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Introduction: Phthalates are a class of endocrine-disrupting chemicals that have

been shown to negatively correlate with thyroid hormone serum levels in

humans and to cause a state of hyperactivity in the thyroid. However, their

mechanism of action is not well described at the molecular level.

Methods:We analyzed the response of mouse thyroid organoids to the exposure

to a biologically relevant dose range of the phthalates bis(2-ethylhexyl) phthalate

(DEHP), di-iso-decylphthalate (DIDP), di-iso-nonylphthalate (DINP), and di-n-

octylphthalate (DnOP) for 24 h and simultaneously analyzed mRNA and miRNA

expression via RNA sequencing. Using the expression data, we performed

differential expression and gene set enrichment analysis. We also exposed the

human thyroid follicular epithelial cell line Nthy-ori 3-1 to 1 µM of DEHP or DINP

for 5 days and analyzed changes in chromatin accessibility via ATAC-Seq.

Results: Dose-series analysis showed how the expression of several genes

increased or decreased at the highest dose tested. As expected with the low

dosing scheme, the compounds induced a modest response on the

transcriptome, as we identified changes in only mmu-miR-143-3p after DINP

treatment and very few differentially expressed genes. No effect was observed on

thyroid markers. Ing5, a component of histones H3 and H4 acetylation

complexes, was consistently upregulated in three out of four conditions

compared to control, and we observed a partial overlap among the genes

differentially expressed by the treatments. Gene set enrichment analysis

showed enrichment in the treatment samples of the fatty acid metabolism

pathway and in the control of pathways related to the receptor signalling and

extracellular matrix organization. ATAC-Seq analysis showed a general increase

in accessibility compared to the control, however we did not identify significant

changes in accessibility in the identified regions.
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Discussion:With this work, we showed that despite having only a few differentially

expressed genes, diverse analysis methods could be applied to retrieve relevant

information on phthalates, showing the potential of in vitro thyroid-relevant

systems for the analysis of endocrine disruptors.
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1 Introduction

Phthalates are a class of manmade compounds used in the

manufacturing industry as solvents or added as plasticizers, mainly

polyvinyl chloride (PVC) or other polymers, to confer flexibility and

softness (1, 2). Phthalates are alkyl or dialkyl esters of phthalic acid,

and their functional groups can be linear, branched, or circular (3).

Depending on their size, phthalates are classified into low and high

molecular weights (MW) (4, 5). Low-MW phthalates include benzyl

butyl phthalate (BBP), diethyl phthalate (DEP), di-iso-butyl phthalate

(DiBP), dimethyl phthalate (DMP), and di-n-butyl phthalate (DnBP),

while high-MW ones comprise bis(2-ethylhexyl) phthalate (DEHP),

di(2-propylheptyl) phthalate (DPHP), di-iso-decylphthalate (DIDP),

di-iso-nonylphthalate (DINP), and di-n-octylphthalate (DnOP) (6).

They are found in common household items, medical devices,

construction materials, and consumer products (6). Since they are

not covalently bound to the plastic matrix they are contained in,

phthalates can leach or gas out and contaminate either the

environment or be ingested via contaminated food (5). Indeed,

food constitutes one of the biggest sources of human exposure to

phthalates (7). Human biomonitoring studies conducted on the

general population in Asia, Europe, and North America show a

widespread exposure of the general population to phthalates (6, 8–

11). Despite their broad use and pervasive environmental presence,

they have been recognized as toxic substances both in humans and

other organisms (12). Once ingested, they are rapidly metabolized in

the digestive tract to their monoester form, which is the species

responsible for the phthalates’ toxicity. Low-MW phthalate

metabolites are then excreted through the urine, while high MW

metabolites are excreted both via the urine and feces (1). While they

do not bioaccumulate, their persistent exposure of the population is a

matter for concern. Short- and medium-chain phthalates have been

associated with higher toxicity than long-chain ones, which has led to

their banning or restriction in children’s toys or teething products

(13, 14). Some of the examined compounds have been reported to

cause chronic or subchronic toxicity in several organs and systems,

namely the liver, kidney, immune system, testes, uterus, ovary, central

nervous system, and thyroid in vivo (2, 15–17). Phthalates can also

negatively interfere with the endocrine system and are thus

considered endocrine-disrupting chemicals (EDCs). They have

been shown to interfere with prenatal and postnatal development

in animal models (18), with the female and male reproductive

systems (19–21), as well as being possibly linked to obesity and

type 2 diabetes (22–24).
02
The thyroid is an endocrine gland positioned in the lower part

of the anterior neck and is responsible for the production of the

thyroid hormone (TH), whose receptors are expressed throughout

the body (25). The TH is essential for normal growth and

development and metabolism regulation (26). Its production is

mainly regulated by the thyroid-stimulating hormone (TSH), which

is secreted by the adenohypophysis. In turn, TSH production is

regulated both by circulating TH levels and the thyrotropin-

releasing hormone (TRH), synthesized in the hypothalamus. The

main cell type of the thyroid is constituted by thyrocytes, which

organize in small hollow spheres called follicles and are responsible

for synthesizing the TH, which is stored in the center of the follicle

(the lumen) in a dense matrix termed colloid. The synthesis of the

TH starts with the active transport of iodine inside the thyrocyte via

the sodium iodide symporter (NIS in humans). In the follicle

lumen, it is covalently bound via oxidation to the tyrosyl (Tyr)

residues of the protein thyroglobulin (TG) via the action of the

membrane-bound enzyme thyroid peroxidase (TPO) (27, 28).

