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Successful days are defined as days when four cases were completed before
3:45pm, and overtime hours are defined as time spent after 3:45pm. Based on
these definitions and the 460 unsuccessful days isolated from the dataset, 465
hours, 22 minutes, and 30 seconds total overtime hours were calculated. To
reduce the increasing wait lists for hip and knee surgeries, we aim to verify
whether it is possible to add a 5th surgery, to the typical 4 arthroplasty surgery
per day schedule, without adding extra overtime hours and cost at our clinical
institution. To predict 5th cases, 301 successful days were isolated and used to
fit linear regression models for each individual day. After using the models’
predictions, it was determined that increasing performance to a 77% success
rate can lead to approximately 35 extra cases per year, while performing
optimally at a 100% success rate can translate to 56 extra cases per year at no
extra cost. Overall, this shows the extent of resources wasted by overtime costs,
and the potential for their use in reducing long wait times. Future work can
explore optimal staffing procedures to account for these extra cases.
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1. Introduction

In Canada, the median wait time for treatment from referral by a general practitioner

(GP) was 27.4 weeks (12.6 from GP to specialist, and 14.8 from specialist to treatment) in

2022. This value continues to trend upwards, even relative to pre-determined reasonable

wait times (1).When looking at individual specialties, orthopedic surgery not only

consistently demonstrates long median wait times over several years, but also has the

longest median wait time from specialist to treatment in 2021 (30.2 weeks) and is second

only to plastic surgery in 2022 (32.4 vs. 34.3 weeks) (1). Despite having an estimated

median reasonable wait time of 15.4 weeks, hip and knee replacement surgeries were still

given a Pan-Canadian benchmark wait time of 26 weeks as a maximum, yet it is still lower

than the national median wait time of 38.0 weeks in 2022 (1). In Ontario alone, there are

currently an estimated 206,000 patients waiting for surgical procedures (2). For orthopedic

surgery in Ontario, the median waiting time is 19.9 weeks, 75% greater than the province’s

reasonable median wait time of 11.4 weeks, leaving an estimated 38,275 patients waiting

for orthopedic treatment, 25,372 of which are for arthroplasty surgeries (1).

Before the COVID-19 pandemic, hip and knee replacements were increasing at a rate of 5%

per year. During the COVID-19 pandemic, hip and knee replacements between April and
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December decreased by 16.1% and 29.8% respectively from 2019 to

2020 due to an abundance of cancellations, creating an excess of

waiting patients. In fact, current trends in Canada have led to

138,500 surgeries and estimated inpatient costs of over $1.4 billion a

year, imposing a huge burden on the economy, in addition to large

backlogs in waiting lists (3). Unfortunately, data indicates that in

order to overcome these large backlogs, provinces will need to

exceed pre-pandemic rates of surgery, something that has only been

accomplished 3 times nationally since the beginning of the

pandemic (4).

In Ontario, patients are triaged into different categories based on

urgency: priority 4 patients have a target treatment time of 182 days,

priority 3 have a target treatment time of 84 days, and priority 2

patients should be treated within 42 days. When evaluating the

wait time from the decision for surgery to the surgery itself, only

16% of hip replacement patients and 10% of knee replacement

patients are treated within the target time at our institution. For

the former treatment, the average wait time for priority 4 patients

is 375 days, while that for priority 2 patients is 135 days (not

enough data for priority 3), while knee replacement patients yield

average wait times of 398 days for priority 4 patients, and 214

days for priority 3 patients (not enough data for priority 2) (5).

Current options that support and enhance the scheduling and

efficiency of hospitals come in two main types: clinical and non-

clinical methods. The non-clinical methods (6, 7) can be divided

into three approaches: firstly, incorporating new resources to

enhance the effectiveness of operating rooms (8–11); secondly,

utilizing data-driven methods like rhetorical data and descriptive

analytics to modify, assess, or reorganize existing hospital resources

(12, 13); and thirdly, employing machine learning (ML) solutions

specifically designed for operating room optimization. The majority

of these solutions have the common goal of foreseeing various

aspects of surgical procedures. This involves predicting events both

before (14) and after surgery (14–16), as well as accurately

estimating the duration of the surgical process itself (17–19).

Expenses can be associated with any of these phases of surgery,

which opens up opportunities for cost reduction (20). One way to

achieve this is by diminishing the necessary resources through the

implementation of self-management application (21). Additionally,

certain decision support systems have been employed to simulate

various scenarios involving interactions with staff and managers,

potentially leading to an increase in the number of cases on

certain days (22).

