3
Performance of applying different meta-paths. The aforementioned figure illustrates the AUC and AP scores for disease associations predicted by
four network embedding methods and our approach. The blue bars are generated by applying M1 meta-paths to each model, the orange bars indicate
results from applying M2meta-paths, the gray bars are generated by applying M3meta-paths, the yellow bars are generated by applying M4meta-paths,
and the green bars indicate results generated by applying all meta-paths. (A) AUC scores. (B) AP scores.
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4 Discussion

The experimental results showed that compared with the
previous four network embedding methods, our method has
improved in predicting the disease association. Figure 3 shows
that our method consistently outperforms the best baseline HAN
obtaining the highest AUC score of 92.62% and AP score of
93.13% under different experimental settings. From the
aforementioned results, we can conclude that our method can
predict the disease associations more accurately. By applying
node content transformation, intra-meta-path aggregation, and
inter-meta-path aggregation to generate disease node
embedding, more information in heterogeneous biological
networks can indeed be obtained.

In the second experiment, we perform ablation experiments.
Figure 3 shows that the performance of combining multiple meta-
paths is significantly improved over the performance in using only one
meta-path. Among them, M4, which combines mouse-related data, has
the best prediction performance in each model. Moreover, the
experiments show that MAGNN and HAN receive a better score
than Metapath2vec. In other words, combining multiple meta-paths
by inter-meta-path aggregation givesmore accurate results than selecting
only a single meta-path. Figure 4 shows that when the constructed
heterogeneous biological network removes the mouse gene–phenotype
network, the AUC of the DapBCH model decreases by 8.86% and AP
decreases by 5.87%. Figure 5 shows that when removing the mouse
gene–phenotype association network and the human–mouse
homologous gene network, the AUC of DapBCH decreases by 9.41%

FIGURE 4
Performance of removing the mouse gene–phenotype information network prediction. The aforementioned figure illustrates the AUC and AP
scores for disease associations predicted by the four network embeddingmethods and our methods. The blue bar represents the results of removing the
mouse gene–phenotype information network, and the orange bar represents the results of thewhole heterogeneous biological network. (A) AUC scores.
(B) AP scores.

FIGURE 5
Performance of removing all mouse-related information network predictions. The aforementioned figure illustrates the AUC and AP scores for
disease associations predicted by the four network embeddingmethods and ourmethods. The blue bars represent the results generated on the complete
network without all mouse-related information, and the orange bars represent the results generated on the entire heterogeneous biological network. (A)
AUC scores. (B) AP scores.
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and AP decreases by 9.87%. Figure 4 and Figure 5 show that the increase
in the mouse gene–phenotype association network and the
human–mouse homologous gene network improves the performance
results, which shows that the increased model organism information is
helpful in improving the accuracy of predicting disease associations.
Figure 6 shows that the results obtained by adding protein interaction
information are more accurate in each model, indicating that applying
the PPI network information network helps improve the model
prediction performance. Thus, the ablation experiments confirm the
correctness of our method that adding the mouse gene–phenotype
association network, the human–mouse homologous gene network, and
the PPI network, as well as selecting multiple meta-path combinations
for predicting disease associations, can improve the accuracy.

5 Scientific verification of the predicted
comorbidity

We apply the graph embedding method based on the meta-path to
predict the disease association through four meta-paths in the
heterogeneous biological network we constructed. We list the top
15 disease pairs with the highest similarity in one of the
experimental results, excluding the known disease pairs for training,
as shown in Table 3.

By searching the literature (Ottman et al., 2011; Erden and
Bicakci, 2012; Al-Goblan et al., 2014; Iglay et al., 2016; Su et al., 2016;
Guekht, 2017; Lopez et al., 2017; Chuang et al., 2018; Newcombe
et al., 2018; Oganov et al., 2019; Baradaran et al., 2020; Choi, 2020; de
Lucena et al., 2020; Benhammou et al., 2021; Maciejewska et al.,
2021) related to the diseases listed in the table for analysis, we found
the correlation between the pathogenesis of the disease pairs. We
interpret and describe some of the disease pairs in Table 3.
Alzheimer’s disease–hypercholesterolemia: the pathogenesis of
AD is associated with multiple complications and advanced age
(Santiago and Potashkin, 2021). Schizophrenia, depression, epilepsy,
sleep disorder, hypercholesterolemia, hypertension, and other
pathological conditions may cause AD. Hypercholesterolemia and

hypertension may impair functions such as verbal memory, verbal
reasoning, and visual memory. In clinical treatment, it may help
controlling these risk factors in patients diagnosed with AD
(Goldstein et al., 2008). Obesity–sleep disorder: the decrease in
sleep time and quality is related to the increase of weight and
obesity. Sleep disorder and sleep deprivation will also worsen the
development of obesity. Insomnia or other sleep disorders may

