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Editorial on the Research Topic
The side effects of insecticides on insects and the adaptation mechanisms
of insects to insecticides

Since their initial implementation, insecticides have played a significant role in
controlling agricultural and medical insect pests. However, it is essential to recognize
that while these chemicals effectively target insect pests, they can also harm beneficial
insects, such as pollinators and natural predators, and have unintended impacts on non-
target insects. Additionally, the use of insecticides raises concerns about their lasting impact
on the environment and the delicate balance of ecosystems, affecting various organisms
within these intricate systems (Ansari et al., 2014). Moreover, the global challenge of
insecticide resistance and pest resurgence poses a significant constraint on agricultural
output (Zuo et al., 2021; Serrão et al., 2022). Considering this, “The Side Effects of
Insecticides on Insects and the Adaptation Mechanisms of Insects to Insecticides” aims
to explore new perspectives regarding the potential consequences of insecticide for both pest
and beneficial insects, focusing on Research Topic such as hormesis effects related to aspects
like reproduction, tolerance, and insect behavior. This subject also covers the biochemical
and molecular mechanisms that regulate insecticide resistance and its corresponding fitness
costs in insects.

Following their initial application in the field, the potency of insecticides in terms of
lethal concentrations diminishes gradually, leading to exposure to low lethal and/or sublethal
concentrations (Desneux et al., 2005; Desneux et al., 2007). This exposure can give rise to
various sublethal effects within the affected insects, as indicated by Desneux et al. (2007).
These effects encompass a range of negative impacts on crucial life history traits of beneficial
insects. Afza et al. delve into the realm of sublethal and transgenerational repercussions
stemming from the application of six distinct synthetic insecticides on the seven spotted lady
beetle, Coccinella septempunctata—a valuable predatory insect. Their findings reveal that
even at a low concentration (LC30), all tested insecticides substantially hinder the emergence
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of adults, adult weight, fertility, and fecundity in the parental
generation when compared to the control treatment.
Additionally, exposure to sublethal concentrations of these
insecticides resulted in a reduction of predation rates among the
F1 generation adults. This serves as a compelling example,
highlighting the detrimental consequences of insecticides on
beneficial arthropods within agroecosystems. Understanding the
unintended impacts of insecticides on non-target organisms,
particularly biological control agents, is imperative for the
successful integration of insecticides into pest management
strategies (Stark et al., 2007; Liu et al., 2019). Furthermore, this
Research Topic presents yet another illustration of the consequences
of insecticides on pollinators. Han et al. study uncovered that
exposure to field-realistic concentrations of acetamiprid and/or
difenoconazole triggered alterations in the honeybee gut
microbiome and gene expression, ultimately impacting the health
of these vital pollinators.

It is widely recognized that subjecting insects to mild stress from
insecticides can elicit hormetic (stimulatory) responses, which holds
significant implications for insect management, as well as the
ecological balance and dynamics within agroecosystems (Cutler
et al., 2022). Shedding light on this phenomenon, Li et al. have
presented their research outcomes concerning the influence of
hormesis induced by imidacloprid on the developmental and
reproductive aspects of the rose-grain aphid, Metopolophium
dirhodum. Conducted by Liu et al., another investigation delved
into the sublethal impacts of emamectin benzoate on adult
diamondback moths (DBM), Plutella xylostella, along with their
subsequent generations. The most intriguing revelation from this
study lies in the observation of reproductive hormesis among DBM
adults when exposed to LC20 concentrations. The discovery of
hormetic effects on reproduction holds profound significance in
the realm of insect pest management, as it could potentially underlie
the mechanisms driving pest resurgence following applications of
insecticides (Wu et al., 2019; Cutler et al., 2022). In a recent study,
Gong et al. (2023) examined the transgenerational hormetic effects
of nitenpyram on fitness, as well as the development of insecticide
tolerance and resistance, in Nilaparvata lugens. The researchers put
forth the hypothesis that the population outbreaks of N. lugens,
following exposure over multiple generations to low concentrations
of nitenpyram in field crops, might arise due to increased
reproduction and the subsequent development of resistance.

The emergence of insecticide resistance among insects poses a
significant challenge to the long-term effectiveness of insecticides,
which remain a primary means of controlling both agricultural and
medical pests (Gould et al., 2018; Van Leeuwen et al., 2020). Initially,
conducting thorough risk assessments of insecticide resistance is
paramount as part of insecticide resistance management (IRM)
strategies, particularly before the widespread adoption of new
insecticides (Zhang et al., 2020). Triflumezopyrim (TFM)
represents a new type of mesoionic insecticide developed by
Corteva Agriscience, which showed high biological activity in
controlling piercing-sucking insect pests such as planthopper
(Zhang et al., 2020; Wen et al., 2021). Wen et al. reported that
after 21 generations of continuous selection with TFM, the
Laodelphax striatellua developed a 26.29-fold resistance to TFM
with no cross-resistance to five other insecticides. This research
indicated that there is a risk of insecticide resistance development

