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β-cells within the endocrine pancreas are fundamental for glucose, lipid and
protein homeostasis. Gap junctions between cells constitute the primary coupling
mechanism through which cells synchronize their electrical and metabolic
activities. This evidence is still only partially investigated through models and
numerical simulations. In this contribution, we explore the effect of combined
electrical and metabolic coupling in β-cell clusters using a detailed biophysical
model. We add heterogeneity and stochasticity to realistically reproduce β-cell
dynamics and study networks mimicking arrangements of β-cells within human
pancreatic islets. Model simulations are performed over different couplings and
heterogeneities, analyzing emerging synchronization at the membrane potential,
calcium, and metabolites levels. To describe network synchronization, we use the
formalism of multiplex networks and investigate functional network properties
and multiplex synchronization motifs over the structural, electrical, and metabolic
layers. Our results show that metabolic coupling can support slow wave
propagation in human islets, that combined electrical and metabolic
synchronization is realized in small aggregates, and that metabolic long-range
correlation is more pronounced with respect to the electrical one.
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1 Introduction

Endocrine β-cells activity is crucial for regulating blood glucose levels, as well as lipid and
protein metabolism, through coordinated bursting oscillations triggering a calcium-driven
insulin release (Dimitriadis et al., 2011; Rorsman et al., 2011; Rorsman and Braun, 2013). In
the mouse, coordination of electrical and calcium oscillations has been shown to be primarily
determined by gap-junction coupling, as demonstrated by both experimental (Ravier et al.,
2005; Speier et al., 2007; Benninger et al., 2008; Head et al., 2012) and modeling studies
(Sherman and Rinzel, 1991; Smolen et al., 1993; Bertram et al., 2000; De Vries and Sherman,
2000; Aslanidi et al., 2002). In this regard, electrical coupling permits smoothing β-cells
stochasticity and heterogeneity, with important effects in the appearance of coordinated
electrical oscillations, in optimizing bursting oscillation period, in supporting activation
waves within pancreatic islets, and thus in ensuring an effective pulsatile insulin release.
Other than electrical coordination, gap-junction coupling was also shown to permit
metabolites diffusion through neighboring cells (Kohen et al., 1979; Rao and Rizzo,
2020), further allowing metabolic synchronization. However, metabolic coupling in
pancreatic islets was only partially investigated (Tsaneva-Atanasova et al., 2006; Loppini
and Chiodo, 2019), and its role in islet functioning has yet to be fully grasped. In this regard,
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Tsaneva-Atanasova et al. (2006) theoretically proved that G6P
diffusion through gap junctions can switch slow bursting into
fast one through oscillation death of the slow metabolic
component, while Loppini and Chiodo (2019) showed that
metabolic coupling promotes slow bursting coordination in
human-like β-cells clusters, and electrical correlation is spatially
extended by the inclusion of a subpopulation of cells with increased
metabolically activity. Another crucial aspect is that the role of gap
junctions in β-cells aggregates was mostly studied in the mouse,
while in human islets, which differ in composition and cells spatial
arrangement from mouse (Brissova et al., 2005; Cabrera et al., 2006;
Steiner et al., 2010), only a few studies explored the role of coupling
in emergent β-cells activity (Loppini et al., 2015; Loppini et al., 2017;
Loppini and Chiodo, 2019). In this context, approaches combining
mathematical modeling and electrophysiological recordings from
small human β-cells aggregates showed that human gap-junction
connections are characterized by similar electrical conductance with
respect to the mouse and are still crucial in promoting
synchronization and enhanced fast bursting oscillation periods.
The lack of comprehensive investigations on metabolic coupling,
and, in general, on both electrical and metabolic coupling in human
islets, is also more relevant if we take into account recent studies
based on calcium imaging that has further enriched the picture of β-
cells aggregates coordination (Stožer et al., 2013a; Markovič et al.,
2015; Johnston et al., 2016; Gosak et al., 2018; Salem et al., 2019;
Šterk et al., 2023b). Indeed, it was shown that β-cells functional
networks, as derived from correlation indices computed on cells
activity, are heterogeneous, and characterized by hub cells with an
increased number of functional connections with respect to the
others, coordinating the response of other cells and ensuring whole-
islet synchronization. This peculiar sub-type of cells was also shown
to have increased metabolic activity.

In this contribution, we explore the combined role of electrical
and metabolic coupling in human β-cells networks through a
biophysically detailed mathematical model, analyzing
spatiotemporal electrical and metabolic emerging activities and
describing whole-islet synchronization through functional
networks. Specifically, simulated signals are used to derive
electrical and metabolic functional layers that are further studied
in comparison to the underlying islet cytoarchitecture, i.e., the
structural layer, in a three-layer multiplex network, in line with
previous experimental studies analyzing membrane potential and
intracellular calcium dynamics in mouse islets (Gosak et al., 2015).
We analyze β-cells coordination patterns by looking at the multiplex
pairwise connection motifs, analyzing functional connections on the
electrical and metabolic layers and their occurrence in comparison
to gap-junction mediated structural couplings. Further, we
investigate the possible effects of biological noise and double-
population heterogeneity on emergent coordination.

2 Materials and Methods

2.1 β-cell networks modeling

We built our biophysical model of human β-cell networks based
on a comprehensive electrophysiological description of human β-
cells activity, also accounting for metabolites oscillations (Pedersen,

2010; Riz et al., 2014; Loppini et al., 2015), and added gap-junction
coupling between adjacent cells, defined by the islet structure as
detailed in the next subsection.

The equation for the membrane potential dynamics of the ith
cell is

dVi

dt
� − Iion,i + ∑

j∈Ωi

Icoup,ji⎛⎝ ⎞⎠, (1)

where Iion,i is sum of the membrane ionic currents, Ωi is the cell
neighborhood and Icoup,ji = gc(Vi − Vj) is the gap-junction current
between ith and jth cells.

