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Image desmoking is a significant aspect of endoscopic image processing, 
effectively mitigating visual field obstructions without the need for additional 
surgical interventions. However, current smoke removal techniques tend to apply 
comprehensive video enhancement to all frames, encompassing both smoke-
free and smoke-affected images, which not only escalates computational costs 
but also introduces potential noise during the enhancement of smoke-free 
images. In response to this challenge, this paper introduces an approach for 
classifying images that contain surgical smoke within endoscopic scenes. This 
classification method provides crucial target frame information for enhancing 
surgical smoke removal, improving the scientific robustness, and enhancing 
the real-time processing capabilities of image-based smoke removal method. 
The proposed endoscopic smoke image classification algorithm based on the 
improved Poolformer model, augments the model’s capacity for endoscopic 
image feature extraction. This enhancement is achieved by transforming the 
Token Mixer within the encoder into a multi-branch structure akin to ConvNeXt, 
a pure convolutional neural network. Moreover, the conversion to a single-path 
topology during the prediction phase elevates processing speed. Experiments 
use the endoscopic dataset sourced from the Hamlyn Centre Laparoscopic/
Endoscopic Video Dataset, augmented by Blender software rendering. The dataset 
comprises 3,800 training images and 1,200 test images, distributed in a 4:1 ratio 
of smoke-free to smoke-containing images. The outcomes affirm the superior 
performance of this paper’s approach across multiple parameters. Comparative 
assessments against existing models, such as mobilenet_v3, efficientnet_b7, and 
ViT-B/16, substantiate that the proposed method excels in accuracy, sensitivity, 
and inference speed. Notably, when contrasted with the Poolformer_s12 
network, the proposed method achieves a 2.3% enhancement in accuracy, an 
8.2% boost in sensitivity, while incurring a mere 6.4 frames per second reduction 
in processing speed, maintaining 87 frames per second. The results authenticate 
the improved performance of the refined Poolformer model in endoscopic 
smoke image classification tasks. This advancement presents a lightweight yet 
effective solution for the automatic detection of smoke-containing images in 
endoscopy. This approach strikes a balance between the accuracy and real-time 
processing requirements of endoscopic image analysis, offering valuable insights 
for targeted desmoking process.
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1. Introduction

Endoscopes are essential tools that utilize the body’s natural 
cavities or tiny incisions to provide real-time visualization of internal 
organs and tissues (Fu et al., 2021; Boese et al., 2022; Chadebecq et al., 
2023). This minimizes the need for larger incisions during surgery, 
leading to shorter patient recovery periods. Consequently, endoscopy 
is now extensively employed in examining and treating various 
diseases involving the gastrointestinal tract (Aceves et  al., 2022; 
Niknam et al., 2022), ear, nose, throat (Bastier et al., 2022; Poutoglidis 
et al., 2022), spine (Ahn, 2020; Simpson et al., 2022) and urinary 
system(Zou et al., 2020; Yamashita et al., 2022). Despite the benefits 
of endoscopy, challenges arise during procedures: the generation of 
smoke due to the destruction and vaporization of tissue proteins and 
fat by the instruments (Yi et  al., 2023). This smoke hinders the 
visibility of tissue structures in endoscopic images, obstructing the 
physician’s vision and impeding accurate judgment and treatment. To 
address this challenge, image-based surgical smoke analysis and 
processing have emerged as a promising solution. Not constrained by 
hardware limitations, this approach reduces the reliance on surgical 
aids and assists physicians in obtaining clearer views for more precise 
diagnoses and treatments. Consequently, it holds immense potential 
and value for clinical applications.

However, the existing methods for intelligent analysis and 
processing of surgical smoke primarily focus on desmoking 
endoscopic images. For instance, Wang et  al. (2019) proposed an 
improved convolutional neural network (CNN) with an encoder-
decoder architecture for real-time surgical smoke removal. Their 
network takes an image with smoke along with its laplacian image 
pyramid decomposition as input and produces an image with smoke 
removed. To create the synthetic dataset, they utilized Blender and 
Adobe Photoshop to add rendered smoke to clean images. Similarly, 
Lin et al. (2021) introduced a supervised UNet-based network where 
the Laplace pyramid is fused at the encoder, and the CBAM module 
is integrated at the decoder. They employed Blender to generate 
datasets of laparoscopic images with varying levels of light and dense 
smoke. Their method achieved a high structural similarity of 0.945 
and a peak signal-to-noise ratio of 29.27 for the test data. Furthermore, 
Bolkar et  al. (2018) constructed a synthetic surgical desmoking 
dataset. They adapted the integrated desmoking network, AOD-Net, 
initially designed for outdoor desmoking, and their proposed 
supervisory model comprises five convolutional layers with ReLU 
activation units and three cascade layers. Azam et al. (2022) removed 
smoke from laparoscopic images by manual multiple exposure image 
fusion method. Venkatesh et al. (2020), Pan et al. (2022), Zhou et al. 
(2022), and Su and Wu (2023) respectively used CycleGAN-based 
network structure to realize laparoscopic image de-smoking and 
affirmed the important role of smoke detection in laparoscopic image 
desmoking, but their main design focus was on the structure of smoke 
purification network. Additionally, Wang et al. (2023) proposed a 
desmoking method based on Swin transformer, employing Swin 
transformer blocks to extract deep features. Most of the 
aforementioned desmoking techniques process all endoscopic images 
within the video stream for smoke removal, which is inefficient 
because smoke is not consistently present throughout the entire 
surgical procedure, and a substantial portion of the video stream 
consists of smoke-free images. Processing all video stream images for 
de-smoking not only increases computational demands but may also 