during the continuous selection of TFM in fields, which is consistent
with the results obtained by Zhang et al. (2022). Furthermore,
insecticide resistance monitoring within field populations across
different regions holds paramount importance in IRM (Huang et al.,
2021). This practice aids in making informed choices regarding
insecticides and the rotation of insecticide Modes of Action (MoA)
groups (Huang et al., 2021). Meng et al. meticulously assessed the
susceptibility of forty-six field populations of Chilo suppressalis to
three distinct insecticides in three provinces of Central China from
2010 to 2021. Their findings indicated that C. suppressalis
populations developed varying degrees of resistance over time.
While demonstrating moderate to high levels of resistance to
triazophos, these populations still exhibited susceptibility, and
low to moderate levels of resistance to chlorpyrifos and
abamectin. As a result, the application of triazophos should be
suspended in efforts to control C. suppressalis, while the frequent use
of chlorpyrifos and abamectin should be reduced across Central
China. Chen et al. conducted a meticulous analysis of insecticide
resistance in 11 field-collected populations of fall armyworm,
Spodoptera frugiperda, originating from Sichuan Province. The
findings revealed that the resistance levels of the S. frugiperda
field populations within Sichuan remained within a sensitive
range concerning emamectin benzoate and chlorpyrifos. Notably,
these populations demonstrated low to moderate resistance to
chlorantraniliprole.

The development of insect resistance to insecticides can be
attributed to two primary mechanisms: One mechanism involves
target insensitivity resulting from gene mutations, while the other
involves metabolic resistance stemming from alterations in the
quantity and quality of detoxification enzyme genes (Bass and
Nauen, 2023). The extensive use of diamide insecticides has notably
led to the emergence of resistance among lepidopteran pests
(Boaventura et al., 2020). Specifically, the G4946E and I4790M/K
mutations within the ryanodine receptor (RyR) have been closely
associated with resistance to diamide insecticides in various field
populations of P. xylostella, as well as several other pest insects
(Roditakis et al., 2017; Wei et al., 2019). Ren et al. identified two
potential mutation loci, namely Gly4911Glu and Ile4754Met, that
contribute to the development of insecticide resistance in the leaf
beetle, Galeruca daurica. This beetle has emerged as a significant
grassland pest, marked by sudden outbreaks in the Inner Mongolia
grasslands since 2009. Remarkably, the G4911E mutant model
exhibited reduced affinity and an altered mode of action towards
two diamide insecticides. Consequently, their study strongly suggests
that the G4911E mutation in GdRyR could potentially serve as a key
mechanism driving resistance to diamide insecticides in G. daurica.
Additional contributions within this Research Topic center on the
pivotal role of detoxification enzymes and genes in the development of
insecticide resistance.Wen et al. have proposed that the development of
Triflumezopyrim resistance in L. striatellus is closely linked to several
P450 genes. In the 12th paper, Chen et al. have illuminated the
upregulation of five specific P450 genes (CYP6AE43, CYP321A8,
CYP305A1, CYP49A1, and CYP306A1) as potential contributors to
the moderate-level resistance observed towards chlorantraniliprole.
Furthermore, the eighth paper conducted by Chen et al. have
confirmed the critical role of a cytochrome P450 gene,
MusiDN2722 in the resistance of Megalurothrips usitatus Bagnall to
acetamiprid through RNA interference targeting the P450 gene.
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The phenomenon of insecticide resistance often carries a fitness
cost, forming the foundation for resistance management strategies
that involve altering insecticide usage (ffrench-Constant and Bass,
2017). However, this principle does not hold in every scenario.
Hasnain et al. have presented findings indicating that the
chlorantraniliprole-reduced susceptible strain of S. frugiperda
demonstrates higher performance in fecundity and other life
table traits compared to the chlorantraniliprole-susceptible strain.
To counteract the emergence of insecticide resistance, it is
imperative to implement a multifaceted approach encompassing
biological control, crop rotation, transgenic plants, and cultural
practices, in conjunction with refined insecticide application
strategies. These refined insecticide application strategies include
alternating insecticide usage, adjusting mixtures, and reducing
application frequencies. Feng et al. introduced an innovative
approach wherein combining pymetrozine with the fungicide
zhongshengmycin amplifies the insecticidal effects of pymetrozine
while concurrently carrying fitness costs inNilaparvata lugens (Stål),
which has developed elevated resistance to pymetrozine. This
research unveils a fresh avenue to stave off resistance
development and enhance the efficacy of pest management. In
another exploration, Idrees et al. evaluated the insecticidal
potency of the entomopathogenic fungus Metarhizium anisopliae
MA against S. frugiperda. Their study demonstrated the efficacy of
this fungus in inducing mortality among second instars, eggs, and
neonate larvae under controlled laboratory conditions.

In summary, this Research Topic delved into the multifaceted
aspects of insecticide’s impact on insects and their adaptive
responses. The outcomes illuminated various dimensions,
encompassing effects on pollinators and predators, hormesis
effects influencing pest insect populations, risk assessment for
insecticide resistance, and the intricate mechanisms underlying
the development of insecticide resistance. Furthermore, valuable
instances of utilizing biological control and combining pesticides
with fungicides for pest management and resistance mitigation were
highlighted within this Research Topic. However, despite these
significant advancements, numerous questions remain
unanswered. For instance, while many studies have identified an
array of detoxification genes exhibiting overexpression in resistant
insects, the exact roles of these genes require further investigation
and validation in the future.

We extend our gratitude to all authors for their insightful
contributions, as well as to the reviewers and the dedicated
editorial team for their invaluable input, comments, and
suggestions. With its diverse insights, we anticipate that this
Research Topic will prove engaging and enlightening for the
broad readership of Frontiers in Physiology.
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