Among the ionic currents included in the electrical
compartment, the ATP-sensitive potassium (KATP) current is
modulated by a variable mimicking the slow periodic ATP
increasing and decreasing downstream of the glycolytic
oscillations, triggering action potential firing and bursting. The
glycolytic compartment, models the dynamics of intermediate
metabolites whose production follows the glucose uptake by the
cell, i.e., glucose 6-phosphate (G6P), fructose 6-phosphate (F6P),
fructose 1,6-bisphosphate (FBP), dihydroxyacetone-phosphate
(DHAP) and glyceraldehyde 3-phosphate (G3P). In our model,
the metabolic coupling between nearby cells is realized imposing
G6P and F6P diffusion through gap junctions. In particular, the
dynamical equation regulating the total concentration of G6P and
F6P (G6PF6P) for the ith cell is

d[G6PF6P]i
dt

� VGK,i − VPFK

−PG6PF6P ∑
j∈Ωi

G6PF6P[ ]i − G6PF6P[ ]j( ), (2)

where VGK and VPFK are the glucokinase and phosphofructokinase
reaction rates, and PG6PF6P denotes the gap-junction permeability to
metabolites, i.e., the strength of metabolic coupling. As reference case,
we set the electrical conductance and metabolites permeability of gap
junctions to gc = 0.01 nS/pF and PG6PF6p = 0.01 ms−1, in line with
previous estimations based on electrophysiological data and
experimental measures of metabolites diffusion among adjacent β-
cells (Kohen et al., 1979; Loppini et al., 2015). These values are also used
in other modeling studies on β-cells networks (Loppini et al., 2015;
Loppini et al., 2017; Loppini and Chiodo, 2019; Saadati and Jamali,
2021). Biological heterogeneity among cells was reproduced by varying
the conductance of the voltage-sensitive potassium channels (gKv) for
the electrical compartment and VGK for the metabolic one, keeping the
other parameters fixed at their default values (Loppini et al., 2015). In
particular, gKv can impose a very fast busting or spiking response with
variable frequency, and VGK sets the intrinsic metabolic oscillation
frequency. In order to simulate a fast spiking activity within the slow
bursting active period, we set mean value and standard deviation of gKv
to 0.215 nS/pF and 2%, respectively, while for VGK to 0.0556 mM/s and
10%. The effect of these parameters was tested in uncoupled
populations and single-cell simulations. This allowed for the
identification of a VGK cut-off value setting the onset of metabolic
oscillations. Low values of VGK not inducing metabolic oscillations at
the single-cell level were discarded.

A full list of model equations, their detailed description and the
complete set of parameters can be found in refs. Riz et al. (2014),
Loppini et al. (2015).
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2.2 Islet architecture

It is known that the spatial organization of β-cells in pancreatic
islets and islets composition differ across species (Brissova et al.,
2005; Cabrera et al., 2006; Steiner et al., 2010). In humans, β-cells
appear to be intermingled with α-, γ-, and δ-cells, and are about 50%
of the islet cells. We built human-like β-cells networks by stacking
2D layers of cells in a hexagonal-closest packing (HCP) structure
(Nittala et al., 2007; Nittala and Wang, 2008; Stamper et al., 2014;
Cappon and Pedersen, 2016), with 12 layers, each including 12 ×
12 cells. A single cell was modeled as a sphere of radius rc = 6.5 μm.
To build the final islet structure, we extracted a spherical region with
65 μm radius within the HCP stacked layers and imposed a site
percolation probability of 50% (psite = 0.50) to match data on β-cell
percentage. Nearest-neighbor couplings were defined based on
structural contacts between cells, i.e., for cells whose center-to-
center distance was equal to 2rc. We further deleted from the
structure isolated cells resulting from percolation (less than 5).
The total number of cells included in the reconstructed islet was
N = 378, with an average and maximum number of neighbors equal
to ≃ 5 and 10, respectively. The structural adjacency matrix aij
describing nearest-neighbors was then used in model equations to
define the electrical and metabolic coupling terms (Eqs 1, 2).

2.3 Functional network and motif analysis

Synchronization phenomena have been investigated by
computing the correlation index between all pairs of β-cell
binarized potential and metabolic signals (Rodgers and
Nicewander, 1988; Stožer et al., 2013b):

Rij � 〈 xi t( ) − 〈xi t( )〉( )(xj t( ) − 〈xj t( )〉)〉
σ iσj

, (3)

where xi and σi are the binarized signals and the corresponding
standard deviation for the ith cell. The binarized signals were
constructed by evaluating at first the onset time in cells
activation, both on membrane potential (V) and FBP, by means
of a signal derivative thresholding, and at second, by imposing an
active time duration of 15 ms for V, and 1.2 s for FBP. Therefore the
binarized signals were equal to 0 and 1 outside and inside the active
time, respectively. This choice allowed us to match the action
potential duration in V and the initial rise in FBP.