introduce new noise into the original smoke-free images. Hence, it 
becomes imperative to differentiate between smoked and smoke-free 
images, enabling the smoke cleaning algorithms to selectively focus 
on desmoking only the images containing smoke, while leaving the 
smoke-free images unaltered. This targeted approach ensures more 
efficient and precise desmoking, preserving the clarity and integrity of 
the original smoke-free images. This approach would significantly 
reduce equipment resource requirements, improve processing speed, 
and enhance the real-time, accuracy, and scientificity of desmoking in 
endoscopic scenarios.

To date, few studies specifically focus on the classification of 
endoscopic images containing smoke. Nevertheless, endoscopic image 
classification aligns with the fundamental principles of other image 
binary/multi-classification problems, wherein the objective is to 
predict input images into multiple categories based on their distinctive 
features. In the early stages, researchers employed algorithms like 
k-nearest neighbors, Support Vector Machine, and Random Forest for 
such tasks. These methods typically involved feature extraction prior 
to classification, necessitating human selection of one or more features 
that influenced the classification quality. In recent years, CNNs have 
gained prevalence for image classification due to their ability to 
automatically extract relevant image features and demonstrate 
exceptional performance on large-scale datasets. Lecun et al. (1998) 
proposed an early CNN architecture, comprising two convolutional 
layers, two pooling layers, and three fully connected layers, which 
facilitated the classification and recognition of handwritten digits and 
laid the groundwork for subsequent image classification models. 
Notably, Krizhevsky et al. (2012) introduced AlexNet, which achieved 
groundbreaking results in the ImageNet image classification 
competition. Their work significantly improved performance on large-
scale image datasets. Additionally, Tan and Le (2019) introduced 
EfficientNet, a CNN structure optimized through neural network 
search technology. Furthermore, ResNet was proposed as an 
innovative deep residual learning framework to address the issue of 
gradient explosion in deep network training (He et al., 2016). Howard 
et al. (2017) proposed MobileNet, a lightweight deep neural network 
designed for embedded devices. MobileNet utilizes depth-wise 
separable convolution to efficiently reduce the number of model 
operations and parameters, making it well-suited for resource-
constrained environments. Dosovitskiy et al. (2021) made a significant 
breakthrough in image classification by directly applying the 
transformer architecture to this domain, introducing the vision 
transformer (ViT) model. The ViT model utilizes the transformer’s 
encoder to extract essential features from images, resulting in 
remarkable advancements in image classification. In a related 
development, Yu et al. (2022) proposed the Poolformer model. Instead 
of employing the attention module, the Poolformer model utilizes a 
straightforward spatial pooling operation. Even with fewer parameters, 
the Poolformer model achieves competitive performance in image 
classification tasks. Furthermore, Almeida et al. (2022), Dewangan 
et al. (2022), and Zhao et al. (2022) individually explored lightweight 
CNNs for smoke detection in images of natural scenes.

Among existing image classification methods, network models 
like Poolformer have demonstrated the capability to achieve highly 
accurate real-time recognition in natural images. They hold significant 
potential for extending their effectiveness to the detection of 
endoscopic smoke-containing images. However, compared to natural 
images, endoscopic images face distinctive challenges in feature 

https://doi.org/10.3389/fnins.2023.1273686
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1273686

Frontiers in Neuroscience 03 frontiersin.org

extraction and recognition. This is primarily due to the 
non-Lambertian reflective properties of human tissues, resulting in 
weak texture features and a lack of salient features. Furthermore, the 
classification of endoscopic smoke-containing images necessitates 
real-time performance during surgical procedures, where achieving a 
high level of real-time efficiency is critical for successful 
implementation. The characteristics inherent in endoscopic scenes 
introduce complexity to the task of automatic feature extraction 
and recognition.

To enhance real-time performance while maintaining accuracy in 
smoke detection on endoscopic images with weak textures, this paper 
proposes a method for endoscopic smoke image classification using 
Poolformer. The primary enhancement of the algorithm lies in the 
model’s encoder, where the Token Mixer is upgraded from a basic 
pooling layer to a multiplexed branching structure akin to the purely 
convolutional neural network ConvNeXt (Liu et al., 2022). During 
prediction, it is further transformed into a single-path topology to 
bolster the model’s inference speed.