Other Efforts such as 4-joint operating rooms (OR) (i.e.,

dedicated to serving 4 operations within 8 h) have been

implemented to increase throughput and shrink existing waiting

lists (23). However, the issue persisted, as the 4-joint room was

only able to report a 49% success rate in 2012, indicating a lack

of consistent efficiency (23). This is additionally concerning as

inefficient use of resources and time contribute to 30% of total

healthcare expenditures (14), further emphasizing the need to

optimize time and cost. These numbers highlight the burden

placed on this hospital, and the pressing need for solutions to

reduce the waiting list.

We are of the opinion that we are pioneering the utilization of

perspective analytics to compute the expenses linked to overtime
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pay and forecast whether this sum suffices to accommodate a

fifth instance of a 4-joint arthroplasty procedure.
2. Previous work

Our institution has a dedicated orthopedic OR for 4-joint

arthroplasty procedures. The OR is specially designed for high-

volume arthroplasty surgeries, i.e., partial, and complete joint

replacement, and facilitates four procedures each day (from

Monday to Friday, excluding Wednesday at which time the ORs

start 30 min later for education). Each procedure is subdivided

into six stages, including Anesthesia Preparation, patient

positioning, surgical procedure, patient exiting the room and

turnover, the final stage (see Figure 1).

A successful day in this arthroplasty OR is defined as the

completion of all four procedures within the allocated time; in

this case, the eight hours assigned between 7:30 am and 3:30 pm;

however, because there is a 15-min buffer window for overtime

pay at our institution, 3:45 pm is used in the proposed methods

of this article. The Surgical Success Rate or SSR was the metric

designed to keep track of the percentage of successful days in a

predetermined period (typically a year).

The original SSR was dismal - 39%, and the overtime cost for

our institution was roughly $570,000 annually. Multiple initiatives

were introduced to improve this SSR with varying degrees of

success (23–25).

Recently, we suggested the most comprehensive solution to this

problem—a data-driven, Machine Learning (ML)-based,

prescriptive analytics system. It not only predicts the probability

of whether a particular day would be successful based on time

variables, but also monitors each stage of the procedure in real-

time, modifying its prediction if needed, and offers suggestions

through a proposed list of actions at a given stage to increase the

probability of success (25), as demonstrated in Figure 2.

These suggested actions are updated stage-by-stage for each

procedure. The multiplicity of suggestions ensures that the

surgical team has multiple viable options to choose from,

allowing them to leverage their experience and expertise to

employ what they believe would be the most positively impactful

suggestion in any given circumstance (see Figure 2). These real-

time proposals allow the system to not just monitor but optimize

the procedures and influence the SSR.

The suggestions offered by the ML-based prescriptive analytics

system were developed and tested during a comprehensive and

highly successful program designed to optimize OR procedures.

The program focused on Positive Deviance seminars offered by

the most successful surgical professionals in their respective

domains. This included surgeons and registered nurses (RNs)

with the highest SSR, with the idea of sharing their expertise and

best practices with the team to improve overall SSR (8). At our

center, during the PD exercise the anesthesiologists refused to

participate.

These professionals shared the processes and procedure

optimization techniques that allowed them to complete all four

surgeries on time (without compromising patient safety) with the
frontiersin.org
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FIGURE 1

An overview of each stage of a procedure, as well as the transition between two (turnover). At the top are the stage markers of a case, while the black
region shows the different duration variables used. Acronyms are fully explained in Table 3.

FIGURE 2

A visual demonstration of the artificial intelligence model’s function. Colors are used to indicate timeliness at each stage of the procedure, while
suggestions are provided for ways to maintain or catch up to the desired rate.
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rest of the team (see Table 1). These processes and techniques were

made part of the ML system, which would suggest the right set of

actions at various stages of the procedure to optimize the process.

Following the system’s suggestions resulted in a significant

improvement in individual procedure times and, as a result, an

improvement in the overall SSR.
2.1. The benchmarks

The model establishes multiple sets of benchmarks to track

success and failure by monitoring the six stages of individual

procedure case. More specifically, both stage duration benchmarks

and recommendations are produced for any desired SSR. Based on

the sets produced, a 77% success rate was defined as the baseline,

replacing the default SSR of 39% (25). This SSR was selected as the

baseline because its benchmarks were deemed easily achievable by

the clinicians and through the leveraging of the prescriptive
Frontiers in Digital Health 03
analytics system (see Table 2). In doing so, it leads to improve

nearly three out of five (61%) failed days on which the 4 surgeries

were not completed on time. These failed days, on average, cost the

hospital about 36 min of overtime (more than $2,000 a day).

