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Introduction: Ensuring fair competition through manual review is a complex

undertaking. This paper introduces the utilization of Long Short-Term Memory

(LSTM) neural networks and TextCNN to establish a text classifier for classifying

and reviewing normative documents.

Methods: The experimental dataset used consists of policy measure samples

provided by the antitrust division of the Guangdong Market Supervision

Administration. We conduct a comparative analysis of the performance of LSTM

and TextCNN classification models.

Results: In three classification experiments conducted without an enhanced

experimental dataset, the LSTM classifier achieved an accuracy of 95.74%, while

the TextCNN classifier achieved an accuracy of 92.7% on the test set. Conversely,

in three classification experiments utilizing an enhanced experimental dataset, the

LSTM classifier demonstrated an accuracy of 96.36%, and the TextCNN classifier

achieved an accuracy of 96.19% on the test set.

Discussion: The experimental results highlight the e�ectiveness of LSTM and

TextCNN in classifying and reviewing normative documents. The superior

accuracy achieved with the enhanced experimental dataset underscores the

potential of these models in real-world applications, particularly in tasks involving

fair competition review.

KEYWORDS

fair competition review, text classifier, LSTM, TextCNN, deep learning—artificial

intelligence

1. Introduction

The application of computer technology to tackle complex challenges in human society

has long been a central focus of machine learning. In pursuit of machines that can approach

problem-solving in a manner closer to human thinking, the field of machine learning

has witnessed the emergence of a novel research direction known as deep learning. Deep

learning constructs neural networks that simulate the functioning of human brain neurons

through the use of computer programs, enabling the prediction of outcomes following

training with vast amounts of data. As deep learning continues to advance and computer

hardware performance improves, this technology has found widespread implementation

across industries such as language translation, image recognition, driverless cars, and online

advertising. Deep learning holds distinctive advantages in handling unstructured data, which

has led to its prominent role in addressing various natural language processing challenges.
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Text recognition is widely welcomed by researchers and

industry due to its wide-ranging applications. Currently, many

scene text recognition methods perform well in benchmark tests.

However, existing methods are unable to recognize unknown

characters such as other language characters or special symbols.

These characters have not appeared in the training set, so an

effective method is needed to differentiate and map them to

improve the level of scene text recognition. Chang et al. [1]

proposed a method called “label-to-prototype learning framework,”

which can handle new character categories and is not affected by

language. Thismethod uses a “label-to-prototypemappingmodule”

to generate character prototypes and uses them as classifier weights.

Their approach achieved 13.98% improvement in character

recognition accuracy compared with other recent methods on the

CTW dataset.

Deep learning holds significant potential for widespread

application in the realm of government governance. In China,

the State Council has issued a series of policies aimed at

dismantling local market protection, industry access barriers,

and monopolies established by certain local governments

through administrative means. These policies seek to establish

a unified national market and deepen the reform of the

economic system. While many departments have made

progress in establishing and implementing fair competition

review systems, there remains a need for government agencies

to collect government documents from local governments’

public websites and assess whether they violate the fair

competition review system. Deep learning and natural

language processing technologies can play a crucial role in

facilitating this review process, thereby enhancing the efficiency of

government governance.

Text examination inherently involves sequential models.

When dealing with texts of varying lengths, it becomes

necessary to map them to corresponding words or sentences

that represent different responses. Standard neural networks

often face challenges when addressing sequential model problems

in natural language processing. This is primarily due to the

requirement of sharing learned features from different parts of the

text when processing natural language. Standard neural networks

lack the ability to share features effectively and are thus ill-suited

for examining comprehensive canonical files that possess logical

and contextual linkages.

At present, the recurrent neural network (RNN) is

commonly employed for Chinese text classification. RNNs

possess a cyclic structure that enables the persistence of

text information throughout the neural network’s training,

effectively capturing short-term dependencies within the

text. However, RNNs encounter challenges in dealing with

long-term dependencies, leading to issues such as vanishing

gradients or exploding gradients. To address these problems,

Sepp Hochreiter and Jurgen Schmidhuber introduced the Long

Short-Term Memory (LSTM) neural network architecture.

LSTM incorporates forgetting gates and update gates to regulate

the flow of information within the cell state of the neural

network, enabling the removal or addition of information as

needed. This innovative approach successfully mitigates the

vanishing gradient and exploding gradient issues inherent in

RNNs [2].