2. The proposed method

2.1. Overview

The Poolformer-based network for endoscopic image classification 
proposed in this paper is depicted in Figure 1. In terms of the network 
structure, the original Poolformer replaces the Multi-head Attention 
module in the encoder block of the conventional vision transformer 
with a simple pooling layer. To further enhance the feature extraction 
capabilities for weakly textured images, this paper proposes the design 
of a multi-branch pure convolutional neural network structure similar 
to ConvNeXt, aiming to optimize the pooling layer in the original 
Poolformer model. This enhancement improves the model’s feature 
extraction ability. Furthermore, to ensure real-time processing in 
endoscopic video streaming, the model’s structure is transformed into 
a one-way model to obtain classification results through predictive 
reasoning during the testing process.

2.2. Convolution module

In the Vision Transformer (ViT) module (Dosovitskiy et  al., 
2021), input tokens (vectors) are essential for processing images of 
various sizes. As an example, in the ViT-B/16 model, the input image, 
x h w c� � � , where h denotes the height, w signifies the width, and c 
represents the number of channels, undergoes convolution with a 
kernel size of 16 × 16, a stride of 16, and employs 768 convolution 
kernels to accomplish this operation. This process involves partitioning 
the input image x into patches of size 16 × 16. While increasing the 
convolutional kernel and step size in large datasets can expand the 
receptive field, allowing for feature maps over a wider area and 
obtaining superior global features, in smaller datasets, such as medical 
datasets like endoscopes, this advantage may lead to the loss of 
detailed information between patches.

To tackle this issue, this paper adopts the convolution-based 
patching method, which effectively mitigates the loss of detailed 
information. This approach removes the constraint that each patch 
size must be a multiple of the image’s dimensions, enabling adaptation 

to datasets with varying size dimensions. As illustrated in Figure 2, the 
preprocessed input vector x undergoes feature extraction through 
convolution, activation function, and maximum pooling operations. 
A downsampling operation is applied to meet the input specifications 
of the subsequent Positional Embedding layer. The GELU activation 
function is integrated in order to introduce randomness by combining 
it with the concept of dropout, thereby enhancing the robustness of 
the model. Additionally, to address the degradation problem, a 
residual module based on ResNet (He et  al., 2016) is employed. 
Finally, a positional embedding layer vector of the same size as ViT is 
obtained through a convolution and flattening operation.

2.3. Improved Poolformer encoder

The encoder of the fundamental ViT model primarily comprises 
two components: an attention module, also known as the token mixer, 
which facilitates information exchange between tokens, and 
subsequent elements such as channel MLP and residual connections. 
Abstracting the architecture while disregarding the specifics of how 
the token mixer is implemented with an attention module, the 
aforementioned design can be  represented as the MetaFormer 
architecture (Yu et  al., 2022), depicted in the first panel of 
Figure  3A. Contrasting with the conventional ViT model, the 
Poolformer model transforms the multi-head attention mechanism 
into a simple pool pooling layer, as illustrated in Figure 3B. Leveraging 
the overall superiority of the entire MetaFormer framework and the 
inclusion of the pooling layer, it significantly reduces the computation 
burden, machine load, and required video memory.

The pooling layer, in the process of dimensionality reduction, 
may lead to the loss of local information, which is particularly 
critical in weak texture endoscopic images where local information 
plays a crucial role. It is essential to minimize information loss as 
much as possible. Convolutional neural networks excel at retaining 
local information compared to pooling layers. Leveraging this 
advantage, the token mixer part is optimized to adopt a ConvNeXt-
like multiplexed branching structure, as depicted in 
Figure  3C. ConvNeXt is a pure convolutional neural network 
architecture that competes with transformer networks. In 
comparison to the transformer model, ConvNeXt significantly 
reduces the number of parameters, introduces spatial inductive bias, 
and eliminates positional bias. Consequently, this acceleration of 
network convergence leads to a more stable network training 
process. Through modifications involving stage proportions, 
grouping convolutions, an anti-bottleneck design, utilization of 
larger convolutional kernels in finer details, and replacing the 
activation function, ConvNeXt achieves faster inference speed and 
higher accuracy than the Swin Transformer.

For the improved Poolformer encoder, the 2D matrix x1 obtained 
from the input image through the convolution operation and 
flattening operation in Figure 2 serves as the input sequence. The 
specific structure and steps, for example, using ViT-B/16 (where the 
2D matrix x1 is in the format of [197,768]), are illustrated in Figure 4. 
In step (1), x1 undergoes mapping to interchange the H (height) 
dimension and C (channel) dimension, resulting in the matrix x2. A 
similar operation is performed in step (2), where the height dimension 
containing class categorization information is considered as the 
channel dimension.
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FIGURE 1

An overview of the proposed network, which consists of convolution module, improved Poolformer encoder, sequence pooling and MLP head.