Following TSH stimulation, TG is degraded in the lysosomes,

freeing TH, which can be transported outside the thyrocyte.
In the thyroid, phthalate treatment has been shown to have an

effect in vitro and in vivo, causing histological changes such as

reduced follicle size and colloid density, hypertrophy of the Golgi

apparatus, an increase in the number and size of lysosomes, and

alteration of the TH levels (2, 15, 16, 29, 30). DEHP has been shown

to downregulate Tshr (Tsh receptor) expression and interfere with

the Tsh/Tshr signaling pathway in vivo (31, 32). In humans, the

presence of phthalate metabolites in urine has been observed in

association with alterations in TH and TSH serum levels (22, 29). In

addition, there is evidence for phthalates altering the methylation

status in sperm cells (33) and adrenal glands (34) of the offspring of

exposed rats, as well as the expression or activity of histone

deacetylases and histone methyltransferases (35, 36).

Over the years, great effort has been made to develop thyroid

organoids using both embryonic and induced pluripotent stem cells

(37) that can be used for developing thyroid disease models (38) and

performing cancer (39) and toxicological and drug screening (40). In the

context of toxicology, in vitro models can offer high throughput

capability, and mechanistic insight into endocrine disruption and

reduce the use of animal testing, in line with the 3Rs principles for

animal welfare (replacement, reduction, and refinement) (41).
In this work, we analyzed our ability to identify alterations

induced by phthalate treatment by using two in vitro models of the

thyroid. To this end, we exposedmouse embryonic stem cell (mESC)-
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derived thyroid follicles (42) to the high-MW phthalates DEHP,

DIDP, DINP, and DnOP for 24 h and analyzed the transcriptome via

RNA-Sequencing (RNA-Seq) using the Combo-Seq library prep kit

for simultaneous analysis of mRNA and miRNA expression. Data

analysis revealed the upregulation of the growth protein 5 (Ing5) gene

in three out of four tested compounds (DEHP, DINP, DnOP)

compared to the control. ING5 is a component of the histones H3

and H4 acetyltransferase complexes HBO1-JADE, HBO1-BRPF1,

and MOZ/MORF (43, 44). To investigate the potential effect of

phthalate treatment on the chromatin status of thyroid models in

vitro, we exposed the human thyroid follicular epithelial cell line

Nthy-ori 3-1 to 1 μM of DEHP or DINP for 5 days and analyzed the

genome accessibility with Assay for Transposase-Accessible

Chromatin (ATAC)-Seq. We used maSigPro to analyze gene

expression across the dose series and performed gene set

enrichment analysis (GSEA) to identify enriched pathways.
2 Materials and methods

2.1 Chemicals information

The following phthalates were used for the experiments

described in this paper: DEHP (CAS 117-81-7; purity: 99.8% ±

0.4%) (67261, Sigma-Aldrich, St. Louis, MO, USA), DINP (CAS

28553-12-0; ester content: ≥ 99% mixture of C9 isomers) (376663,

Sigma-Aldrich), DIDP (CAS 26761-40-0; purity: ≥ 99.0%) (80135,

Supelco, St. Louis, MO, USA), and DnOP (CAS 117-84-0; purity ≥

99.5%) (D201154, Sigma-Aldrich).
2.2 Organoids differentiation

Thyro id organo ids were d i ff e ren t i a t ed f rom the

A2Lox.Cre_TRE-Nkx2-1/Pax8_Tg-EGFP mouse ESC and

enriched as previously described (42, 45). For more information,

see Supplementary Methods.
2.3 Exposure to phthalates and RNA-Seq
library preparation

2.3.1 Exposure to phthalates
In low-adhesion 48-well cell culture plates, 1,000 follicles per

well were seeded in triplicate using supplemented differentiation

medium (Supplementary Methods) and 1–10–100 nM to 1–10 mM
of DEHP, DINP, or DIDP or 2–20–200 nM to 2–20 mM of DnOP

dissolved in DMSO (1029521000, Merck Millipore, Burlington,

MA, USA) (final DMSO concentration: 0.5%). Of note, the

slightly different dose range for DnOP was caused by an

unwanted dilution error. We decided to still consider DnOP not

differently than the other three phthalates in our following data

analysis, considering the dose range still maintains the same scaling

between each dose and its order of magnitude is comparable to the

others. As a control, 1,000 follicles per well were seeded in a

supplemented differentiation medium and 0.5% DMSO (n = 5) or
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medium alone (n = 3). The plated follicles were incubated at 37°C,

5% CO2, and > 95% humidity for 24 h.