The correlation indices were further thresholded to obtain
electrical and metabolic functional networks. In particular, we
investigated the behavior of the networks by varying the
correlation thresholds, RV,thr and RFBP,thr, in the range of [0,1].
We finally performed a motif analysis by considering, at the three
network levels (structural, electrical, and metabolic), the pairwise
multiplex connection motifs, for a total of 23 = 8 possible motifs. In
this context, a multiplex pair-wise connection motif represents how
β-cell pairs are connected through the structural, electrical and
metabolic layers, and serves to compare cells connectivity at
different levels. We investigated connection motifs at increasing
distances over the islet, quantifying synchronization spatial features
in comparison to the underlying structural architecture. To choose
the optimal value of the correlation thresholds to be used in the

motif analysis, we studied four network parameters (average node
degree, average local clustering coefficient, average local efficiency,
and number of connected components) as functions of the
correlation thresholds for both electrical and metabolic dynamics.
Specifically, the average node degree is evaluated as the mean of the
nodes degree ki =∑j∈Naij. The average local clustering is the mean of
the local clustering coefficient of the nodes ci = 2ei/(ki(ki − 1)), where
ei is the number of connections in the local subgraph of node i,
i.e., Gi. Similarly, the average local efficiency is the mean of the local
efficiency of the nodes Ei � (1/(ki(ki − 1)))∑j≠j′∈Gi

1/djj′, where djj′
is the distance between nodes j and j′ (Latora and Marchiori, 2001;
Boccaletti et al., 2006). In relation to intercellular networks, the node
degree quantifies the number cells to which a cell is connected, the
local clustering coefficient measures the tendency of cells to develop
dense local connection patterns, the local efficiency is linked the
clustering coefficient and quantifies how efficient is the local
intercellular communication, while the number of connected
components measures the amount of disjoint connected cells
groups in the network. In the context of functional networks,
high degree, clustering and efficiency, and a low number of
connected components denote strong correlations in cells activity
encompassing large groups of cells.

2.4 Numerics

β-cells architecture was reproduced withMATLAB R2021a (The
MathWorks, Inc.), together with the data analysis. The numerical
integration of the biophysical model is implemented in a C++
algorithm using a fourth-order Runge–Kutta scheme for the
electrical subsystem, and an Euler scheme for the metabolic
subsystem in parallel, due to the non-restrictive slow dynamics of
the glycolytic oscillator. In each case, a fixed time step of 0.02 ms was
used. Numerical accuracy was verified with a MATLAB
implementation for both the electrical and the glycolytic
compartments, using a stiff integrator.

3 Results

3.1 Electrical and metabolic coupling:
bursting and activation waves

At first, we investigated the islet dynamics with electric and
metabolic coupling strengths as previously used in other modeling
studies, i.e., gc = 0.01 nS/pF and PG6PF6P = 0.01 ms−1. At the single-
cell level, the pattern is a slow bursting oscillation driven by glucose
metabolism with a bursting period of ≃ 160 s (frequency of ≃ 0.37
min−1) and active phase duration of ≃ 45 s, resembling slow electrical
activity observed in human β-cells (Braun et al., 2012; Rorsman and
Braun, 2013; Riz et al., 2014). The membrane potential is
characterized by a fast action potential firing intermingled to
silent periods, while the intracellular calcium shows a compound
oscillation with fast and slow components following the membrane
potential oscillations and metabolites dynamics, respectively
(Figure 1A). As a representative variable of the glycolytic
component, we focused on FBP, whose oscillations are in phase
with membrane potential active phases and with the slow calcium
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component. To analyze cells coordination at the population level, we
investigated the activation times of cells on both membrane
potential and FBP, as extracted from the peaks of signals
derivative. We observed a coherent and synchronized activity all
over the islet, characterized by in-phase action potentials within the
active periods both between near and distant β-cells. Dephasing in
cells activity was instead observed at the onset and termination of the
active phases. Indeed, cells activation at the beginning of the active
phases followed a wave pattern propagating through the islet. This
pattern was observed on membrane potential, on calcium, and on
FBP and was progressively lost when moving within the central part
of the active phases, where cells were more synchronized and
electrically activating in small groups. The wave pattern and the
synchronized regime just after are shown in Figure 1B (top) by
means of raster plots computed on the FBP and membrane potential
activation times. To further dissect the spatial organization of the
activation wave, we evaluated, for each burst, the FBP activation
time for every cell with respect to the first responding cell in the islet
(ΔT onset) and analyzed its spatial spreading over the islet structure
(Figure 1C, left). At gc = 0.01 nS/pF and PG6PF6P = 0.01 ms−1, ΔT
onset was in the range 0–0.45 s with an organized spatial
distribution indicating an activation wave triggered by peripheral

cells and spreading toward the opposite area of the islet. To get
deeper insights in wave dynamics, we analyzed the correlation of ΔT
onset versus the values of parameters we varied in the β-cells
population (VGK and gKv) and found a negative correlation with
the glucokinase reaction rate VGK (Figure 1D, top), suggesting that
the wave initiators were also among the cells with increased
glucokinase reaction rate. Given that the diameter of our
simulated islet was ≃ 125 μm, we estimated a wave velocity of
about 280 μm/s at this coupling conditions, a value significantly
higher than the ones experimentally measured in real human islets,
close to ≃ 10 μm/s (Gosak et al., 2022). Based on this aspect, we
further tested the model at a lower metabolites permeability, i.e., at
PG6PF6P = 0.001 ms−1, keeping unaltered the electrical coupling. In
this conditions, same bursting dynamics was recovered at the single-
cell level, but at the population level, cells dephasing in slow
oscillations was more pronounced, especially at bursting onset
(Figure 1B, bottom). We observed an increasing in ΔT onset,
ranging in this case between 0 and 3.5 s. Also, its spatial
distribution followed a similar organization as the one computed
at higher metabolites permeability, still indicating a wave spreading
phenomena triggering the islet activation (Figure 1C, right). Same
anti-correlation between ΔT onset versus VGK was computed, as for