FIGURE 2

Flow chart of convolution module.
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2.4. RepConvNeXt block

The proposed module, transforms the ConvNeXt Block into 
a RepConvNeXt Block—a one-way structure resembling RepVgg 
(Ding et al., 2021)—during prediction process to further enhance 
real-time performance, as depicted in Figure 5. During training, 
using multi-branch structures such as ResNet or models like 
DenseNet (Huang et al., 2017) generally increases the model’s 
representational capacity by parallelizing multiple branches.

Converting the multi-branch into a single-path topology 
during inference offers several advantages: Firstly, it enhances 
speed. Considering the degree of parallelism in hardware 
computation and MAC (memory access cost) during model 
reasoning, multi-branch models require separate computation of 
results for each branch. Some branches may compute faster while 
others compute more slowly, leading to potential underutilization 
of hardware arithmetic and insufficient parallelism. Additionally, 
each branch necessitates memory access and storage, resulting in 
substantial time wasted on IO operations. Secondly, it improves 

memory efficiency. The residual module depicted in Figure 6A, 
assuming the convolutional layer does not alter the number of 
channels, requires storing the respective feature maps on both the 
main branch and the shortcut branch, leading to roughly twice the 
memory consumption of the input activation before the add 
operation. Conversely, the structure shown in Figure 6B maintains 
the same memory usage throughout.

2.5. Classification

Through enhancements made to the Poolformer encoder, the 
output of the Transformer encoder after sequence pooling to the 
L-layer differs from the traditional ViT model. Instead of 
generating classification results by slicing the class token 
separately, the improved model utilizes data sequences containing 
both input image and class information. As a result, the model 
becomes more compact, and the sequence pooling output of the 
Transformer encoder produces sequential embedding in the latent 

FIGURE 3

Illustrations of the architecture of different encoders. (A) MetaFormer. (B) Poolformer. (C) Our model.
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space, enhancing the association with the input data. The final 
output obtained after sequence pooling can be utilized to derive 
results through a linear classifier.

3. Experiments and results

3.1. Dataset

For the experiment, real laparoscopic images from the 
Hamlyn Centre Laparoscopic/Endoscopic Video Dataset1 are 
employed, comprising 5,000 endoscopic images with dimensions 
of 384 × 192 pixels. As the images constitute a continuous video 
sequence with minimal differences between adjacent frames, to 
ensure the robustness of model training and the accuracy of 
model testing, we  adopted a sampling approach. Specifically, 
we  selected 5,000 images from the video dataset at irregular 
intervals and rendered 1,000 of them to generate a dataset 

1 http://hamlyn.doc.ic.ac.uk/vision/

comprising smoke-containing images, as illustrated in Figure 7. 
The remaining 4,000 images constitute the smoke-free dataset. 
The selected images is further partitioned into a training set 
(3,800 images) and a test set (1,200 images), maintaining a 4:1 
ratio between smoke-free and smoke-containing images in each 
set. This balanced distribution ensures effective model training 
and evaluation.

This paper introduces Blender,2 a 3D graphic image engine, for 
software rendering to generate smoke-containing images, which 
enhances the neural network training dataset. The integration of 
software rendering addresses the limitation of smoke images in the 
real endoscopy image dataset. The Blender physical rendering 
engine is utilized to create realistic and accurate smoke textures, 
enabling the generation of simulated smoke with random shapes 
and densities. The rendered smoke possesses local color and 
transparency, with its position controlled by input parameters: 
random intensity (Trand), density (Drand), and position of smoke 
generation (Prand). The smoke image is defined as follow:

2 https://www.blender.org/

FIGURE 4

Illustrations of the architecture of our improved encoder. (A) The improved encoder. (B) The ConvNeXt block.
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 I x y T D Psmoke´ , Blender , ,rand rand rand� � � � � (1)

The smoke image, denoted as Ismoke (x, y), is synthesized by utilizing 
the luminance values of RGB channels. By fusing this rendered smoke 

with the laparoscopic image, the smoke-containing image is defined 
as follow:

 I x y I x y I x ysimage original smoke, , ,� � � � � � � � (2)

3.2. Experimental platforms

The experimental platform used in this study consists of a Windows 
10 operating system, 8 GB RAM, a single NVIDIA 2080Ti 11 GB GPU, 
and a sixth-generation Intel® Core™ i5 (4C4T) processor. CUDA 10.2, 
the computing platform provided by NVIDIA, is installed on this 
platform. The PyTorch 1.8.1 framework is employed to implement the 
endoscopic smoke image classification algorithm presented in this paper.

3.3. Experimental setup

In the training process of endoscopic smoke image classification, 
the hyperparameters for image training were set as follows: The 
dataset images were resized to a size of 224 × 224 using the transforms. 
Resize function as input to the Convolutional Tokenization layer. An 
exponential decay method was applied to adjust the learning rate, 
starting with an initial learning rate of 0.001. To enhance the number 
of Poolformer encoders and prevent overfitting, L = 10 was employed, 
and data augmentation was implemented through random level 
inversion. The training was conducted using a 10-fold cross-validation 
method with 50 epochs.

