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Editorial on the Research Topic

Perspectives in brain-network dynamics in computational psychiatry

1. Introduction

The cognitive functions of the brain are achieved through mutual interactions between

various hierarchical regional neural activities (reviewed in Sporns, 2016). Throughout the

current decade, studies on brain networks have revealed the dynamical behaviors of brain

networks, including multitemporal scale dynamics, from ultra-slow to moment-to-moment

behaviors (Ando et al., 2021, 2022; Iinuma et al., 2022; Gandhi et al.) (reviewed in Garrett

et al., 2013; Takahashi, 2013; Palva and Palva, 2018). In these multiscale neural activities, the

network dynamics, which is captured by the degree of synchronization and information flow

between pair-wise brain regional neural activities [called dynamic functional connectivity

(dFC)], play an important role in coordinating the mutual interactions of neural activities

(reviewed in Cohen, 2018; Luppi et al., 2022). Moreover, besides the pair-wise neural

interactions, the temporal itinerancy of the global topology of the whole-brain functional

network is present (Guan et al., 2022). Under pathological conditions, the multitemporal

scale characteristics of such network dynamics exhibit disease-specific alternations (Yan

et al., 2023). These characteristics therefore pose the possibility of realizing potential

biomarkers to identify psychiatric disorders. For achieving this, we have two major

approaches.

The first is a physiological data-driven neuroimaging approach using

electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic

resonance imaging (fMRI). For this approach, the method for utilizing the temporal

variation of functional connectivity within a short time window has been developed

(Damaraju et al., 2014). Subsequently, a more rigid method for determining the length of a

window based on the temporal transition of a quasistable spatial power distribution, called a

microstate, was proposed (Guan et al., 2022; Yan et al., 2023). Moreover, instead of focusing

on synchronization within the time-window, a technique of utilizing the instantaneous

temporal patterns produced by neural interaction was also developed, which is required for
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achieving high temporal resolution to capture the characteristics

of moment-to-moment dynamical functional connectivity

(Nobukawa et al., 2019).

The second approach is a simulation-based one using

mathematical models with high pathological validity, typified

as abstract whole-brain neural networks and spiking neural

networks (reviewed in Cabral et al., 2017; Nobukawa, 2022).

Recent mathematical modeling of brain networks focuses on large

hierarchical neural characteristics from the molecular/cellular and

local neural circuit levels to the global whole brain level. Therefore,

embedding disease-specific impairments into the modeled-brain

network studies could reveal the mechanisms by which these

individual impairments affect the alternations of brain network

dynamics (Matsumoto et al., 2023; Park et al.; Zhu et al.).

This Research Topic is intended to inspire further research

focusing on both approaches, and to facilitate the mutual use of

the findings of network dynamics and individual approaches. This

editorial briefly explains the studies based on these approaches.

2. Network dynamics in the
physiological-data approach

Studies in this decade have revealed that functional connectivity

exhibits large temporal variability, even in the resting state, which

is called dFC (Betzel et al., 2012; Hutchison et al., 2013; Allen et al.,

2014; Calhoun et al., 2014; Hansen et al., 2015) (reviewed in Cohen,

2018). These network dynamics possess quasistable states, temporal

transitions, and hierarchical sequential characteristics (Vidaurre

et al., 2017), instead of random characteristics. These dynamical

characteristics strongly relate to cognitive functions [e.g., executive

functions (Braun et al., 2015), associative learning (Bassett et al.,

2011), perceptions (Frolov et al., 2019), and deficits in cognitive

functions in various pathological conditions such as, schizophrenia

(Damaraju et al., 2014), autism (Guo et al., 2020), and Alzheimer’s

disease (Gu et al., 2020)] (reviewed in Gonzalez-Castillo and

Bandettini, 2018; Sporns, 2022). In this Research Topic, Gandhi

et al. specifically evaluated neurophysiological differentiation as

a measure of dynamical network states related to the subjective

perception of visual stimuli. Notably, despite the use of neuropixels

recordings as an invasive method, these findings could potentially

aid in the identification of biomarkers for psychiatric disorders

characterized by dysfunctional perceptual processes.

3. Network dynamics in the
simulation-based approach

In addition to the experimental studies based on physiological

data, the simulation-based approach with mathematical modeling

is effective for revealing factors that induce the alteration

of network dynamics by embedding the network structural

characteristics into the neural networks (Lea-Carnall et al.;

Barkdoll et al.; Park et al.; Zhu et al.) (reviewed in D’Angelo

and Jirsa, 2022). Particularly, in this Research Topic, Lea-Carnall

et al. demonstrated that dynamical network patterns appear

according to the fluctuation level, which is suggestive of dFC.

Furthermore, it is widely recognized that an imbalance of

excitatory and inhibitory neural activity leads to abnormal neural

activity observed under pathological conditions and deficits in

cognitive function (reviewed in Yizhar et al., 2011; Bosman

et al., 2014). Park et al. reported that a locally increased

excitatory/inhibitory ratio prevents information flow in neural

networks; subsequently, the complexity as the degree of mutual

interactions among neural populations reduces, and Zhu et

al. further demonstrated that the deficits of top-down control

and inhibitory effects lead to a schizophrenia-like illusion

representation. Barkdoll et al. constructed a neural network model

for the emergence of binocular rivalry and showed that impairment

of inhibitory neural activity leads to the slow percept switching

in binocular rivalry, which resembles the tendency observed in

autism.

4. Conclusions

In this editorial, we have explained several recent studies,

particularly including those acquired studies in this Research Topic

(Lea-Carnall et al.; Gandhi et al.; Barkdoll et al.; Park et al.;

Zhu et al.), for network dynamics using physiological-data and

simulation-based approaches. We believe that the findings of these

studies will interact to facilitate future biomarker development for

psychiatric disorders.
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