While convolutional neural networks (CNNs) have

traditionally been applied to image processing tasks, in recent

years, researchers have started exploring their application in

the field of natural language processing (NLP). Yoon Kim,

among others, has made adaptations to CNN architectures by

modifying the input data from images to text. This innovative

approach has resulted in the development of the TextCNN model,

which has demonstrated notable performance in the realm of

text classification.

Government documents possess distinct characteristics that

set them apart from general text. They typically exhibit lengthy

content, formal writing styles, and limited emotional bias. Even

manual review of these documents necessitates reviewers to possess

extensive accumulated experience. Consequently, this paper utilizes

unsupervised in-depth learning algorithms for classification review,

while also comparing the performance of LSTM and TextCNN

neural network classifiers.

2. Data processing

2.1. Data sources

The dataset of government documents used in this study is

sourced from the Antitrust Office of Guangdong Province Market

Supervision and Administration. The dataset comprises exclusively

Chinese government documents. To facilitate the experiment, the

dataset is divided into three subsets: a training set, a validation

set, and a test set, distributed in proportions of 60%, 20%, and

20%, respectively.

In line with the Fair Competition Review System, manual

labeling of the datasets is conducted and categorized into three

distinct classes. The first category involves labeling text that pertains

to market subjects but does not violate the Fair Competition

Review, which is labeled as “relevant.” The second category

comprises labeling text that involves market subjects and violates

the Fair Competition Review, and is thus classified as “suspect

documents.” Lastly, ordinary policy text that does not involve

market players and does not violate the fair competition review is

labeled as “irrelevant.”

2.2. Text enhancement

Following the implementation of the Fair Competition Review

system, policy measure documents that are deemed to violate the

system are withdrawn from the government website. As a result,

the dataset contains only 1,512 instances of the “Suspect Files”

class. The remaining number of instances in the validation and

test sets after dataset division is too small to achieve adequate

training effectiveness. Therefore, in this experiment, the “suspect

file” class is expanded using the EDA (Easy Data Augmentation)

text enhancement technique.

The NLPCDA Chinese data enhancement tool, an open-source

resource, is utilized to replace the text data with random entities,

effectively augmenting the dataset. The change rate for each text is

set to 0.3, resulting in three new augmented texts per original text.

Consequently, the initial 1,512 instances of the “suspect file” class
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are expanded to 4,536 instances. To validate the effectiveness of text

enhancement, this experiment will conduct tests and comparisons

on the dataset before and after augmentation.

3. Experiment design

For this experiment, PyTorch is selected as the framework for

the neural network implementation. PyTorch is a lightweight

distributed machine learning platform that offers several

advantages. One notable feature is its “Dynamic Computational

Graph,” which enables faster model convergence [3]. The

hardware utilized in the experiment consists of an Intel(R)

Core(TM) i5-8300H CPU and NVIDIA GeForce GTX 1060

Max-Q GPU. The software environment is based on Python 3.6

programming language.

3.1. Natural language processing

Prior to conducting the classification experiment, the

normative files in the dataset undergo preprocessing. The first step

involves importing the THUCNews deactivated Thesaurus from

the Tsinghua NLP group for data cleaning purposes. Subsequently,

the Jieba word-breaking tool is utilized for word segmentation.

The labels “ irrelevant,” “ relevant,” and “ suspect documents” are

encoded as 0, 1, and 2, respectively. The preprocessed data is then

saved in the CSV file format, as shown in Table 1.

After preprocessing, the following steps are performed on each

text in the dataset:

1. Removal of stop words: All stop words, punctuation marks,

and numeric characters are removed from the text.

2. Word tokenization: The text is divided into individual words,

with each word separated by spaces.

By removing stop words, punctuation, and numeric characters,

the focus is placed on the essential content of the text, facilitating

further analysis and classification.

As shown in Table 2, after word segmentation, the data in

the CSV file is partitioned into three subsets: the training set,

validation set, and test set, with proportions of 60%, 20%, and

20% respectively.

Next, a vocabulary is constructed based on the highest

frequency of the first 5,000 words present in the dataset. This

TABLE 1 Unprocessed dataset styles.