The experiments were conducted by the controlled variable 
method on endoscopic images for multiple separate groups, including 
the following network architectures: mobilenet_v3 (Howard et al., 
2019), efficientnet_b7 (Tan and Le, 2019), the ViT network (ViT-B/16) 
(Dosovitskiy et  al., 2021), Poolformer network with Token Mixer 
changed from attention to pooling layer (Poolformer_s12) (Yu et al., 
2022), improved Poolformer network with the utilization of 
multiplexed branching structure akin to ConvNeXt during training, 
and improved Poolformer network with the utilization of multi-branch 
structure during training and single-path structure during prediction.

FIGURE 5

Illustrations of the architecture of RepConvNeXt Block.

FIGURE 6

Illustrations of the architecture of multiple and single path. (A) Residual. (B) Plain.
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4. Results

4.1. Evaluation metrics

For the classification algorithm of endoscopic images based on 
Poolformer, which is adopted in this paper, the metrics used for 
evaluation include Accuracy (Acc), Sensitivity (Sens), and inference 
speed/ frames per second (fps).

 
Acc TP TN

TP FN FP TN
�

�
� � �  

(3)

 
Sens TP

TP FN
�

�  
(4)

where TP represents the number of true positive samples (images 
with smoke correctly predicted as images with smoke), FP represents 
the number of false positive samples (smoke-free images incorrectly 
predicted as images with smoke), FN represents the number of false 
negative samples (images with smoke incorrectly predicted as smoke-
free images), and TN represents the number of true negative samples 
(smoke-free images correctly predicted as smoke-free images).

4.2. Method comparison

To verify the effectiveness of the model, multiple sets of 
comparison experiments were conducted using the same endoscopic 
image dataset and smoke rendering scenarios, along with consistent 
settings for the remaining experimental parameters. The results were 
averaged over five runs, and the performance of different detection 
models on the dataset is presented in Table 1. Among the networks for 
comparison, all are lightweight neural networks designed for 
low-power devices, except for the classic ViT-B/16 network. The 
results reveal that in comparison to the mobilenet_v3, efficientnet_b7, 
and ViT-B/16 models, the proposed model demonstrates 

improvements in accuracy by 2, 1.6, and 1.4%, along with 
enhancements in sensitivity by 4.9, 3.2, and 2.7%, respectively. 
Furthermore, the proposed model achieves superior processing speed 
performance, with a frame rate increase of 30.9, 39.3, and 44.5 fps 
when compared to the mentioned models. These comparative 
experiments highlight the efficacy of the paper’s approach in 
conducting more accurate, comprehensive, and expeditious screening 
of smoke-containing images within endoscopic scenes, surpassing 
these existing modeling methodologies.

4.3. Ablation experiment

To evaluate the effectiveness of the improved multi-branch 
structure and the single-path inference process, we compare the 
performance of the original Poolformer model with versions that 
incorporate the multi-path structure alone and in combination 
with the single-path structure for real endoscopic image 
classification. The comparative experiments are presented in 
Table 2. The results demonstrate that the enhanced model, which 
incorporates a multiplexed branching structure, surpasses the 
original Poolformer model in terms of classification performance 
on the dataset. Specifically, the enhanced model exhibited a 2.8% 
enhancement in accuracy and a notable  9.6% increment in 
sensitivity. This outcome substantiates the efficacy of replacing 
the conventional pooling layer with a multiplexed branching 
structure within the Poolformer architecture, effectively 
bolstering detail retention within the endoscopic environment. 
However, the incorporation of this structure introduced a minor 
drawback, resulting in a reduction of processing speed by 26.3 fps. 
Further refinement of the model, encompassing a training process 
enriched with the multiplexed branching structure and a 
prediction network strengthened by a single-path topology, 
yielded commendable results. This adaptation yielded a 2.3% 
enhancement in accuracy and an 8.2% augmentation in sensitivity. 
Remarkably, this performance boost incurred only a marginal 6.4 
fps decline in processing speed compared to the original 

FIGURE 7

Experimental data set. (A,B) Original image. (C,D) Synthesized image with smoke.

TABLE 1 The results of comparable experiments on different classification model.

Model Acc/% Sens/% Inference Speed /fps

mobilenet_v3 93.9 78.6 56.2

efficientnet_b7 94.3 80.3 47.8

VIT-B/16 94.5 80.8 42.6

Our method 95.9 83.5 87.1
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Poolformer model. Thus, the strategic integration of the 
multiplexed branching structure into the training network 
emerged as a viable approach to amplify detail retention in the 
endoscopic environment. The incorporation of RepConvNeXt 
structure concurrently elevated processing speed, thereby 
enhancing endoscopic smoke classification performance and 
reducing processing time. Conclusively, the experimental results 
demonstrate the significant capability of the approach proposed 
in this study. This approach effectively enhances the detection 
prowess of the Poolformer model in the endoscopic image while 
concurrently sustaining its efficient real-time operational cadence.