2.3.2 RNA isolation
After 24 h, the follicles were collected, washed once with PBS,

and lysed in QIAzol Lysis Reagent (79306, Qiagen, Venlo, The

Netherlands). Total RNA was extracted using the miRNAeasy

Micro Kit (217084, Qiagen). All samples had a RNA integrity

number (RIN) of 8 or higher.
2.3.3 RNA-Seq library preparation
The NEXTFLEX® Combo-Seq™ mRNA/miRNA Kit (NOVA-

5139-53, PerkinElmer, Waltham, MA, USA) was used to

prepare RNA-Seq libraries using 20 ng of total RNA. To deplete

tRNA and Y RNA fragments, the NEXTFLEX® tRNA/YRNA

Blocker was used during the library preparation following the

manufacturer’s instructions. In total, 14 cycles of PCR were

performed during the protocol. For some samples, the final

library concentration was below the pooling concentration used

for sequencing (1.6 nM). In these cases, the library was prepared

again to perform 16 cycles. For three samples (10 mM of DEHP:

replicate 3; 1 nM of DIDP: replicate 3; untreated control: replicate

1), there was not enough RNA to repeat the library preparation and

could thus not be sequenced. The prepared libraries were sequenced

on an S4 Illumina flowcell 35 cycles (v1.5) (Illumina) in single-

end mode.
2.4 Exposures to DEHP or DINP and
ATAC-Seq library preparation

2.4.1 Exposure to DEHP or DINP
The human thyroid follicular epithelial cell line Nthy-ori 3-1

was plated at a density of 10,000 cells/cm2 on six-well plates and

cultured in RPMI 1640 Medium with GlutaMAX™ Supplement

(61870036, Gibco, Waltham, MA, USA), 10% FBS, and penicillin–

streptomycin (15140122, Gibco) and incubated at 37°C, 5% CO2,

and > 95% humidity. Cells were left 1 day to adhere, and the

following day, the medium was changed to culture medium with

DEHP (n = 6) or DINP (n = 6) at 1 mM in 0.5% DMSO. As solvent

control, the culture medium was added with just 0.5% DMSO (n =

6). Cells were incubated for 5 days, refreshing the media with the

compound or DMSO only at day 3. At the end of the incubation

period, cells were collected and counted manually.
2.4.2 ATAC-Seq libraries preparation
To prepare ATAC-Seq libraries, 50,000 cells per sample were

used. Libraries were prepared following the Omni-Atac protocol of

Corces et al. (46) with the replacement of NP40 from the original

protocol with IGEPAL (I8896: 50 ml, Merck Millipore). The

tegmental kit used was the Illumina Tagment DNA Enzyme and

Buffer Small Kit (20034197, Illumina, San Diego, CA, USA) and the

indexes IDT® for Illumina® DNA/RNA UD Indexes Set A,

Tagmentation (96 indexes, 96 samples) (20027213, Illumina).

Seven PCR cycles were used for all samples. The prepared
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libraries were sequenced on an SP Illumina Flowcell v1.5 (100

cycles) (Illumina) in paired-end mode.

All RNA samples and sequencing library concentrations were

measured with the Qubit 2.0 Fluorometer (Thermo Fisher

Scientific, Waltham, MA, USA), and quality control was

performed on a BioAnalyzer 2100 expert (Agilent, Santa Clara,

CA, USA) or a 2200 TapeStation System (Agilent).
2.5 Data analysis

All the scripts used for RNA-Seq and ATAC-Seq data analysis

have been collected in a markdown file available at https://

github.com/marta-nazzari/phthalates_rnaseq_atacseq.
2.5.1 RNA-Seq data processing
The.fastq files were processed according to our previously

published CODA pipeline (47). Briefly, reads were trimmed from

the 5′ 4N and 3′ 8A adapters using Cutadapt (v3.7) (48), as

recommended by the manufacturer (49). To obtain gene read

counts, trimmed reads were aligned to the mouse transcriptome

(GRCm39 v27) and quantified using RSEM (v1.3.3) with the “–

STAR” parameter (v2.7.10a), following the ENCODE3’s STAR-

RSEM pipeline (50, 51). To analyze miRNAs, the trimmed files

were used as input for miRge3.0 (v0.0.9) (52) using miRBase mouse

annotations (v22).
2.5.2 ATAC-Seq data processing
The.fastq files were preprocessed using the PEPATAC pipeline