Type Content (Chinese)

Irrelevant

Relevant

Suspect documents

vocabulary is created using the torchtext tool and serves as the

reference for word indexing and representation.

The constructed vocabulary is saved as the parent vocabulary

for subsequent text processing and model training.

3.2. LSTM classifier setup

Long Short-Term Memory (LSTM) is a widely used type of

recurrent neural network known for its effectiveness in handling

sequential data. Over the years, several extensions and variations of

the LSTM architecture have been proposed. While the pioneering

work on LSTM was introduced by Sepp Hochreiter and Jurgen

Schmidhuber, the current mainstream LSTM architecture, as

popularized by Graves A and Schmidhuber J, forms the basis of

this experiment.

In line with this, a classifier based on the LSTM neural

network design proposed by Graves A and others is developed for

this experiment.

3.2.1. LSTM cell structure
A single LSTM neuron comprises four essential components:

an input gate, a forget gate, a cell state, and an output gate. These

components work together to enable the LSTM cell to capture and

retain relevant information over long sequences.

The LSTM cell structure can be visualized as shown in

Figures 1, 2. The input gate regulates the flow of information into

the cell, determining which input values are significant for updating

the cell state. The forget gate controls the extent to which the

previous cell state is retained or discarded. The cell state serves

as the memory of the LSTM cell, storing relevant information

throughout the sequence. Finally, the output gate controls the flow

of information from the cell, allowing selective output based on the

current cell state and input.

(1) The forget gate helps the network decide what information

to retain and what to forget. Its input is the output from the

previous timestep and the current input xt , and it outputs a vector

that controls what information should be retained in the previous

timestep’s cell state ht−1 .

ft = σ (Wf · [ht−1, xt]+ bf )

(2) Then there is the input gate, which determines what type of

new signal the cell state stores. It consists of two segments. The first

TABLE 2 Processed dataset styles.

Label Content (Chinese)

0

1

2
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FIGURE 1

Structure diagram of LSTM unit.

FIGURE 2

Schematic diagram of LSTM neural network structure

segment controls which input information at the current moment

can be stored in the current memory unit; The second part is to

create a new candidate value vector C̃t to add to the cell state.

it = σ (Wi · [ht−1, xt]+ bi)

C̃ttanh(WC · [ht−1, xt]+ bC)

(3) Update the cell state. The future behavior depends on the

previous steps and how our present goal is achieved.

We use the output of the oblivion gate to determine how much

information can be retained from the previous cell state and how

much of the current input can be stored in the new cell state. The

updated formula is:

Ct = ft ∗ Ct−1 + it ∗ C̃t

(4) Finally, the output gate, whose output depends on the

current state of the cell, consists of two segments. The first is the

amount of information that ht−1 and xt can be passed to the next

moment by calculating the sum. The second fragment is the cell

state processed by the tanh activation function and multiplied by

the output of the first fragment, resulting in the information that

needs to be passed on to the next moment.

ot = σ (Wo · [ht−1, xt]+ bo)

ht = ot ∗ tanh(Ct)

3.2.2. Network architecture
The LSTM neural network classifier is constructed with the

following layers:

Input layer: The input layer loads the preprocessed datasets. It

processes 64 samples at a time.

Embedding layer: The input samples are embedded into a

dense vector representation using an embedding layer with a

dimension of 100. This layer helps capture semantic relationships

between words.

LSTM hidden layers: The network includes two LSTM hidden

layers, each consisting of 128 LSTM neurons. These layers enable

the network to capture long-term dependencies and temporal

patterns in the input sequences.

Fully connected layer: The output from the LSTM layers is fed

into a fully connected layer, which maps the LSTM hidden states to

the desired output dimension. In this case, the output layer consists

of 4 neurons, corresponding to the number of classes.

The loss function used in this experiment is the multiclass

cross-entropy loss function, which is suitable for classification tasks

involving multiple classes.

Additionally, an early stopping mechanism is implemented

during the training phase of the LSTM. This mechanism

automatically stops the training process when the loss function and

accuracy on the validation set reach a stable state.

The network structure, as described, involves the forward and

backward propagation of each LSTM neuron in the hidden layers,

capturing both the temporal dependencies and their reverse order.