5. Conclusion

This paper introduces an improved Poolformer model for the 
automatic classification and recognition of endoscopic images 
containing smoke. The proposed model enhances the Token 
Mixer in the encoder by replacing the simple pooling layer with 
a multiplexed branching structure, similar to the pure 
convolutional neural network ConvNeXt. During the prediction 
process, the structure transforms into single-way, further 
improving the inference speed.

The experimental findings establish the superiority of our 
proposed method in the field of endoscopic image classification. In 
comparison to the traditional ViT-B16 network and the newer, 
lightweight networks including mobilenet_v3 and efficientnet_b7, 
our model exhibits substantial improvements. Specifically, it achieves 
an enhanced accuracy of 1.4, 2, and 1.6%, alongside sensitivity 
improvements of 2.7, 4.9, and 3.2%, respectively. Notably, these 
enhancements are accompanied by a significant boost in inference 
speed, with improvements of 44.5, 30.9, and 39.3 fps, respectively. 
These performance gains are attained without any appreciable 
degradation in image processing speed, underscoring the model’s 
efficiency. Furthermore, in contrast to the Poolformer framework, 
our model achieves these performance enhancements while 
maintaining image processing speeds, thus ensuring real-time 
processing remains unaffected. Comparatively, when compared to 
Poolformer_s12, our proposed method excels further, achieving an 
accuracy increase of 2.3% and a sensitivity boost of 8.2%. Although 
there is a marginal reduction in processing speed by 6.4 fps, these 
trade-offs emphasize the method’s prowess in smoke feature 
recognition and real-time processing efficiency within endoscopic 
environments. This method serves as an effective means for real-time 
screening of smoke-containing images in endoscopes, paving the way 
for potential integration with smoke removal techniques. Such 
integration can lead to more targeted and precise desmoking, 
avoiding the issues arising from the enhancing of smoke-free images, 

notably mitigating computational overhead. By introducing real-time 
smoke detection into endoscopic procedures, we aspire to reduce 
equipment resource requirements, augment processing speed, and 
enhance the real-time, precision, and scientific validity of smoke 
removal in endoscopic settings.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

HW: Conceptualization, Data curation, Funding acquisition, 
Methodology, Project administration, Writing – original draft, Writing 
– review & editing. KW: Conceptualization, Data curation, Methodology, 
Writing – original draft, Software, Validation, Writing – review & editing. 
TY: Conceptualization, Data curation, Methodology, Validation, Writing 
– review & editing. HZ: Conceptualization, Data curation, Methodology, 
Writing – review & editing. EC: Conceptualization, Data curation, 
Methodology, Writing – review & editing. YL: Conceptualization, 
Funding acquisition, Investigation, Methodology, Writing – review & 
editing. YW: Conceptualization, Funding acquisition, Methodology, 
Writing – review & editing. JL: Conceptualization, Methodology, Writing 
– review & editing, Funding acquisition. YP: Conceptualization, Funding 
acquisition, Methodology, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research, 
authorship, and/or publication of this article. The project was funded  
by the Science and Technology Research Program of Chongqing 
Municipal Education Commission under Grant No. KJQN202100602, 
KJQN202300637, KJQN202300613 and KJQN202000604; Chongqing 
Technical Innovation and Application Development Special Project 
under Grant No. CSTB2022TIAD-KPX0062 and cstc2021jscx-
gksbx0051; Project funded by China Postdoctoral Science Foundation 
under Grant No. 2022MD713702, Special Postdoctoral Support from 
Chongqing Municipal People’s Social Security Bureau under Grant No. 
2021XM3010; Nature Science Foundation of Chongqing under Grant 
No. CSTC2021JCYJ-BSH0221, 2022NSCQ-LZX0254 and CSTB2022NSCQ- 
MSX1523, National Natural Science Foundation of China under Grant 
No. U21A20447 and 61971079, Chongqing Innovation Group Project 
under Grant No. cstc2020jcyj- cxttX0002.

TABLE 2 Ablations study for each component of our method.

Seq Poolformer_s12 Multi-branch 
Structure

Single-path 
Structure

Acc/% Sens/% Inference 
Speed /fps

1 √ 93.6 75.3 93.5

2 √ √ 96.4 84.9 67.2

3 √ √ √ 95.9 83.5 87.1

https://doi.org/10.3389/fnins.2023.1273686
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1273686

Frontiers in Neuroscience 10 frontiersin.org

Conflict of interest

HW and YW were employed by Chongqing Xishan Science & 
Technology Co., Ltd.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Aceves, S. S., Alexander, J. A., Baron, T. H., Bredenoord, A. J., Day, L., Dellon, E. S., 

et al. (2022). Endoscopic approach to eosinophilic esophagitis: American Society for 
Gastrointestinal Endoscopy consensus conference. Gastrointest. Endosc. 96, 576–592.e1. 
doi: 10.1016/j.gie.2022.05.013

Ahn, Y. (2020). The current state of cervical endoscopic spine surgery: an updated 
literature review and technical considerations. Expert Rev. Med. Devices 17, 1285–1292. 
doi: 10.1080/17434440.2020.1853523