(v0.10.4) (53) using bowtie2 (v2.4.2) (54) as mapper, samtools

(v1.4) (55) as deduplicator, and the included Python tool

“pyadapt” as trimmer. The human genome GRCh38 v38 build

was used for alignment.
2.5.3 RNA-Seq sample biotype mapping and
outlier identification

Quantified RNA species were mapped to their respective biotypes

using the R (56) package biomaRt (57).We calculated the percentage of

mapped reads per biotype and retained only those constituting at least

1% in at least one sample. Outliers for each biotype were identified per

treatment group (DEHP, DIDP, DINP, DnOP, DMSO, and untreated)

and calculated as being 1.5 times the interquartile range (IQR) below

the 25th percentile or above the 75th percentile:

Biotype x in sample y  

<   25th percentile (biotype x   in group z)

−   1:5*IQR (biotype   x in group z)

or

Biotype x   in sample y  

> 75th percentile (biotype x in group z)

+   1:5*IQR(biotype x in group z)
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2.5.4 MaSigPro analysis
Normalized gene counts were used for maSigPro (58) analysis

according to the maSigPro user’s guide for next-generation

sequencing data (59) for a single-series course experiment. We set

the “tetha” (q) value to 10 (default), the FDR to 0.05 (default), and

the “degree” parameter to 3 (this corresponds to a cubic polynomial

regression model). The variable “time” with values 0, 1, 2, 3, 4, and 5

was used in the model to represent the “dose” values of 0 (DMSO

control), 1 nM, 10 nM, 100 nM, 1 mM, and 10 mM (or 2 nM, 20 nM,

200 nM, 2 mM, and 20 mM for DnOP).
2.6 Differential expression analysis

Differential gene and miRNA expression analysis was

performed comparing the phthalate-treated samples to the DMSO

solvent control using the R package DESeq2 (60), following a

slightly modified version of the guidelines of the Omics Data

Analysis Framework for regulatory application (R-ODAF)

pipeline developed by our group (61, 62). Briefly, a first filtering

step (“relevance threshold”) was applied to select the expressed

genes/miRNAs by retaining only those whose normalized

expression is ≥ 1 count per million (CPM) in at least 75% of the

samples in either group (i.e., treatment versus control). To increase

statistical power, all doses of a single compound were grouped

together and compared to the DMSO control. The RUVg function

from the RUVSeq package (63) (k = 2) was used on the genes/

miRNAs passing the relevance threshold filter to remove unwanted

variation. Differential expression analysis on the expressed genes/

miRNAs was then performed setting the FDR to 0.01. The resulting

differentially expressed (DE) genes/miRNAs/snoRNAs were

subjected to an additional filtering step (“spurious spikes”) to

identify those cases in which a very high expression value in only

one replicate in a group is responsible for a certain gene/miRNA/

snoRNA to be differentially expressed. To this end, the following

formula was applied to every DE gene/miRNA/snoRNA for both

treatment and control groups: read count gene=miRNAi
total read count gene=miRNAi  in groupj

< 1:4

�(number of replicates in groupj)
−0:66, where i refers to any gene/

miRNA/snoRNA, and j refers to either the treatment or control

group. The expression of such genes/miRNAs/snoRNAs was

manually checked in all replicates to determine whether a gene

that failed this spurious spike filter was indeed a technical artifact or

could instead be biologically relevant.
2.7 Gene set enrichment analysis

GSEA was performed using the R package ReactomePA

(v1.40.0) (64) and Reactome as a database (65) using the DESeq2

“stat” value for gene ranking. For significance, we set a q-value

threshold of 0.05.
2.8 Differential accessibility analysis

The alignment files (.bam) output by the PEPATAC pipeline

were shifted with the deepTools (v3.5.1) (66) utility alignmentSieve
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to account for the Tn5 transposase duplication at the cut site. To

identify differentially accessible (DA) regions, we used a sliding

window approach with the R package csaw (v1.32.0) (67) and a

modified version of the script made available by Sheikh and Blais on

bioRxiv (68). For quantification, we used the five-prime reads, a

sliding window of 50 bp without overlap, and a minimum number

of 50 counts for a window to be retained. To calculate the

background, we binned the genome into 10 kb bins. To

distinguish the signal from the background, we compared each

region against the global background and set a fold change

compared to the background to 3. The differential accessibility

analysis was performed with the R package edgeR (v3.4.0) (69), and

we performed batch correction using the RUVs function (k = 5)

from the RUV-Seq package (v1.32.0) (63). As multiple testing

corrections should be performed on regions and not windows

(70), we merged the regions identified as “signal” that are at most

500 bp apart, reaching up to a maximum merged region width of 5

kbp, and performed multiple-testing correction using the

Benjamini–Hochberg method (FDR = 0.01).