FIGURE 6
Performance of removing PPI network predictions. The aforementioned figure illustrates the AUC and AP scores for disease associations predicted
by the four network embedding methods and our methods. The blue bars represent the results generated on the complete network without PPI network
information, and the orange bars represent the results generated on the entire heterogeneous biological network. (A) AUC scores. (B) AP scores.

TABLE 3 Top 15 disease pairs with the highest similarity obtained from our
model predicting the disease–disease association. The first column is the
descending number of similarities between diseases. The second column
represents disease 1 in the disease pair predicted by the model. The third
column represents disease 2 of the disease pair.

Order Disease 1 Disease 2

1 Alzheimer’s disease Hypercholesterolemia

2 Hepatitis Liver disease

3 Obesity Sleep disorder

4 Bipolar disorder Epilepsy

5 Familial combined
hyperlipidemia

Hypertension

6 Asthma Epilepsy

7 Epilepsy Anxiety disorder

8 Systemic scleroderma Essential hypertension

9 Systemic scleroderma Asthma

10 Polycystic kidney disease Congestive heart failure

11 Allergic rhinitis Asthma

12 Mood disorder Anxiety disorders

13 Cryoglobulinemia Hepatitis

14 COVID-19 Severe acute respiratory
syndrome

15 Male infertility Obesity
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cause excessive consumption of human energy, resulting in weight
gain (Hargens et al., 2013).

To sum up, diseases may be related through symptoms, onset
period, and other ways. The association between diseases is not
accidental, and the current disease may be a risk factor for another
disease. Therefore, we can realize that the common mechanism of
finding comorbidity is helpful for the early intervention, prevention,
and control measures and late treatment of the disease. Finally, the
15 pairs of disease listed in Table 3 can be confirmed to have some
comorbidity in the relevant literature, which shows that our model is
an effective method for predicting the association of diseases.

6 Conclusion

Understanding the association between diseases is of great
significance in disease prevention, diagnosis, and treatment. In
this paper, we construct a crossing species heterogeneous
biological network, which consists of human genetic disease
association, mouse genetic–phenotype association, human–mouse
homologous genes, and protein-interacting groups, and apply the
meta-path-based graph embedding method to predict the disease
association. The experimental results show that compared with
other previous predicting models, the AUC score of 92.62% and
the AP score of 93.13% achieve the best performance. Through
ablation experiments, we prove that integrating the information on
model organisms into the network can improve the effectiveness of
inferring the disease association. The combination of mouse genes
and phenotypes achieves the best prediction results on the dataset.

Therefore, our main contributions lie in the following aspects: (1)
we employ mice as a model organism to efficiently integrate its
biological data into a heterogeneous bioinformatics network to
predict the disease association; (2) we propose a disease association
prediction model, DapBCH, which applies the graph embedding
method to the aforementioned bioinformatics network, and
compares its performance with four other network representation
models in predicting the disease association; (3) it turns out that our
integration of cross-species information (mice genes and phenotypes)
can improve the predictability of disease in the network; and (4) it turns
out that the multiple meta-paths and aggregated information on our
model are helpful in predicting disease associations.

Our research on predicting the disease–disease association can
be extended to solve practical clinical problems. By providing
analytical and computational support to assess the risk of disease
development and predict disease progression, we can advance
clinical decision-making on possible treatments. As for future
work, our method is more reliable in the homogeneous

aggregation category classification with fewer disease examples
and overlapping features. Therefore, we plan to combine low-cost
and highly disease-sensitive heterogeneous network data to predict
more specific disease associations, such as using disease–miRNA
associations to predict lung cancer associations with other diseases.
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