Almeida, J. S., Huang, C., Nogueira, F. G., Bhatia, S., and de Albuquerque, V. H. C. 
(2022). EdgeFireSmoke: a novel lightweight CNN model for real-time video fire–smoke 
detection. IEEE Trans. Industr. Inform. 18, 7889–7898. doi: 10.1109/TII.2021.3138752

Azam, M. A., Khan, K. B., Rehman, E., and Khan, S. U. (2022). Smoke removal and 
image enhancement of laparoscopic images by an artificial multi-exposure image fusion 
method. Soft. Comput. 26, 8003–8015. doi: 10.1007/s00500-022-06990-4

Bastier, P. L., Gallet de Santerre, O., Bartier, S., De Jong, A., Trzepizur, W., 
Nouette-Gaulain, K., et al. (2022). Guidelines of the French society of ENT (SFORL): 
drug-induced sleep endoscopy in adult obstructive sleep apnea syndrome. Eur. Ann. 
Otorhinolaryngol. Head Neck Dis. 139, 216–225. doi: 10.1016/j.anorl.2022.05.003

Boese, A., Wex, C., Croner, R., Liehr, U. B., Wendler, J. J., Weigt, J., et al. (2022). 
Endoscopic imaging technology today. Diagnostics 12:1262. doi: 10.3390/
diagnostics12051262

Bolkar, S., Wang, C., Cheikh, F. A., and Yildirim, S. (2018). "Deep smoke removal from 
minimally invasive surgery videos", In 2018 25th IEEE International Conference on 
Image Processing (ICIP), 3403–3407.

Chadebecq, F., Lovat, L. B., and Stoyanov, D. (2023). Artificial intelligence and 
automation in endoscopy and surgery. Nat. Rev. Gastroenterol. Hepatol. 20, 171–182. doi: 
10.1038/s41575-022-00701-y

Dewangan, A., Pande, Y., Braun, H.-W., Vernon, F., Perez, I., Altintas, I., et al. (2022). 
FIgLib & SmokeyNet: dataset and deep learning model for real-time wildland fire smoke 
detection. Remote Sens. 14:1007. doi: 10.3390/rs14041007

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). "Repvgg: making 
vgg-style convnets great again", In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, 13733–13742.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., 
et al. (2021). “An image is worth 16×16 words: Transformers for image recognition at 
scale,” in Proceedings of the 9th International Conference on Learning Representations, 
2021.

Fu, Z., Jin, Z., Zhang, C., He, Z., Zha, Z., Hu, C., et al. (2021). The future of endoscopic 
navigation: a review of advanced endoscopic vision technology. IEEE Access 9, 
41144–41167. doi: 10.1109/ACCESS.2021.3065104

He, K., Zhang, X., Ren, S., and Sun, J. (2016). "Deep residual learning for image 
recognition", In Proceedings of the IEEE conference on computer vision and pattern 
recognition, 770–778.

Howard, A., Sandler, M., Chu, G., Chen, L. -C., Chen, B., Tan, M., et al. (2019). 
"Searching for mobilenetv3", In Proceedings of the IEEE/CVF international conference 
on computer vision, 1314–1324.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al. 
(2017). Mobilenets: efficient convolutional neural networks for mobile vision 
applications. arXiv preprint [Epub ahead of preprint].

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). "Densely 
connected convolutional networks", In Proceedings of the IEEE conference on computer 
vision and pattern recognition, 4700–4708.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with 
deep convolutional neural networks. Adv. Neural Inf. Proces. Syst. 25, 1097–1105.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning 
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lin, J., Jiang, M., Pang, Y., Wang, H., Chen, Z., Yan, C., et al. (2021). A desmoking 
algorithm for endoscopic images based on improved U-net model. Concurr. Comput. 
33:e6320. doi: 10.1002/cpe.6320

Liu, Z., Mao, H., Wu, C. -Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). "A 
convnet for the 2020s", In Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition, 11976–11986.

Niknam, N., Obanor, S., and Lee, L. A. (2022). Endoscopic methods for the detection 
and treatment of gastric cancer. Curr. Opin. Gastroenterol. 38, 436–442. doi: 10.1097/
MOG.0000000000000867

Pan, Y., Bano, S., Vasconcelos, F., Park, H., Jeong, T. T., and Stoyanov, D. (2022). 
DeSmoke-LAP: improved unpaired image-to-image translation for desmoking in 
laparoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 17, 885–893. doi: 10.1007/
s11548-022-02595-2

Poutoglidis, A., Fyrmpas, G., Vlachtsis, K., Paraskevas, G. K., Lazaridis, N., 
Keramari, S., et al. (2022). Role of the endoscope in cochlear implantation: a systematic 
review. Clin. Otolaryngol. 47, 708–716. doi: 10.1111/coa.13909

Simpson, A. K., Lightsey, H. M., Xiong, G. X., Crawford, A. M., Minamide, A., and 
Schoenfeld, A. J. (2022). Spinal endoscopy: evidence, techniques, global trends, and 
future projections. Spine J. 22, 64–74. doi: 10.1016/j.spinee.2021.07.004

Su, X., and Wu, Q. (2023). Multi-stages de-smoking model based on CycleGAN for 
surgical de-smoking. Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-023-01875-w

Tan, M., and Le, Q. (2019). "Efficientnet: rethinking model scaling for convolutional 
neural networks", In International conference on machine learning: PMLR, 6105–6114.