Another benchmark is the best-case scenario - 100%. This is

achievable when the prescriptive analytics system is fully

leveraged, and the most potent actions/suggestions are followed

to optimize the overall procedure time. This results not only in a

successful day, but also with an adequate amount of time left

within the eight-hour window. It is this scenario that encouraged

us to suggest a follow-up model. Example benchmarks for this

scenario as well as others are shown in Table 2.
3. Relation to this work

With the development of our ML-based prescriptive analytics

system, the ideal scenario would be zero overtime and all
frontiersin.org
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TABLE 1 Examples of suggestions offered by surgeons and nurses at positive deviance seminars to optimize OR procedures.

Surgeons Nursing
1. Be there from positioning to patient transfer from the table.
2. Have a standardized/protocolized approach for each type of procedure.
3. Anticipate next steps, calling for instruments/implants.
4. Assist with turnover and putting away instruments, but in a way that is supported
by nurses.
5. Institute an incentivization for the entire team to be done by 3:30, and that would
drive efficiency.
6. Bring the patient into the room for spinal preparation such that instruments may
be opened simultaneously (in parallel rather than in series)
7. Anesthesia does the blocks and spinals in the procedure room.

1. Have an engaged, familiar team working together.
2. Have equipment ready to go before patient enters the room.
3. Whole team (nursing, surgery, anesthesia) is present during turnover.
4. Begin putting away instrumentation during closing.
5. Have experienced, knowledgeable scrub nurses who know the steps to the procedure
and will know when certain instruments (implants) are needed.
6. Have attendants available to help with turnover.
7. Ensure nurses in the room have received total joint training.
8. Minimize phone call interruptions from pre-op and PACU during the case.
9. Ensure attending available for prep. Make use of free staff in room when prepping/
positioning. Ensure no revision of surgical positioning.
10. Need team lead (TL) to have adequate time for training and administration.
11. Ensure improvements in efficiency don’t come at cost to patient outcomes.

TABLE 2 Benchmarks established by the AI model for different success rates. The baseline and the optimal scenarios are used for evaluation in this paper.

Scenario APT (mins) Case (mins) AFT (mins) Turnover (mins) Success rate
Baseline (75th percentile) <10.5 <71.5 <20.5 <21.5 77%

Fast procedure <10.5 53 <20.5 <21.5 93%

<10.5 64 <20.5 <21.5 89%

Slow procedure <10.5 >71.5 <20.5 <21.5 59%

Slow turnover <10.5 <71.5 <20.5 >21.5 69%

Slow anesthesia Preparation 10.5–18.5 <71.6 <20.5 <21.5 64%

Optimal performance <7 <62.5 ≤7 ≤20 100%
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surgeries completed on time on any given day. However, even if we

disregard the anomalies during procedure and preparation, there

are several factors preventing this ideal scenario from becoming

the norm, including a limited number of high performers and

the inevitable concentration of more time-consuming patients on

certain days (statistically significant).

This encouraged us to consider the above two benchmarks,

77% and 100% SSR outputs of our perspective system to predict

the possibility of completing an additional surgery (i.e., a 5th

case) during a successful day. To do this, savings from the

decrease in overtime hours and its increased pay will be

evaluated for its ability to fund the 5th cases, leading to an

increase in throughput with no extra cost. This will ensure fair

compensation to the surgical staff for a higher number of overall

surgeries because additional surgeries would be covered under

the saved overtime that the staff has already been paid for.

A flowchart visualizing this process can be found in Figure 3.

Even with a rudimentary calculation, the average overtime

for four unsuccessful days (36 min times four) will be roughly

enough to justify fitting in a fifth surgery on a successful day.

With the cost and time justified, the analytics systems will be

applied to different time distribution scenarios to identify how

many successful five-surgery days are feasible and justifiable. This

may require us to consolidate recommendations like scheduling

multiple low-risk/less-time-consuming patients on a single day or

deferring monitoring in the Post-Anesthesia Care Unit (PACU).