3.3. Set up TextCNN classifier

TextCNN (Convolutional Neural Network for Text

Classification) is a popular deep learning algorithm for natural

language processing (NLP) tasks such as text classification and

sentiment analysis. TextCNN is designed to capture local features

from text data by applying convolutional filters to the input

sentences. The convolutional filters act as feature detectors,

scanning the input sentences to identify key patterns and features.

The output of the filters is then fed into a max-pooling layer, which

extracts and retains the most important features. The resulting

feature vector is then passed through a fully connected layer and

eventually used to classify the input text into relevant categories.

3.3.1. TextCNN frame
As shown in Figure 3, TextCNN contains an embedding layer,

a convolution layer, a pooling layer and an output layer.
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FIGURE 3

Schematic diagram of TextCNN neural network structure.

TABLE 3 Performance of LSTM and TextCNN before text enhancement.

LSTM TextCNN

Accuracy of test set 93.71% 92.84%

Accuracy of training set 99.82% 100%

Training set loss function value 0.002 0.0034

Accuracy of verify set 92.7% 92.4%

Validation set loss function value 0.19 0.3

Recall 88.5% 86.2%

F1 score 91.0% 89.4%

TABLE 4 Performance of LSTM and TextCNN after text enhancement.

LSTM TextCNN

Accuracy of test set 96.36% 96.19%

Accuracy of training set 99.84% 100%

Training set loss function value 0.0015 0.0012

Accuracy of Verify Set 95.96% 96.01%

Validation set loss function value 0.25 0.13

Recall 92.45% 93.71%

F1 score 94.36% 94.93%

3.3.1.1. Embedding layer

This layer converts the text data vector to the specified size, and

each row in thematrix represents a word. If sentence X has n words,

then the sentence can be expressed in matrix form:

X = X1 ⊕ X2 ⊕ .....Xn

Where, Xi represents the ith word and ⊕ is the concatenation

symbol of vectors.

3.3.1.2. Convolution layer

The TextCNN model uses a convolution kernel filter with an

input layer sentence matrix to calculate the unit node matrix. The

matrix can extract different hierarchical features and then obtain

the feature mapping matrix by nonlinear activation function C =

[ c1, c2, , c3..., cn]

Ci = f(W · Xi : i+h−1 + b)

WhereW is the weight matrix of the output convolution kernel,

b is the bias parameter, and f is the activation function.

3.3.1.3. Pooling layer

Through the maximum pooling of feature vectors, a one-

dimensional vector is formed to represent the aggregation of

important features, so as to reduce the number of neural network

parameters and feature vectors, achieve dimensionality reduction,

and prevent overfitting phenomenon to a certain extent.

c = max(c)

3.3.1.4. Output layer

The convolution operation using different convolution kernels

can extract different features and then combine these features into

a one-dimensional vector by pooling operation. Finally, the vector

is entered into a fully connected softmax layer to get a probability

distribution that the sample belongs to different categories.

softmax(xi) =
exp(xi)∑n
i=1 exp(xi)

3.3.2. Building network
The dimension setting of word vector and the size of batch_size

of the model in this section are the same as those in 3.2.2 of

this paper. The height of convolution kernel is Kim [4], Zhang

[5], and Shu et al. [6], the number of convolution kernel is 100,
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FIGURE 4

Loss function of LSTM and TextCNN after text enhancement.

FIGURE 5

Validation accuracy of LSTM and TextCNN after text enhancement.

ReLU activation function is used, and multi-class cross entropy loss

function is used for loss function.

4. Experiment analysis

4.1.Content analysis

This experiment focuses on analyzing and comparing the

performance of the LSTM classifier and TextCNN classifier using

the same normalized file dataset. The aim is to assess their

effectiveness in text classification. Furthermore, the experiment

investigates the robustness [7, 8] of the classifiers by comparing

their performance on two datasets: one before text enhancement

and the other after text enhancement. This analysis aims to evaluate

how well the classifiers can handle enhanced data.

Additionally, the experiment examines and compares the

training speed and the number of training iterations required for

each classifier. This analysis provides insights into the practicality

and efficiency [9] of the two approaches.

4.2. Data comparison

In this experiment, several evaluation criteria are used to assess

the effectiveness of the classification review: accuracy, recall rate,

and multi-class cross-entropy loss function. The formulas for these

metrics are as follows:

Accuracy: The percentage of correctly classified instances in the

test set.