FIGURE 1
Spatiotemporal islet dynamics. (A) Simulated membrane potential (top), calcium (bottom, black curve) and FBP (bottom, red curve) signals for a
reference cell, computed at gc = 0.01 nS/pF and PG6PF6P = 0.01 ms−1. (B) Raster plots of cells activation times for membrane potential V (black) and FBP
(red) at different coupling strengths: gc = 0.01 nS/pF and PG6PF6P = 0.01 ms−1 (top), gc = 0.01 nS/pF and PG6PF6P = 0.001 ms−1 (bottom). Insets on the right
show zooms of a single activation front. (C) Average activation pattern mapped on the islet structure, showing the FBP delay of activation with
respect to the first responding cell (FBP ΔT onset) in color code, all over the islet and at different G6PF6P permeability values: PG6PF6P = 0.01 ms−1 (left,
model I1), PG6PF6P = 0.001 ms−1 (right, model I2). (D) Correlation between FBP ΔT onset values and the glucokinase reaction rate VGK over the β-cells
population for both I1 (top) and I2 (bottom). Dashed lines correspond to linear fits highlighting the inverse proportionality between the two quantities.
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the high permeability case (Figure 1D, bottom). Interestingly, in this
condition we could obtain a wave velocity of ≃ 36 μm/s, i.e., on the
same order of the onemeasured experimentally. In the following, the
functional network analysis is performed on both models with high
and low permeability to G6PF6P. We refer to the high and low
permeability islet models as I1 and I2.

3.2 Electrical and metabolic functional
networks: multiplex description

We extracted functional networks from the simulated dynamics
by a thresholding procedure performed on the pairwise correlation
indices between binarized signals of membrane potential and FBP
(see Methods). The correlation matrices evaluated from simulated
signals are shown in Figure 2, in comparison to the structural
adjacency matrix. In particular, the functional network is
extracted by filtering only the pairwise correlations higher than a
selected threshold, resulting in a binary adjacency matrix describing
the functional topology (functional connectivity matrix). In order to
identify the correct threshold for both the electrical layer (V) and the
metabolic layer (FBP), we focused on the behavior of four metrics
commonly used in complex networks, namely, the average degree,
average local clustering, average local efficiency and number of
components. Their variations versus the threshold for both
I1 and I2 are shown in Figure 3. The network efficiency is not
reported, having a similar variation and slightly higher values with
respect to the clustering. As expected, network metrics were
observed to decrease at increasing thresholds, except for the
average clustering in the metabolic layer, which showed a

minimal increase at thresholds close to 1. This behavior was
mainly due to the fragmentation of the functional network into
small connected components. When moving from 0 to 1 in terms of
threshold, the functional networks range from fully connected
networks (or almost fully) to fully disconnected nodes. Given its
higher correlations in cells activity, the I1 model showed higher
network metrics with respect to I2. To select specific thresholds for
both the models and layers, we compared the metrics, minimizing
the number of components, limiting the average degree to ≃ 20% of
the total number of cells, and guarantying an average local clustering
and local efficiency in the range 0.7–0.8 and 0.8–0.9, respectively.
The aim was to avoid too sparse functional networks analyzing
differences both in short- and long-range correlations between
electrical and metabolic layers, therefore selecting thresholds were
0.9 and 0.95 for V and FBP for I1, respectively, and 0.3 (V) and 0.75
(FBP) for I2. Such a choice led to a relative abundance of strongly
connected nodes. We also tested higher values of thresholds giving
rise to more sparse networks and a reduced number of hubs,
obtaining results similar to the ones here presented. The
extracted functional connectivity matrices are shown in Figure 4
(panels A, B, D, and E). To analyze the link between the extracted
functional networks and wave activation propagation, we checked
on the relation of nodes degree with respect to ΔT onset for both
I1 and I2 and for both FBP and V activations. For the membrane
potential, we focused only on the first action potential wave at the
active phase onset. Interestingly, for every condition, the more
connected nodes were the ones activating at intermediate times
(see Figure 5A). A similar bell-shaped curve was also obtained for
the I2 model at higher thresholds (0.85 and 0.9 on the metabolic
layer), proving that a similar relation holds in sparser functional

FIGURE 2
Structural connectivity and functional correlations. (A) Spatial arrangement of cells within themodeled islet. (B) Adjacencymatrix of the structural β-
cells network, obtained by connecting nearby cells as explained inMethods. (C) Electrical andMetabolic correlationmatrices formodel I1, evaluated from
the membrane potential V and FBP binarized signals. (D) Same as (C) but for model I2. N denotes the total number of cells, that in our models is equal
to 378.
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networks (Figure 5B). In particular, activation waves in our
simulations were triggered by a small peripheral population of
cells with a relatively low number of functional connections,
recruiting nearby connected cells, further activating inner cells,
and eventually propagating the activation to the last responding
cells with functional connectivity comparable to wave initiators.
The occurrence of higher functional connections in intermediate
activating cells can be ascribed to the fact that their activity is
correlated to both first and last responders, as well as showing a
high correlation among themselves. In other words, at
intermediate times, a subpopulation of cells synchronously
activates and delivers the activation signal from first to last
responders.

Based on the extracted functional networks, the islet
synchronization properties were studied by adopting a multiplex
description composed of three layers: structural, electrical, and
metabolic. In particular, we looked at the pairwise connection
motifs in the network, analyzing their relative frequency at
increasing distances from a reference cell. The analyzed motifs
included all the possible connections combinations on the three
layers: structural/electrical/metabolic (M1), electrical/metabolic
(M2), structural/metabolic (M3), structural/electrical (M4),
structural (M5), electrical (M6), metabolic (M7), disconnected
(M8) (see Figure 4). Specifically, we analyzed M(r) as the relative
frequency of motifs within a distance in the range [0, r] (Figures 4C,
F). As expected, all the motifs involving a structural connection (M1,
M3, M4, and M5) decreased monotonically and strongly at
increasing distances for both I1 and I2. For such motifs, and
consistently with the reduced value of permeability, I2 showed a
reduced fraction of M1 and an increased fraction of M4, indicating a
slight loss of functional metabolic coupling. Interestingly, a
combined electrical and functional connection without a

structural link (M2) was significantly present at distances within
the range 20–50 μm for both I1 and I2, indicating a significant
spatial extension of combined electric and metabolic coordination.
Concerning the frequency of exclusive electrical and metabolic
functional connections (M6 and M7), they were found to be
more abundant at r > 40–50 μm, with long-range metabolic
connections outnumbering long-range electrical ones.