Therefore, the contribution of this article is to implement a

predictive method to estimate of likelihood of fitting a

5th=surgery during a successful 4-joint operating room day,

using only cost-savings accrued from use of our previous work

—an Artificial Intelligence (AI)-based model that produces
Frontiers in Digital Health 04
time-based benchmarks for different success rates. Cost

savings from two success rates that will be evaluated: 77%, our

realistic baseline, and 100%, optimal performance (25). To

do this, we will utilize linear regression by fitting a model to

every successful day, generating a histogram of 5th case

predictions that will be leveraged to explore different

distribution strategies of saved costs.
4. Arthroplasty data set

In order to leverage the existing ML-based prescriptive

analytics system for the proposed fifth case simulation, it’s

imperative to understand the foundational data used to build the

original model/system.
4.1. Time period

The data collected for building use in this paper spans from

2012 to 2019. This is enough time to recognize almost all short-

term and long-term patterns in data. The statistically significant

amount of data naturally lowered variance estimation, leading to

more accurate predictions and, consequently, drawing more

relevant recommendations.
4.2. Nature of procedures

To streamline the data and identify better optimization

techniques, we adhered to non-complex cases and unilateral
frontiersin.org
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FIGURE 3

A flowchart showing an overview of our research plan. This article focuses on row 3.
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surgeries. Our early analyses found that bilateral surgeries take

more time, and even if it is not twice as long as unilateral

surgeries (such as the actual difference in the surgical procedure),

it is statistically significant enough to prevent the on-time

completion of four surgeries in a day. It is also important to

consider that typically, there is an approximate 4:1 unilateral to

bilateral surgery ratio, so the bulk of the procedures were

considered. Similarly, complex surgeries where health

complications, which may prolong the procedure, are identified

beforehand were also excluded from the data set since they are

predictable rarities, not the norm.
4.3. Nature of data

The data our machine-learning systems were trained on was

both numerical and categorical in nature. The numerical data

mostly consisted of timestamps for every stage of the procedure,

which were converted to durations to generate a rich number of

numerical variables and metrics. The categorical data came from

the individuals and the type of surgeries performed. Collectively,

the data pool consisting of 40 different variables covering almost

all medically relevant details about the patient and procedure, the

surgical team performing the procedure, and the necessary time

variables; however, the final dataset was filtered down, resulting
Frontiers in Digital Health 05
in 29 of the pool’s 40 variables being used (see Table 3). Of

these 29, Case Number and Out of Room Time will be used in

this paper’s models, highlighted in Table 3.
4.4. Data collection source

The data for most of the identified metrics came from the

Surgical Information Management System (SIMS), though some

data points came from patient charts and daily notes. This

consolidated sourcing of the relevant data prevented the need for

integrating different information management systems and

overcomplicating the process. This is also one of the factors

making this system extrapolatable to different healthcare facilities.
4.5. Treatment of data

Since we already removed anomalies like complicated cases and

statistical outliers (bilateral surgeries) that would undermine the

pattern recognition and generation of useful insights, the treatment

was relatively minimal. The data was cleaned for missing

information and incorrect values, both of which represented less

than 1% of the observed data set, so the removal was not

significant enough to impact the statistical outcome. Regardless of
frontiersin.org
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their dissent with median values, rare cases (categorized as non-

complex before the procedure began) were kept in the data set.

They had a modest impact on the extremes, but not enough to

deviate from the trends enough to draw wrong conclusions.
FIGURE 4

A histogram of out of room times showing all individual cases, and successful c
out of the operation room, while the y-axis shows the number of cases that

TABLE 4 General patient demographics from the sample dataset.

Number of surgery days (total surgeries) 761 (3,044)

Distribution of male and female patients 1,560 (51.25%) M; 1,484 (48.75%) F

Average patient age 63.2 ± 11.9

Average patient BMI 30 ± 5

TABLE 3 The selected variables that were present in the dataset used for
the development of the AI model.

Time metrics Staff (team)
metrics

Patient
metrics

Safety
metrics

Anesthesia preparation time
(APT)

Surgeon Campus 90-day
readmissions

Anesthesia start time Anesthesiologist Type of
surgery

Reason for
readmission

Time in room Circulator Nurse 1 Type of
anesthesia

Length of
stay

Anesthesia ready time Circulator Nurse 2 Sex

Anesthesia stop time Age

Anesthesia finish time (AFT) BMI

Surgical preparation time (SPT) ASA

Case start

Case finish

Surgery finish time (SFT)

Turnover

Surgery (procedure) time

Time out of room

Case no

Date

Time out of Room and Case No are the features used for this work.
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4.6. Demographics of patients and other
quantifiable

Table 4 contains required information about demographics of

patients and some other quantifiable.
4.7. Descriptive analytics

Of the 761 4-joint operation days, 301 were successful (4

operations before 15:45), marking a 39.55% success rate. In these

successful days, there was a total 97 h and 49 min of spare time

(time between the end of the final case and 15:45), averaging to

19 min and 30 s per day. Overtime-cost hours were calculated

using the remaining 460 unsuccessful days by multiplying the

number of overtime hours (hours worked past 15:45) by 1.5 (the

paid overtime rate). Doing so reveals a total 465 h, 22 min, and

30 s overtime-cost hours, leading to an average of one hour per

unsuccessful day.