Identified differentially accessible regions were annotated with

HOMER (v3.13) (71) (genome version hg38). Regulatory region

annotations were retrieved from the ENCODE Candidate Cis-

Regulatory Elements (cCREs) registry (72). Coverage tracks were

normalized using BeCorrect (v1.1.0) (73) and visuals extracted from

the Integrative Genomics Viewer (IGV) (v2.13.2) (74).
3 Results

3.1 RNA-Seq results

To investigate the effect of phthalates on the transcriptome, we

generated RNA-Seq data from mESC-derived thyroid organoids

exposed to four phthalates using in vivo relevant concentrations (1–

10–100 nM to 1–10 mM DEHP, DIDP, DINP; 2–20–200 nM to 2–

20 mMDnOP) for 24 h. A schematic representation of the exposure

regimen is shown in Supplementary Figure S1. In the following

paragraphs, we provide some dataset quality control (QC) metrics

followed by the results of gene expression analysis.

3.1.1 RNA-Seq QC and outlier identification
Combo-Seq libraries had a median of 51.8 million (M) reads per

sample (min = 17.7, max = 92.4 M) (Supplementary Figure S2A),

with a median of 97% of sequenced reads with a quality score of 30 or

more (min = 96.4%, max = 97.3%) (Supplementary Figure S2B). The

median number of reads mapped to mRNAs was 41.8 M (min = 14.3,

max = 78.8M) and tomiRNAs was 1.30M (min = 0.16, max = 2.2M)

(Supplementary Figure S2C). As explained in the Methods section,

we performed 16 cycles for some RNA-Seq libraries to reach the

required concentration for sequencing (1.6 nM) (Supplementary

Table S1). In consequence, this increased the percentage of

snoRNA-mapping reads (Supplementary Figure S3A). As the read

count of the protein-coding genes would be underestimated during

DESeq2 normalization, we removed the snoRNA-mapping reads

from the main dataset and performed the analysis of snoRNA
Frontiers in Endocrinology 05
genes separately. Boxplot of mapped read distributions per gene

biotype after snoRNA removal revealed that one DMSO control

replicate (DMSO_ctrl_1) was a clear outlier in multiple biotypes

(Supplementary Figure S3B). As the DMSO samples would be used as

a control for all comparisons, this outlier would have had a major

impact in all downstream analyses and, importantly, in the most

important biotypes (“protein coding” and “miRNA” in particular”).

Although other samples were flagged as outliers in other biotypes

(“processed pseudogene” or “rRNA”), this was less consistent and did

not warrant further samples removal.
3.1.2 MaSigPro analysis
The MaSigPro R package, initially developed to identify changes

in gene expression along a time series, can also be used to analyze

the evolution of the gene expression level across a dose range

exposure. Next, we investigated using MaSigPro whether some

genes would show dose regulation across our six doses (untreated

plus five doses). We then allowed the significant genes to be

grouped into nine clusters, which include the genes that have a

similar trend in change in expression over the dose series. For every

compound, we observed some clusters with a nonmonotonic dose–

response curve (DEHP: clusters 1 and 3–5; DIDP: clusters 1 and 3–

9; DINP: clusters 1, 3–5, and 9; DnOP: clusters 1, 3, 6, and 8)

(Figure 1). The genes belonging to the various clusters are reported

in Supplementary Table S2. In those indicated clusters, the highest

dose (10 mM or 20 mM) was consistently shown to be different from

the other four. In this cellular system, this dose could be used for

phthalates to derive a point of departure (PoD) metric, which in the

toxicology field represents a dose at which a biological response is

first observed and can be used to make extrapolations for risk

assessment (75).
3.1.3 Differentially expressed genes and miRNAs
Considering the divergent nature of the highest dose compared

to the other four, we decided to exclude it from the differential

expression analysis. Given that for each dose we had triplicates or

duplicates, by consolidating all the remaining doses together and

comparing them to the solvent control, we aimed at increasing the

statistical power and detecting gene, miRNA, and snoRNA

expression alterations specifically attributable to phthalate

treatment. By doing so, we could focus on identifying changes at

the compound level while accounting for the different responses

observed with the highest dose.

Differential expression analysis revealed how all the treatments

had moderate effects on the cells in terms of the number of

differentially expressed genes (DEGs), miRNAs, and snoRNAs

(Figure 2): the number of DEGs compared to the control was 5,

5, 10, and 49 for DEHP, DIDP, DINP, and DnOP, respectively

(FDR< 0.01) (Table 1). Only DIDP treatment influenced miRNA

expression, with mmu-miR-143-3p being downregulated. No effect

was observed on snoRNA expression or on thyroid markers

(Supplementary Figure S4).

Interestingly, despite the weak effects on gene expression, the

inhibitor of the Ing5 gene was consistently upregulated in three out
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of four treatments (FDR: DEHP vs. DMSO = 4.44 * 10−3, DIDP vs.

DMSO = 0.14, DINP vs. DMSO = 1.37 * 10−3, DnOP vs. DMSO =

1.23 * 10−3) (Figure 3).