3.3 Noise effect on synchronization motifs

Given the importance of biological noise in β-cells dynamics due
to stochastic ion channel gating on the cell membrane, we
investigated the effects of an additional stochastic term in the
membrane potential dynamics on synchronization and functional
multiplex motifs. In particular, we added a noise term in the
membrane potential equation with shape σW(t), where σ

represents the noise intensity, i.e., the standard deviation, and
W(t) is a Gaussian white-noise process with zero mean and
covariance 〈W(t)W(t′)〉 = δ(t − t′). In our simulations, we used
σ = 0.2, and we tested the effect of such a stochastic perturbation on
the I2 model, closer than I1 to the experimental observations in
terms of activation waves and globally less synchronized.
Interestingly, the network metrics evaluated on the binarized
membrane potential revealed an increased electrical
synchronization across the β-cells population at low thresholds
(Figures 6A–C). This consideration is evident from the behavior
of the average degree and number of components, indicating that the
functional network exhibits a fully coupled network at very low
RV,thr values in these conditions. When moving to higher thresholds
(≃ 0.3), the average number of connections per node is slightly
higher with respect to the deterministic case (63 vs. 57), while the

FIGURE 3
Functional networks metrics at varying thresholds. (A) Average node degree versus threshold. (B) Average local clustering coefficient versus
threshold. (C) Number of networks connected components versus threshold. Panels on the top row show metrics for the functional electrical network,
while panels on the bottom row refer to the functional metabolic network. Black dots denote values computed on model I1, and red dots on model I2.
Networks efficiency (not shown), follows a similar pattern with respect to the clustering coefficient (see text).
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reduced value of the local clustering ismainly due to the appearance of
locally larger coupled functional aggregates having a clustering value
lower than the smaller assemblies extracted in the absence of noise.
The frequency of the multiplex connection motifs (Figure 6D) nicely
summarizes this increase in membrane potential synchronization,

showing higher frequencies for every motif including a functional
electrical connection. In this regard, combined electrical and
metabolic coordination between cells pairs not structurally
connected was reinforced within small groups when a moderate
noise was added as input.

FIGURE 4
Electrical andmetabolic functional connectivity matrices andmultiplex motifs. (A, B) Electrical andmetabolic functional connectivity matrices for I1,
extracted with thresholds 0.9 and 0.95 for V and FBP, respectively. (C) Pairwise connection motifs frequency M(r) at increasing distances for I1. M(r)
represents the relative fraction of a particular motif within the distance [0, r]. Consideredmotifs are shown in the bottom row and account for all possible
connections combinations at the structural (S), electrical (E), andmetabolic (M) layer: S/E/M (M1), E/M (M2), S/M (M3), S/E (M4), S (M5), E (M6), M (M7),
no connections (M8). (D, E) Electrical and metabolic functional connectivity matrices for I2, extracted with thresholds 0.3 and 0.75 for V and FBP,
respectively. (F) Pairwise connection motifs frequency M(r) at increasing distances for I2.
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3.4 Multiple sub-populations: bimodal
heterogeneity

Recent findings on β-cells network activity pointed out the
existence of different sub-populations of β-cells. To investigate
the impact of multiple sub-populations, we tested the I2 model
response imposing a bimodal random sorting of the glucokinase
reaction rate and defined subsets of normally responding (subset A)
and highly-active cells (subset B), similarly to other modeling
investigations (Dwulet et al., 2019). Specifically, we extracted the
VGK with mean and standard deviation of 0.0756 mM/s and 3% for
A, and 0.1556 mM/s and 3% for B. Also, subset B included 10% of
the total number of cells, in line with experimental findings on hub
cells percentage in pancreatic islets, i.e., a sub-population with a
characteristic fingerprint, also including increased metabolic
activity. At the cell scale, slow bursting was only minimally
affected, with a slight increase in bursting frequency ( ≃
0.44 min−1). Also, the wave pattern activation was still present
and characterized by a slight increase in time-lags between wave
initiators and last-responding cells, indicating a mild decrease in the

computed velocity ( ≃ 30 μm/s). To address the subset of cells
originating the wave, we analyzed the VGK parameter with respect to
the ΔT onset, as defined previously, and found that subset B was the
main pacemaker of wave activity (Figure 7). No correlation between
VGK and ΔT onset was instead found within group A. We further
analyzed functional network properties at different thresholds
(Figure 8) and found no substantial differences with respect to
the uni-modal case for I2 (Figure 3). At the same thresholds used for
the uni-modal I2, more functionally connected cells, i.e., functional
hubs, still overlapped with cells activating at intermediate time
within the activation wave front (Figure 7). Further, the
multiplex functional connection motifs for the bimodal case
revealed correlation patterns consistent with the uni-modal
model (Figure 8).

4 Discussion

We analyzed emergent electrical and metabolic activities in
human islets by using a model with ionic currents based on

FIGURE 5
Functional nodes degree and activation wave. (A) Nodes degree evaluated on the metabolic functional network versus the delay of cells activation
with respect to the first responding cell (ΔT onset, evaluated on FBP activation), for both I1 (black) and I2 (red). (B) Same plot as in panel (A) for I2, obtained
by extracting the metabolic functional network at higher thresholds: RFBP,thr = 0.85 (blue), RFBP,thr = 0.9 (black).