Each case’s out of room time, which is the time at which the

patient is taken out of the operating room, is plotted on a

histogram, showing distributions of successful cases and all cases

(see Figure 4). Peaks on the graph belong to individual

distributions of one of the four cases in a day. The distribution

of all 4th cases shows a tail that extends past 8 pm, marking over

4 h of overtime on some days. In general, the skew of all cases

appears to increase to the right with each subsequent case

number, while that of successful cases appear to do so minimally

to the left. In line with the trend of increasing skews, the spread

of each distribution also increases with each subsequent case

number, going from having a standard deviation of 00:17 m:44 s

for first cases to 00:42 m:05 s for fourth cases, as shown in
ases. The x-axis shows bins of times at which patients have been escorted
are in each bin.
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TABLE 5 The standard deviations of successful cases and all cases.

All cases Successful cases
1st case 00:17:44 00:12:07

2nd case 00:26:14 00:17:01

3rd case 00:31:26 00:18:56

4th case 00:42:05 00:16:51*

*Reduced by a cut of the distribution due to the limit at 15:45.
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Table 5. Table 5 also shows a stark difference between successful

cases and all cases, as the former is much more consistent with

their times, as demonstrated by their smaller standard deviations.

Individual successful days were isolated, and their out of room

times were each graphed against their case number. Figure 5 shows

an example of 4 different days, all of which demonstrate the linear

nature of out of room times for a specific day. This observed trend

inspired our method of predicting 5th cases as described in the

Methodology.
5. Methodology

The data was first divided into successful and unsuccessful

groups: the successful group contains all days where the fourth

case was completed (as defined by its out of room time) at or

before 15:45, while the unsuccessful group contained all days

where the 4th case was completed after 15:45.

As previously mentioned, there is an average of 19 min and

30 s of spare time per successful day; to ensure that this spare

time is used and that staff do not end their days later than

needed, it was decided that 5th cases will only be added to

successful days. This decision is further reinforced by the
FIGURE 5

Random examples of successful days’ out of room times with case numbers
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successful group’s more consistent trends, which facilitates model

training to yield more accurate results. Thus, the successful

group is used for the prediction of 5th cases and their potential

addition, while the unsuccessful group is used for the calculation

of overtime-cost hours and the distribution of their hypothetical

savings among all days.

To predict 5th case out of room times, the linear nature of each

successful day’s cases is leveraged (see Figure 5). All 301 successful

days are isolated, along with their 4 cases. For each isolated day, a

linear regression model is used to fit the out of room times with

case number as the independent variable, and a 5th case

prediction is generated from each one. Following the prediction

for each day, a distribution of 5th case predictions is produced

(shown in Figure 6). This distribution will be used to evaluate

the potential of adding extra cases by using previous cost savings

calculated from unsuccessful days. The use of linear regression is

advantageous due to its interpretability, simplicity, and its ability

to make predictions without ground truth data. Due to the

nature of the problem, no 5th case ground truth data is available,

limiting the scope of methods to choose from. Linear regression

overcomes this problem by not requiring the desired input to be

in the training set. Given the approach of isolating successful

days, each day’s model can be individually analyzed and

adjusted, with its slope representing that day’s average case

duration. Further, linear regression accounts for the day’s start

time by accounting for the first case, and naturally produces

variability in case durations without compromising overall

accuracy by fitting to the existing variability within the dataset.

Finally, this method allows for the prediction of further cases (ex.

6th, 7th, etc.) if needed by simply changing the input variable.