LSTM accuracy on the test set for the canonical file

datasets without text enhancement in the three-class experiments

was 93.71%.

TextCNN accuracy on the test set was 92.84%.

Recall rate: The proportion of true positive instances identified

correctly out of all relevant instances.
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TABLE 5 Training cost of LSTM and TextCNN.

LSTM TextCNN

Epoch 15–20 10–12

Training time 30min 10 min

Correct number of unrelated classifications 1,963 1,990

Correct number of related classifications 340 310

Correct number of suspect files classifications 1,179 1,182

The recall rates for LSTM and TextCNN classifiers were 88.5%

and 86.2% respectively.

Multi-class cross-entropy loss function: A measure of the

dissimilarity between the predicted and actual class probabilities.

The loss function values for LSTM were stable at 0.002 for the

training set and 0.19 for the validation set.

The loss function values for TextCNN eventually stabilized at

0.0034 for the training set and 0.3 for the validation set.

Additionally, the training set accuracy for LSTM stabilized at

99.82%, while the training set accuracy for TextCNN reached 100%.

These results indicate that both classifiers achieved high accuracy

on the training set.

After text enhancement, the LSTM classifier achieved an

accuracy of 96.36% on the test set. The training set accuracy and

loss function values were 99.84% and 0.0015 respectively, while

the validation set accuracy and loss function values were 95.96%

and 0.25.

Similarly, the TextCNN classifier achieved an accuracy of

96.19% on the test set. The training set accuracy and loss function

values were 100% and 0.001, and the validation set accuracy and

loss function values were 96.01% and 0.13.

Furthermore, the recall rates for the two classifiers on the test

set were 92.45% for LSTM and 93.71% for TextCNN.

These results indicate that both LSTM and TextCNN classifiers

showed improved performance after text enhancement, with

higher accuracy and relatively lower loss values. The recall rates

also suggest the ability of the classifiers to identify relevant

instances correctly.

Tables 3, 4 show that both the LSTM and TextCNN classifiers

achieved high accuracy on the validation and test sets, surpassing

90% even before text enhancement. After text enhancement, the

accuracy further increased to over 95%. This indicates that the

robustness of the classification model was maintained, as the

synonym conversion and randomword replacement operations did

not negatively impact accuracy.

Figures 4, 5 illustrate the changes in the loss function of the

LSTM and TextCNN models on the training set, as well as the

accuracy changes on the validation set, following text enhancement.

The results show that the LSTM model reaches convergence at

epoch 15, whereas the TextCNN model achieves convergence at

epoch 8. Furthermore, the accuracy of the validation set shows a

clear upward trend during the training process, indicating a positive

impact of model optimization.

However, there are differences between the LSTM and

TextCNN classifiers. As shown in Table 5, the LSTM network

required more training epochs and had a longer training time

compared to TextCNN. Additionally, the accuracy of each

classification varied between the two models. Both classifiers

performed well, but the LSTM classifier had a longer training time

and required more epochs.

In summary, both the LSTM classifier and TextCNN classifier

achieve high levels of accuracy and recall. The difference

between them is minimal. The standardized file dataset used

in this study presents more challenges compared to general

short text classification due to its larger size, complex structure,

and reduced emotional expression. However, both classifiers

outperformmanual reviewmethods in terms of efficiency. Notably,

TextCNNdemonstrates better speed due to its ability to process text

in parallel, whereas LSTM processes text linearly.

5. Summary

In conclusion, the application of deep learning technology to

the fair competition review system is an interdisciplinary endeavor

that encompasses computer technology, government governance,

and legal treatment. The field of deep learning is rapidly advancing,

offering endless possibilities for neural network configurations.

Incorporating advanced technologies into government decision-

making processes is crucial for fostering top-level design and

planning, ultimately contributing to the development of a “smart

government.” Chinese text classification based on deep learning

has also made significant progress, and its integration with the fair

competition system is a natural progression [10, 11].

However, it is important to acknowledge the limitations of

this study. The paper focuses on commonly used technologies

for combining fair competition review and deep learning, but

more advanced techniques and practical implementations still

require further development. Both classification models have room

for improvement, and future research should aim to address

these shortcomings.
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