FIGURE 6
Electrical functional networks metrics and multiplex motifs in the presence of noise. (A) Average node degree versus threshold. (B) Average local
clustering coefficient versus threshold. (C) Number of networks connected components versus threshold. The three metrics are computed on the
electrical functional network for the I2 model in the presence of noise. (D) Pairwise connection motifs frequency M(r) at increasing distances with same
thresholds used for the deterministic model I2 (Figure 4F).
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biophysical measurements in human β-cells. The model accounted
for an electric compartment fine-tuned on human
electrophysiological data, a glycolytic compartment describing
metabolites dynamics in β-cells, human-like β-cells networks
built through hexagonal packing and ad-hoc site percolation, and
nearest neighbor coupling on both membrane potential and first
intermediate products of glucose metabolism (glucose 6-phosphate
and fructose 6-phosphate). We tested the model in a slow
metabolically-driven bursting mode with a fixed electrical
coupling conductance of 0.01 nS/pF, a value in line with previous
estimates on nearby human β-cells, and sufficiently high to
guarantee electrical synchronization in small compact cells’
aggregates (Loppini et al., 2015; Loppini et al., 2017). As for the
metabolites’ permeability, we restricted our simulations to two
coupling values, i.e., PG6PF6P = 0.001, 0.01 ms−1, with the higher
value consistent with a previous estimation on coupled mouse β-
cells (Kohen et al., 1979; Loppini et al., 2015). We found that both
settings resulted in similar features of spacetime dynamics, with the

same slow bursting time scale at the single-cell level and wave
propagation phenomena at bursting onset, present on membrane
potential, intracellular calcium, and fructose 1,6-bisphosphate FBP.
Wave velocity varied significantly with metabolites’ permeability,
and we were able to match experimental observations (Gosak et al.,
2022), reporting velocities of ≃ 10 μm/s, only at PG6PF6P =
0.001 ms−1. These findings suggest that gap-junction permeability
to metabolites can support slow wave propagation in human islets,
and its value could be significantly lower than the value estimated for
the mouse. Previous studies focusing on waves propagation in
mouse islets and their modeling with pure electrical coupling
pointed out higher velocities in the mouse, ranging from 50 to
100 μm/s, that could be numerically reproduced with heterogeneous
distributions of single-cell parameters and cells coupling strengths,
or by enhancing KATP channels conductance (Aslanidi et al., 2001;
Benninger et al., 2008; Stožer et al., 2013a; Šterk et al., 2021). In these
regards, metabolic coupling can serve as an alternative or additional
mechanism through which slow activation waves can propagate

FIGURE 7
Bimodal metabolic heterogeneity and functional nodes degree in comparison to wave dynamic. (A) Correlation between FBP ΔT onset values and
the glucokinase reaction rate VGK over the β-cells bimodal population. (B)Nodes degree evaluated on the metabolic functional network versus the delay
of cells activation with respect to the first responding cell (ΔT onset, evaluated on FBP activation). Results are computed on the I2 model.

FIGURE 8
Functional networks metrics and multiplex motifs in the presence of bimodal heterogeneity. (A) Average node degree versus threshold. (B) Average
local clustering coefficient versus threshold. (C) Number of networks connected components versus threshold. The three metrics are computed on the
functional networks for the I2model in the presence of a bimodal heterogeneity among cells, both for the electrical (green) andmetabolic (orange) layers.
(D) Pairwise connection motifs frequency M(r) at increasing distances with same thresholds used for the deterministic model I2 (Figure 4F).
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across pancreatic islets. It is worth noting that also in human islets
connexin 36 expression variability and corresponding
heterogeneities in coupling strengths can impact cell
synchronization and potentially shape activation wave velocity. In
this regard, future studies should explore this aspect, addressing its
role in the collective dynamics of human β-cell networks.

In our simulations, first wave-initiators were also the cells with
higher glucokinase activity, while in multi-species experimental
observations combining imaging and transcriptomics (Johnston
et al., 2016; Salem et al., 2019) increased metabolic activity was
only proven in hub cells. In this regard, our results can be viewed as a
model prediction of pacemakers metabolic fingerprint in human
islets showing metabolically-driven slow bursting oscillations.
Consistently with other experimental analyses on mouse islets
(Šterk et al., 2023b), the pacemakers identified in our analysis
were mostly located in the islet periphery and characterized by a
reduced number of structural and functional connections. In line
with Šterk et al. (2023b), our functional networks showed a reduced
number of links for wave initiators and terminators (last responding
cells) and an increased number of connections for intermediate
responding cells (Figures 5, 7). Indeed, our results confirm that
functional hubs are cells spreading activity from the wave-initiators
to the rest of the β-cells population and can naturally arise because of
a spacetime activation supported by nearest-neighbor structural
couplings (Cappon and Pedersen, 2016; Šterk et al., 2023b).

In the domain of functional networks, our simulations show
interesting features of multi-level synchronization in β-cells
aggregates. Our results reveal that at PG6PF6P = 0.01 ms−1 the
extracted functional networks are characterized by too dense
connectivities in comparison to experimental observations (Gosak
et al., 2022), further corroborating that low metabolic coupling
strengths can be implied in the regulation of human β-cell
networks, in line to what was pointed out by the wave velocity
analysis. Given the frequency of the functional motifs versus
distance, human β-cells networks are able to support combined
electrical and metabolic coordination that extend at longer ranges
with respect to the underlying structural connectivity. Indeed, both
electrical andmetabolic functional links were found within distances
from a reference cell of about 20–50 μm, supporting the idea of
significant coordination of cells activity in small groups (Quesada
et al., 2006; Gosak et al., 2022). At low metabolites permeabilities,
such coordination is slightly less strong but still significant. At longer
distances, metabolic coordination overcomes electrical one,
suggesting that metabolic dynamics could be less sensitive to cells
spatial aggregation in small groups within human islets. A possible
explanation could be that the slow glycolytic oscillators are more
prone to synchronization than the fast electrical ones or that
heterogeneity in glycolytic parameters is as such to ensure longer
range coordination. Our results are in agreement with a recent study
on combined electrical and metabolic coupling in β-cells networks
based on a phenomenological model reproducing fast and slow
oscillations (Šterk et al., 2023a). Specifically, Šterk et al. (2023a)
showed that functional networks derived from the slow metabolic
activity present more long-range connections than the ones
extracted from the fast electrical activity and that metabolic
coupling can boost synchronization of the fast electrical
oscillations. Consistently, the motifs analysis here presented
showed an increased fraction of functional connections on the