Other genes differentially expressed in more than one condition

were identified: Acaa2 (DEHP, DINP, and DnOP vs. DMSO),

Plekha3 (DIDP and DnOP vs. DMSO), and five genes (Cops2,

Idh3g, Mid1, Rab5a, Zpf960) dysregulated in DINP and DnOP

vs. DMSO.
3.2 Gene set enrichment analysis

GSEA was performed using the Reactome database with a q-value

threshold of 0.05. We identified 123 enriched pathways in the DEHP

vs. DMSO comparison, 79 in DIDP vs. DMSO, 173 in DINP vs.
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DMSO, and 311 in DnOP vs. DMSO (Supplementary File 1;

Supplementary Figure S5). In both DEHP and DIDP vs. DMSO

comparisons, most pathways were enriched in the control (normalized

enrichment score NES< 0). Conversely, we observed a balance

between pathways enriched in the treatment (NES > 0) and in the

control in the DINP and DnOP vs. DMSO comparisons. To identify

common effects across the treatments, we focused on the pathways

that appeared in all comparisons (Figure 4), thus retrieving 23 terms,

one enriched in the treatment and 22 enriched in the DMSO control.

Among the selected pathways with NES< 0, we identified

several terms related to signal transduction and extracellular

matrix (ECM) organization. The only term with NES > 0 is “fatty

acid metabolism”. In Supplementary Figure S6, the terms are

reported with their respective position in the Reactome term

hierarchy for a better understanding of their relationships.
FIGURE 1

MaSigPro analysis of the gene expression over the dose series employed in the study (0–1–10–100 nM to 1–10 mM for DEHP, DIDP, and DINP and
0–2–20–200 nM to 2–20 mM for DnOP). The curves for each compound are color-coded, and the compound name is reported in every plot. Each
gene was analyzed to fit up to a cubic polynomial regression model. Fits that passed multiple testing corrections (FDR = 0.05) were selected and
clustered in nine groups using hierarchical clustering. If a cluster comprises only one gene, the gene name is indicated on top of the plot; otherwise,
the cluster name is reported. The x-axis reports the dose range used (nM, nanomoles per liter; mM, micromoles per liter). The dots represent the
expression values of each replicate (or the average of each gene if a cluster comprises more genes), and the dotted line shows the fit. The genes
belonging to the various clusters are reported in Supplementary Table S2.
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3.3 ATAC-Seq results

As explained in the previous section, Ing5 upregulation was

observed in three phthalate exposures out of four. ING5 is a

component of the histone acetyltransferase complexes HBO1-

JADE, which mediates histone H4 acetylation in vivo, and HBO1-

BRPF1 and MOZ/MORF, which mediate histone H3 acetylation

(43, 44). For this reason, we investigated whether phthalate

treatment could have an impact on the chromatin status with

ATAC-Seq. To this end, we selected two of the four phthalates,

DEHP and DINP, and the highest dose included in the differential

expression analysis (1 mM). The exposure was increased to 5 days to

allow time for any chromatin rearrangements, if any, to take place,

accounting for any delay between gene upregulation of Ing5 and an

actual observable effect on the epigenome. For ATAC-Seq library

preparation, a viability of at least 90% was required. Unfortunately,

we were not able to recover enough cells from our thyroid follicles

model with this viability. For this reason, we selected the human

epithelial thyroid cell line Nthy-ori 3-1 (Supplementary Figure S7).

In the next sections, some quality control metrics of the ATAC-Seq

libraries and the results of the differential accessibility analysis

are reported.
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3.4 ATAC-Seq QC

ATAC-Seq libraries had a median of 82.2 M reads per sample

(min = 26.5, max = 237.9 M) (Supplementary Figure S8A), with a

median of 77.36% (min = 75.46%, max = 79.08%) of sequenced reads

being successfully aligned to the GRCh38 nuclear genome

(Supplementary Figure S8B). The transcription start site (TSS)

enrichment score had a distribution between 10.7 and 19.5

(median: 18.1) (Supplementary Figure S8C). The distribution of

nucleosome-free regions (NFR), mono-, di-, tri-, or poly-

nucleosome regions, was consistent across samples (Supplementary

Figure S8D), as were the read length distribution profiles typical of

ATAC-Seq libraries (Supplementary Figure S8E). The library

complexity metrics were within the accepted values recommended

by the Encode Project (Supplementary Figure S8F) (76).
3.5 Differential accessibility analysis
by ATAC-Seq

We identified 111,133 genomic regions when comparing

DEHP-treated and DMSO samples, and 118,855 regions in the
B C D

E F G H

I J K L

A

FIGURE 2

Volcano plots of the expressed genes (A–D), miRNAs (E–H), and snoRNAs (I–L) in each phthalate vs. DMSO control. Every dot represents a gene.
Elements not differentially expressed (not significant – n.s.) are in black. The false discovery rate (FDR) threshold of 0.01 is indicated as a dotted line on
the y-axis. Upregulated elements (“FDR < 0.01, log2(fold change) ≶ 0”) are indicated in red, and downregulated ones (“FDR < 0.01, log2(fold change)<
0”) in cyan. The genes above this line colored in black are the ones that fail to pass the “spurious spike” filter as described in the Methods section.
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DINP vs. DMSO comparison were tested for differential

accessibility. In both treatments, we observed a general increase

in accessibility compared to the control, but none of the regions

passed multiple-testing correction (Figure 5).