The linear regression equation is shown below, where w1 denote

the trainable weights, x is the inputted case number, and y is the

associated Out of Room time. Practically, w1 reveals a given day’s
on x and out of room times on y.

frontiersin.org
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FIGURE 6

A histogram of all predicted 5th case out of room times. The x-axis represents different bins of predicted 5th case out of room times (time at which
patients are escorted out of the operation room), while the y-axis shows the number of predicted cases that are in each bin.
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average case duration, while w0 accounts for varying start times

between days.

y ¼ w1x þ w0 (1)

Calculations for overtime-cost hours saved (OCHS) were made

using this equation:

OCHS ¼ 465:375� 761x(1� y) (2)

Where x is the previously calculated overtime-cost hours per

unsuccessful day, y is the new success rate, 465.375 represents

the current number of overtime-cost hours (based on the

39.55% success rate), and 761 is the total number of days in

the dataset. Thus, a 100% success rate would lead to saving

465.375 overtime-cost hours. The calculated OCHS is then

divided in 3 ways: daily (761 days), bi-daily, and once a week

(4-day work weeks), each producing a different 5th case

success time benchmark. Once done, the predicted 5th cases

are used to generate success rates for each success time and

calculate the number of potential extra cases delivered at no

extra cost.
6. Validation

Because there is no ground truth data, two methods of

validation are employed. Both methods rely on Mean Absolute

Error (MAE), which is described by the following equation:

MAE ¼ 1
n

Xn

i¼1
jyi � ŷij (3)
Frontiers in Digital Health 08
Where n is the sample size, y is the actual value, and ŷ is the

predicted value. MAE is used because of its interpretability, as it

provides the actual mean time difference between the generated

values and the ground truth.

The first method is the prediction of 3rd and 4th case out of

room times, so that MAEs can be generated from their existing

ground truth data. To do this, the same procedure that is used to

predict 5th cases is also used to predict 3rd and 4th, with the

difference being that the lines are only fit to the first 2 and 3

cases of each successful day respectively. Once all the errors are

calculated, histograms and 95% mean confidence intervals are

produced for the MAEs to gain a deeper understanding of the

model’s performance. Through this method, we are leveraging

existing ground truth within the data to produce MAEs that can

be used to infer that of the prediction of 5th cases.

The second method is used to give an impression of how well

the lines fit to the existing data. Each day’s model has their MAE

calculated using the points on the line and the actual 4 case out

of room times. From there, another distribution and 95% mean

confidence interval is generated for further insight into linear

regression’s performance on the dataset, as well as the 5th case

predictions’ errors themselves.
7. Results

All predictions were compiled and visualized as a distribution

(Figure 6). The predictions have a mean time of 17:24:17 (95%

CI = 17:21:46, 17:26:48) a median of 17:29:30, and a standard

deviation of 22 min and 10 s. Of the 301 predictions, 256 of

them (85.7%) fall below the 2-h mark (17:45), while all 301

(100%) are predicted to end before 18:00, as the latest predicted

time is 17:56:30.

After training 3rd and 4th case-predicting models, mean absolute

error values of 13 m:40 s and 14 m:13 s minutes respectively were
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calculated. A distribution of every day’s error for each model is shown

in Figure 7. These distributions yield 95% mean confidence intervals

of 00 h:12 m:28 s, 00 h:14 m:50 s and 00 h:12 m:53 s, 00 h:15 m:31 s

for the 3rd and 4th case models respectively.

Similar outputs were produced for the second method; the

mean of all daily MAEs was 4:45 min, with a 95% mean

confidence interval of 00 h:04 m:25 s, 00 h:05 m:05 s and a

standard deviation of 2:55 min. The histogram of all daily MAEs

can be found at Figure 8.
8. Linear regression compared to other
techniques

While evaluating different approaches, the characteristics of

our dataset significantly limited the choices available to us.

Firstly, the absence of ground truth data for the fifth case
FIGURE 7

Histograms showing the distribution of the absolute values of each recorded e
model (bottom). The x-axes denote bins of absolute error values in minutes,
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eliminated the option of employing machine learning techniques

reliant on labeled training data. Secondly, we identified a

pronounced linear pattern in successful outcomes, prompting the

adoption of linear regression. Although we explored alternative

regression methodologies, it became evident that none were

viable for our particular scenario where each day required a

distinct model. Bayesian regression, for instance, necessitated

data distributions to derive information, but this method proved

unsuitable given the small dataset of four data points per model

across each day.