Venkatesh, V., Sharma, N., Srivastava, V., and Singh, M. (2020). Unsupervised smoke 
to desmoked laparoscopic surgery images using contrast driven cyclic-DesmokeGAN. 
Comput. Biol. Med. 123:103873. doi: 10.1016/j.compbiomed.2020.103873

Wang, C., Mohammed, A. K., Cheikh, F. A., Beghdadi, A., and Elle, O. J. (2019). 
“Multiscale deep desmoking for laparoscopic surgery,” in SPIE medical Imaging: SPIE. 
(San Diego, California, US: SPIE Medical Imaging), 505–513.

Wang, F., Sun, X., and Li, J. (2023). Surgical smoke removal via residual Swin 
transformer network. Int. J. Comput. Assist. Radiol. Surg. 18, 1417–1427. doi: 10.1007/
s11548-023-02835-z

Yamashita, S., Inoue, T., Kohjimoto, Y., and Hara, I. (2022). Comprehensive 
endoscopic management of impacted ureteral stones: literature review and expert 
opinions. Int. J. Urol. 29, 799–806. doi: 10.1111/iju.14908

Yi, Y., Li, L., Li, J., Shu, X., Kang, H., Wang, C., et al. (2023). Use of lasers in 
gastrointestinal endoscopy: a review of the literature. Lasers Med. Sci. 38:97. doi: 
10.1007/s10103-023-03755-9

Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., et al. (2022). "Metaformer is 
actually what you need for vision", In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, 10819–10829.

Zhao, L., Liu, J., Peters, S., Li, J., Oliver, S., and Mueller, N. (2022). Investigating the 
impact of using IR bands on early fire smoke detection from Landsat imagery with a 
lightweight CNN model. Remote Sens. 14:3047. doi: 10.3390/rs14133047

Zhou, Y., Hu, Z., Xuan, Z., Wang, Y., and Hu, X. (2022). Synchronizing detection and 
removal of smoke in endoscopic images with cyclic consistency adversarial nets. IEEE/
ACM Trans. Comput. Biol. Bioinform. PP, 1–12. doi: 10.1109/TCBB.2022.3204673

Zou, X., Zhang, G., Xie, T., Yuan, Y., Xiao, R., Wu, G., et al. (2020). Natural orifice 
transluminal endoscopic surgery in urology: the Chinese experience. Asian J. Urol. 7, 
1–9. doi: 10.1016/j.ajur.2019.07.001

https://doi.org/10.3389/fnins.2023.1273686
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.gie.2022.05.013
https://doi.org/10.1080/17434440.2020.1853523
https://doi.org/10.1109/TII.2021.3138752
https://doi.org/10.1007/s00500-022-06990-4
https://doi.org/10.1016/j.anorl.2022.05.003
https://doi.org/10.3390/diagnostics12051262
https://doi.org/10.3390/diagnostics12051262
https://doi.org/10.1038/s41575-022-00701-y
https://doi.org/10.3390/rs14041007
https://doi.org/10.1109/ACCESS.2021.3065104
https://doi.org/10.1109/5.726791
https://doi.org/10.1002/cpe.6320
https://doi.org/10.1097/MOG.0000000000000867
https://doi.org/10.1097/MOG.0000000000000867
https://doi.org/10.1007/s11548-022-02595-2
https://doi.org/10.1007/s11548-022-02595-2
https://doi.org/10.1111/coa.13909
https://doi.org/10.1016/j.spinee.2021.07.004
https://doi.org/10.1007/s13042-023-01875-w
https://doi.org/10.1016/j.compbiomed.2020.103873
https://doi.org/10.1007/s11548-023-02835-z
https://doi.org/10.1007/s11548-023-02835-z
https://doi.org/10.1111/iju.14908
https://doi.org/10.1007/s10103-023-03755-9
https://doi.org/10.3390/rs14133047
https://doi.org/10.1109/TCBB.2022.3204673
https://doi.org/10.1016/j.ajur.2019.07.001

	Endoscopic image classification algorithm based on Poolformer
	1. Introduction
	2. The proposed method
	2.1. Overview
	2.2. Convolution module
	2.3. Improved Poolformer encoder
	2.4. RepConvNeXt block
	2.5. Classification

	3. Experiments and results
	3.1. Dataset
	3.2. Experimental platforms
	3.3. Experimental setup

	4. Results
	4.1. Evaluation metrics
	4.2. Method comparison
	4.3. Ablation experiment

	5. Conclusion
	Data availability statement
	Author contributions

	 References