electrical layer at high metabolic coupling strengths and, in
general, metabolic synchronization spanning longer distances
than the electrical one. It is worth mentioning that we also tested
other techniques to extract functional networks based on the
original simulated signals or on their derivatives, and we
obtained results in line with the one presented here obtained
with binarized time series describing cells activation (see
Methods). The only parameter that changes in these different
approaches is the threshold used to extract significant
correlations (Gosak et al., 2018). An intriguing further result is
that electrical synchronization appeared to be enhanced when
randomness is included in the model in the form of white noise
within the membrane potential dynamics. It is well known that noise
deriving from stochastic ion channel gating is particularly significant
in β-cells, and when included in coupled β-cell populations, it can
potentiate bursting oscillation and induce stochastic resonance
phenomena (Sherman and Rinzel, 1991; De Vries and Sherman,
2000). Our results show that similar stochastic resonance
phenomena, in relation to action potentials synchronization, can
potentially enhance electrical coordination in human β-cells
aggregates.

Concerning the impact of different cell sub-populations, we
verified that a bimodal distribution of VGK resulted in non
significant variations of wave-pattern activation and
synchronization patterns, further confirming the role of cells with
increased VGK as wave initiators. These results are in apparent
contradiction with experiments and simulations made in other
studies on mouse β-cell aggregates (Westacott et al., 2017), which
showed that wave initiators had altered excitability, as stated also in
Benninger et al. (2008), Benninger et al. (2014), and were less
metabolically active. Concerning simulations, this contradiction
can be partially mitigated if it is analyzed the effect of lowering
and increasing VGK in our model with respect to the one reported by
Westacott et al. (2017). Indeed, increasing VGK in our model results
in an increasing metabolic oscillations frequency, which is the
opposite effect compared to the one observed in ref. (Westacott
et al., 2017), where it is obtained an increasing frequency at lower
VGK values. Therefore, wave initiators in the twomodels consistently
show higher intrinsic frequencies, in line with what could be
expected in diffusively coupled networks of nonlinear oscillators.
It is worth noting that the β-cell glycolytic oscillator on which we
based our network model (Westermark and Lansner, 2003) presents
a U-shaped behavior in terms of oscillation period versus VGK, and
moving the extraction of such a parameter to higher values could
reproduce frequency increasing by lowering the glucokinase
reaction rate. Other than that, other major factors can explain
the observed differences. Indeed, we here study slow
metabolically-driven bursting, while Westacott et al. (2017)
investigated a fast electrically-driven bursting. In this regard, our
model discards metabolic oscillations driven by the electrical
compartment, which, in some conditions, have been shown to be
dominant oscillation modes in a single-cell model fine-tuned on
mouse data (Marinelli et al., 2021). Further refinements of the
electro-metabolic feedback to the human case should be needed
to test such oscillations and their synchronization properties in
human islets. Also, our study focuses on human β-cells networks,
and their collective response can differ from the one observed in the
mouse. Additional experiments based on a more precise
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quantification of metabolic activity could help in dissecting both
differences and similarities between the mouse and the human. Still,
in our bimodal model, functional hubs did not overlap with wave
initiators and cells presenting alteredVGK values. To summarize, our
results can be interpreted as a prediction of increased metabolic
activity for wave initiators in human β-cell aggregates regulated in a
slow metabolic bursting regime. Further studies should be devoted
in this context to verify this result by extracting comprehensive
fingerprints of initiators and hubs, also involving detailed
electrophysiological characterizations.

In conclusion, this study revealed interesting properties of
human-like β-cells networks and pointed out that metabolic
coupling can be an important mechanism regulating whole-islet
activity in humans and, potentially, also in the mouse and in other
species. The multi-level analysis of cells activity correlation also
showed that functional architecture reveals more complexity than
what is merely seen when looking at the sole electrical/calcium
dynamics. Furthermore, functional metabolic networks can give
additional valuable insights on the coordination properties of β-
cells networks and their possible impairment in pathology. Future
studies should be devoted to addressing some limitations of the
approach presented here, among which heterogeneity in electrical
gap-junction conductance and permeability, electro-metabolic
coupling, large islet architectures, and the inclusion of α- and δ-
cells together with heterotypic cells interaction, as previously
performed by Briant et al. (2018), pointing toward the modeling
of realistic whole-islet activity.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

NL: Data curation, Formal Analysis, Investigation,
Methodology, Software, Visualization, Writing–original draft,
Writing–review and editing. SF: Writing–review and editing,
Conceptualization, Supervision. AL: Conceptualization,

Supervision, Writing–review and editing, Data curation, Formal
Analysis, Investigation, Methodology, Software, Visualization,
Writing–original draft.