Given the solvability of linear regression, we disregarded

models employing gradient descent or regularization techniques

as unnecessary. Nonetheless, for the purpose of comparative

analysis, we contemplated incorporating the average duration of

each case (119 min). To achieve this, we added the time taken

for the fourth case from the available room time and assigned

this duration to the fifth case, assuming a success time of
rror for the 3rd case-predicting model (top), and the 4th-case predicting
while the y-axes show the number of predictions in each bin.
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FIGURE 8

A histogram showing a distribution of the absolute values of each day’s MAE. MAEs were calculated using the differences of each ground-truth case and
their fitted lines. The x-axis shows bins of mean absolute errors for any given day’s 5th case-predicting model, while the y-axis counts the number of days
in each bin.
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5:45 pm. This hypothetical adjustment yielded a 100% success rate,

as all fourth cases concluded prior to 3:45 pm. It is important to

note that this outcome is unrealistic and contradicts our

understanding of the situation. Furthermore, the identical

distribution between the fourth and fifth cases is also unrealistic,

particularly when considering that the standard deviation

increases with each successive case number.
9. Predicting the potential to Fit a 5th
case during successful surgery days

The predictions were considered under two potential scenarios:

77% success rate, and 100% success rate. Using Formula 2,

achieving a 77% success rate would yield hypothetical savings of

288 h:17 m:50 s overtime-cost hours, which is approximately 38 h

and 26 min per year. Distributing these hours daily leads to

22 m:44 s extra minutes per 5th case day, which when added to

the original end time of 15:45, would produce a new end time of

16h:07 m:44 s. Based on predictions, 5th cases would be

completed at a 1.00% success rate for that time. This extra time

is doubled when distributed bi-daily to 45:28 min per day,

marking a surgery end time of 16:30:28 and more than doubling

the 5th case success rate to 2.66%. Finally, given that 4-joint days

are only run 4 days a week, the extra time is once again doubled

when pooling them for a weekly 5th case. Doing so yields 90:56

extra minutes per 5th case day, for a surgery end time of

17:15:56 and predicted success rate of 26.25%. However, because

an end time of 18:00 (135 extra minute) has a predicted success

rate of 100%, one week can be skipped to split its extra time

among the following two weeks and lead to two days with a
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predicted 100% 5th case success rate every 3 weeks. Ultimately,

this sums up to approximately 35 extra cases per year at no extra

cost. A map of potential distributions at a 77% success rate is

shown in Figure 9.

Under the situation where a 100% success rate is achieved, all

465 h:22 m:30 s overtime-cost hours would be saved. With a daily

split, this amounts to 36 m:42 s per 5th case day, an end time of

16 h:21 m:42 s, and a predicted 5th case success rate of 1.99%.

Distributed bi-daily, these values increase to 73 m:21 s, 16:58:24,

and 12.6% respectively. When divided weekly, 146:48 extra

minutes, adding to an end time of 18:11:48, are given per day,

producing a predicted success rate of 100% with a minimum of

10 min to spare. These spared minutes can be pooled to

contribute to another 4 cases per year, leading to a total of 56

potential cases per year (assuming the hospital runs all year

long). A schematic showing these results is found at Figure 10.
10. Discussion

Considering poor 4-joint day success rates, our previous work

sought the development of an AI model that provides benchmarks

to achieve a certain success rate. Given our institutions’ current

wait list issues with hip and knee replacement surgeries, 5th

cases were predicted to evaluate the potential of their addition

using only overtime savings from an increase in success rate.

This can lead not only to better staffing efficiency, but higher

surgical throughput to help reduce the waiting list as well.

After completing 5th case out of room time predictions, a mean

out of room time of 17:24:17 and a median of 17:29:30 were

predicted. A negatively skewed distribution was expected due to
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FIGURE 9

A schematic demonstrating the division of saved overtime-cost hours from performance at a 77% success rate. There is only a 1% chance of fitting a 5th
case successfully each day, and up to 26.25% chance to add a 5th case per week.
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the same trend with 4th case out of room times. The predictions’

standard deviation of 22 min and 10 s also falls within expectation,

as it increased relative to previous ground truth cases, as shown in

Table 5. Despite the average successful case time of an hour and

59 min, not all predicted 5th cases (85.7%) fall below the 2-h mark

(17:45) while all 100% are predicted to end before 18:00, as the

latest predicted time is 17:56:30. These findings highlight the

presence of nuances in trying to find the optimal balance between

time added and prevention of further overtime waste.

When applying the predictions to evaluate how cost-savings

can be used to fund 5th cases, two contexts are considered:

performance at a 77% success rate, our baseline rate that is

deemed achievable and realistic by the clinicians (based on the

model’s benchmarks), and performance at a 100% success rate,

which is the ideal, best-case scenario. In both cases, it seemed

preferable to pool the hours at different intervals in order to

maximize throughput while minimizing the risk of overtime costs.