We annotated the regions with a p-value of< 0.01 with HOMER

to identify the closest gene to each region and looked for overlap

between DEHP vs. DMSO and DINP vs. DMSO. We identified four
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regions with decreased accessibility and 17 with increased

accessibility that overlap with regulatory regions (Supplementary

Table S3).

We looked at which of these regions fall within the TSS or

transcription termination site (TTS). We identified four regions, all

with increased accessibility: two located at the TSS of the cell

division cycle associated 2 (CDCA2) and complexin 1 (CPLX1)
FIGURE 3

Ing5 normalized expression in each phthalate and DMSO control sample. The different doses are reported in the legend. The darkest shade
corresponds to the highest concentration (10 mM or 20 mM), while the lightest shades corresponds to the lowest (1 nM or 2 nM). The DMSO control
samples are reported in black.
TABLE 1 List of differentially expressed genes (DEGs) and miRNAs (DE miRNAs) in every phthalate vs. DMSO comparison (FDR< 0.01).

DEHP DIDP DINP DnOP

DEGs

Gpd1 Plekha3 Acaa2 Acaa2 Hsd17b10 Plekha3 Tmem80

Ing5 Cxcl14 Cops5 App Hspa1b Pole2 Trmt61b

Myh14 Zgpat Idh3g Arhgef10l Idh3g Ppp1r7 Tspan1

Acaa2 Rpl38-ps2 Ing5 Ccnd2 Ifitm3 Ptp4a1 Ube2g2

Gm15516 Gm10323 Mid1 Ccni Ing5 Rab5a Uqcrc2

Rab5a Cops5 Mid1 Rars Vps25

Srrm1 Dnajc8 Mtpn Rnf128 Wasf2

Tnrc6b Exoc6 Mzt1 Rpl19-ps11 Zc3h11a

Ttc32 Fbp2 Npm1 Shroom3 Zfand1

Zfp960 Gm21293 Nrip1 Sox4 Zfp330

Gm5641 Nucb2 Tjp1 Zfp960

Hbb-bs Phlda1 Tmed7 Zswim6

Herpud2

DE miRNAs mmu-miR-143-3p
front
Downregulated genes are reported in blue text, and upregulated ones in red. DEGs that appear in more than one comparison are in bold.
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genes, and two located at the TTS of cyclin I (CCNI) and

dystrobrevin-binding protein 1 (DTNBV1). However, when

inspecting the normalized read coverage on the IGV, there did

not seem to be a clear increase in accessibility compared to the

control (Supplementary Table S4; Supplementary File 2).
4 Discussion

In this work, we analyzed the response of mouse embryonic

stem cell-derived thyroid follicles after exposure to the phthalates

DEHP, DIDP, DINP, and DnOP in a range of concentrations from

1 nM to 10 mM (2 nM to 20 mM for DnOP) for 24 h. The low dose

range was selected to reflect the low daily intake of phthalates

measured in the general population (77) and the relatively short

exposure time to detect the initial reaction to phthalate exposure by

identifying the early changes in the transcriptome. In this way, we

aimed to test whether our model would be able to capture the

molecular initiating event (MIE) of these phthalates, which would

then be followed by the key events (KEs) to ultimately lead to an

adverse outcome (integrated in the concept of an adverse outcome

pathway (AOP)) (78). We performed RNA-Seq analysis and

simultaneously analyzed both mRNA and small RNAs from the

same samples. The dose series analysis showed how most of the

identified genes either increased or decreased sharply in expression

at the highest dose, setting it apart from the others and possibly

indicating it as a dose to determine a PoD for those genes, which is
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used in toxicology to establish a threshold dose for risk assessment

(75, 79).

The compounds showed a modest effect on the cells at the time

and doses of exposure in terms of the number of differentially

expressed genes and miRNAs, while no effect was observed on

snoRNA expression. DIDP was the only compound where a

microRNA (mmu-miR-143-3p) was downregulated. This

microRNA, together with mmu-miR-143-5p, has been observed

to be downregulated in several cancers and is thought to have

tumor-suppressing activity and be a negative regulator of cell

proliferation (80–82). Despite the low number of DEGs, we

observed a partial overlap across treatments (Acaa2 and Plekha3

in three treatments, Cops2, Idh3g, Mid1, Rab5a, and Zpf960 in two

treatments). It is possible that the higher number of DEGs in the

DnOP vs. DMSO comparison could be explained by the doses used

being twice as high as the other phthalates, though still within the

same order of magnitude. Acetyl-CoA acyltransferase 2 (Acaa2) is

one of the enzymes that catalyzes the last step of the mitochondrial

beta-oxidation pathway. Pleckstrin homology domain containing

A3 (Plekha3) is involved in the regulation of vesicular cargo

transport from the trans-Golgi network to the plasma membrane

and is predicted to be involved in ceramide transport and

intermembrane lipid transfer (83, 84). Cops2 is a member of the

COP9 signalosome complex (CSN), which is involved in decreasing

the ubiquitin ligase activity of the SCF-type E3 ligase complexes.