At a 77% success rate, the time saved would lead to sub-3%

success rates when divided daily or bi-daily. Although this would

lead to much higher throughput, it would do so at the cost of

many overtime hours, where salary is increased by a factor of
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1.5. This case is also true when dividing the hours weekly, as 90

extra minutes leads to a 5th case success rate of only 26.25%.

Intuitively, this gives the impression that extra time can be

pooled further to guarantee one extra case per month with no

extra cost; however, simply adding another 45 min is enough to

guarantee success based on the predictions, something that can

be done for two weeks by skipping one. In other words, when

distributing hours to one day a week, skipping one week leads to

a 100% 5th success rate in the following two. Overall, this means

that approximately 35 extra cases per year at our institution can

be funded solely from the savings accrued by increasing

performance to a 77% success rate.

When performing optimally (100%), results were similar, as

pooling the saved costs also drastically reduced 5th case overtime

costs. Daily and bi-daily distribution of saved costs yielded 5th

case success rates of 1.99% and 12.6% respectively, while weekly

pooling of saved costs allowed for 100% success rate, with a

minimum 10 min to spare. In total, savings can be optimized to

project 56 extra cases per year, meaning that 56 cases worth of

overtime-cost hours are currently being spent due to inefficient

performance at our institution (39.55% success rate).
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FIGURE 10

A schematic demonstrating the division of saved overtime-cost hours from performance at a 100% success rate.

Al Zoubi et al. 10.3389/fdgth.2023.1242214
However, one limitation with our output is the inability to

conclusively measure prediction accuracy due to the lack of

ground truth 5th case data. Instead, existing data was leveraged

to infer the models’ accuracy. The first method of doing so,

training models to predict 3rd and 4th cases, yielded mean

absolute error values of 13 m:40 s and 14 m:13 s minutes

respectively. Based on the histograms, most errors are smaller

than the means (see Figure 7), with a few large outliers. This is

deemed acceptable as these errors can represent variations in

case durations that exist in the dataset, making a more

representative distribution of predictions. The second method

looked instead at how well linear regression fit to the existing

data, yielding a mean absolute error value of 4 m:45 s. As with

the previous method, the distribution of errors shows a positive

skew, indicating that most of the errors are below the mean with

a few large outliers. Overall, linear regression fit well to the

trends of the dataset. However, as mentioned, the lack of any

ground truth 5th case data makes this evaluation inferential, as a

more direct evaluation cannot be made.

Another limitation is the uncertainty of how the data might

change once the AI model (9) is implemented. Whether use of the

model would work by improving the speed of all cases, reducing
Frontiers in Digital Health 12
the number of slow cases, or simply streamline case durations so

that they are more consistent is unknown, and could impact the

distribution of predictions. Fortunately, it is likely that the use of

the model would shift the distribution to the left, potentially

making the current evaluation a pessimistic one.

Despite these limitations, we propose a simple, effective, and

reproducible method of calculating potential throughput gains

with no extra cost as a result of improved performance efficiency.

In our case, this improvement relies on the success of a

benchmark-establishing AI model developed by members of our

team. Furthermore, the gains are only attainable with the

modification of staffing procedures so that longer days are had

without spending overtime rates; one example for this is to benefit

from staff that show up late, and who can stay late, by having them

stay longer for the fifth case. This work also opens many avenues

of future research: reproduction of this work after implementation

of the AI model may produce further refinements to cost-free

throughput enhancement depending on how the model affects all

cases, and whether it improves successful case durations as well.

Research into how staffing can best be modified to account for

extra cases could also offer another level of optimization, and a

potential area of healthcare reform.
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11. Conclusion

Due to the COVID-19 pandemic, the Canadian healthcare

system was burdened with long hip and knee replacement wait

lists and extra costs as a result of cancelled procedures. We aimed

to leverage the savings that would be accrued from the use of our

AI model to increase surgical throughput with no extra costs. To

do this, linear regression models were used to predict 5th case

out of room times that served as benchmarks to estimate success

rates at different 5th case success times. Success times were

determined by distributions of hypothetical overtime-cost savings

that would be accrued using the AI model. Previously, our

institution operated at a 39.55% success rate. Overall, it was

found that increasing to a 77% rate can lead to approx. 35 extra

cases per year funded solely by the savings acquired, while

operating at a 100% success rate can lead to 56 additional cases

per year. Future work can look at the optimization of staffing

procedures to account for extra hours with no overtime pay, and

the effects of the AI model on all case durations.
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