Idh3g is an enzyme that takes part in the Krebs cycle and performs

the decarboxylation of isocitrate into alpha-ketoglutarate. Midline 1
FIGURE 4

Results of gene set enrichment analysis (GSEA) on Reactome pathways. The reported pathways have a q-value of< 0.05 and appear in all four
phthalates vs. DMSO comparisons.
FIGURE 5

Number of differentially accessible regions with p-value of< 0.001 or 0.01 and |log(fold change)|>1 in the DEHP- or DINP-treated samples vs. DMSO
control. After multiple-testing correction, none of the regions had an FDR of< 0.01.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1200211
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nazzari et al. 10.3389/fendo.2023.1200211
(Mid1) is likely involved in the formation of multiprotein structures

acting as anchor points to microtubules. It has also E3 ubiquitin

ligase activity toward the protein Igbp1, promoting its degradation.

Rab5a is a member of the RAS oncogene family and is a small

GTPase that, in its active form, recruits proteins responsible for

vesicle formation, movement, tethering, and fusion (83).

Via GSEA, we looked for enriched pathways shared by the four

treatments to try and identify effects that could be attributed to the

“phthalate” EDC class. Only the pathway fatty acid metabolism was

enriched in all treatments. Interestingly, phthalates have been

shown to increase the metabolism of fatty acids not only in the

liver (85, 86) but also in nonliver tissue such as cardiomyocytes,

where increased use of fatty acids for energy production was

suggested (87). To our knowledge, our analysis is the first

observation of the conservation of these mechanisms in an in

vitro thyroid model. Additionally, among the pathways

downregulated in the treatment groups, we found many related to

cell–ECM organization and receptor signaling. It is also interesting

to note that despite the low number of DE genes due to the low

doses used, were still able to detect relevant enriched pathways

using GSEA.

Taken together, the results of differential gene expression gene

analysis and GSEA seem to point to an effect of phthalates on

energy production, with genes involved in cellular respiration being

dysregulated and lipid metabolism increasing.

Ing5 was upregulated in three treatments (DEHP, DINP,

DnOP) compared to the control. The ING family comprises five

genes (ING1 to ING5), which have a role in cell cycle regulation and

cell proliferation by interacting with several partners, such as p53,

p300, and histone acetylation complexes (43, 88). ING5 is a tumor-

suppressor gene that is downregulated in several types of cancer,

including thyroid (89), colorectal (90), breast (91), and lung (92). Its

protein is a component of the histone acetyltransferase HBO1-

JADE, which acetylates histone H4 at Lys residues 5, 8, and 12

(H4K5ac, H4K8ac, H4K12ac), MOZ/MORPH, which performs

histone H3 acetylation, and HBO1-BRPF (H3K14ac) (44, 93).

As a consequence of Ing5 overexpression, we hypothesized that

phthalate treatment could have an impact on chromatin status. For

this reason, we exposed the human thyroid follicular epithelial cell

line Nthy-ori 3-1 to 1 mM of DEHP or DINP for 5 days and

analyzed the genomic accessibility by ATAC-Seq. We reasoned that,

since Ing5 is not a thyroid-specific gene and its expression is not

limited to the thyroid, we would be able to observe changes in a

different cell model since we would be investigating a general

phthalate mechanism rather than a model-specific response.

Differential accessibility analysis resulted in a general increase in

accessibility in the treatment group, but none of the identified

regions passed multiple-testing correction. Among the regions with

a p-value of< 0.01, we identified four common ones with increased

accessibility in the DEHP vs. DMSO and DINP vs. DMSO

comparison localized on regulatory regions in the TSS or TTS.

However, the signal did not seem to reflect a real change

in accessibility.

In this work, we showed that even with a stem cell-derived in

vitro thyroid model exposed to a range of low, biologically relevant

concentrations of four phthalates, we were able to detect some of the
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effects that have been previously reported in vivo. Our analysis

demonstrates that it is not necessary to use cytotoxic doses in

toxicological experiments to obtain observable results and that low-

dose exposure can be analyzed without lowering the statistical

stringency. We are convinced that 3D in vitro systems, such as

organoids, can be a valid alternative to animal studies even for

EDCs, provided that enough datasets are generated to allow

regulators to infer risk assessment thresholds.
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