Funding

The authors declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

AL and SF acknowledge the support of the International Center
for Relativistic Astrophysics Network (ICRANet), Italy. All the
authors acknowledge the support of the Italian National Group
for Mathematical Physics (GNFM-INdAM). All the authors
acknowledge the support from the European Commission’s
Horizon Europe Framework Programme under the Research and
Innovation Action GA n. 101070546–MUQUABIS and the
IR0000011–EBRAINS-Italy PNRR research infrastructure.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The authors declared that they were an editorial board member
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aslanidi, O., Mornev, O., Vesterager, M., Sørensen, M. P., and Christiansen, P. L.
(2002). A model for glucose-induced wave propagation in pancreatic islets of
langerhans. J. Theor. Biol. 215, 273–286. doi:10.1006/jtbi.2001.2517

Aslanidi, O. V., Mornev, O. A., Skyggebjerg, O., Arkhammar, P., Thastrup, O.,
Sørensen, M. P., et al. (2001). Excitation wave propagation as a possible mechanism for
signal transmission in pancreatic islets of langerhans. Biophysical J. 80, 1195–1209.
doi:10.1016/S0006-3495(01)76096-1

Benninger, R. K., Hutchens, T., Head, W. S., McCaughey, M. J., Zhang, M., Le
Marchand, S. J., et al. (2014). Intrinsic islet heterogeneity and gap junction coupling
determine spatiotemporal Ca²⁺ wave dynamics. Biophysical J. 107, 2723–2733. doi:10.
1016/j.bpj.2014.10.048

Benninger, R. K., Zhang, M., Head, W. S., Satin, L. S., and Piston, D. W. (2008). Gap
junction coupling and calcium waves in the pancreatic islet. Biophysical J. 95,
5048–5061. doi:10.1529/biophysj.108.140863

Bertram, R., Previte, J., Sherman, A., Kinard, T. A., and Satin, L. S. (2000). The
phantom burster model for pancreatic β-cells. Biophysical J. 79, 2880–2892. doi:10.
1016/S0006-3495(00)76525-8

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Complex
networks: structure and dynamics. Phys. Rep. 424, 175–308. doi:10.1016/j.physrep.2005.
10.009

Braun, M., Ramracheya, R., and Rorsman, P. (2012). Autocrine regulation of insulin
secretion. Diabetes, Obes. Metabolism 14, 143–151. doi:10.1111/j.1463-1326.2012.
01642.x

Briant, L., Reinbothe, T., Spiliotis, I., Miranda, C., Rodriguez, B., and Rorsman, P.
(2018). δ-cells and β-cells are electrically coupled and regulate α-cell activity via
somatostatin. J. physiology 596, 197–215. doi:10.1113/JP274581

Brissova, M., Fowler, M. J., Nicholson, W. E., Chu, A., Hirshberg, B., Harlan, D. M.,
et al. (2005). Assessment of human pancreatic islet architecture and composition by
laser scanning confocal microscopy. J. Histochem. Cytochem. 53, 1087–1097. doi:10.
1369/jhc.5C6684.2005

Cabrera, O., Berman, D. M., Kenyon, N. S., Ricordi, C., Berggren, P.-O., and
Caicedo, A. (2006). The unique cytoarchitecture of human pancreatic islets has
implications for islet cell function. Proc. Natl. Acad. Sci. 103, 2334–2339. doi:10.
1073/pnas.0510790103

Frontiers in Network Physiology frontiersin.org11

Luchetti et al. 10.3389/fnetp.2023.1264395

https://doi.org/10.1006/jtbi.2001.2517
https://doi.org/10.1016/S0006-3495(01)76096-1
https://doi.org/10.1016/j.bpj.2014.10.048
https://doi.org/10.1016/j.bpj.2014.10.048
https://doi.org/10.1529/biophysj.108.140863
https://doi.org/10.1016/S0006-3495(00)76525-8
https://doi.org/10.1016/S0006-3495(00)76525-8
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1111/j.1463-1326.2012.01642.x
https://doi.org/10.1111/j.1463-1326.2012.01642.x
https://doi.org/10.1113/JP274581
https://doi.org/10.1369/jhc.5C6684.2005
https://doi.org/10.1369/jhc.5C6684.2005
https://doi.org/10.1073/pnas.0510790103
https://doi.org/10.1073/pnas.0510790103
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1264395


Cappon, G., and Pedersen, M. G. (2016). Heterogeneity and nearest-neighbor
coupling can explain small-worldness and wave properties in pancreatic islets.
Chaos Interdiscip. J. Nonlinear Sci. 26, 053103. doi:10.1063/1.4949020

De Vries, G., and Sherman, A. (2000). Channel sharing in pancreatic β-cells revisited:
enhancement of emergent bursting by noise. J. Theor. Biol. 207, 513–530. doi:10.1006/
jtbi.2000.2193

Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., and Raptis, S. A. (2011).
Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 93, S52–S59.
doi:10.1016/S0168-8227(11)70014-6

Dwulet, J. M., Ludin, N. W., Piscopio, R. A., Schleicher, W. E., Moua, O., Westacott, M.
J., et al. (2019). How heterogeneity in glucokinase and gap-junction coupling determines
the islet [ca2+] response. Biophysical J. 117, 2188–2203. doi:10.1016/j.bpj.2019.10.037

Gosak, M., Dolenšek, J., Markovič, R., Rupnik, M. S., Marhl, M., and Stožer, A. (2015).
Multilayer network representation of membrane potential and cytosolic calcium
concentration dynamics in beta cells. Chaos, Solit. Fractals 80, 76–82. doi:10.1016/j.
chaos.2015.06.009

Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M. S., Marhl, M., Stožer, A., et al.
(2018). Network science of biological systems at different scales: A review. Phys. life Rev.
24, 118–135. doi:10.1016/j.plrev.2017.11.003

Gosak, M., Yan-Do, R., Lin, H., MacDonald, P. E., and Stožer, A. (2022). Ca2+
oscillations, waves, and networks in islets from human donors with and without type
2 diabetes. Diabetes 71, 2584–2596. doi:10.2337/db22-0004

Head, W. S., Orseth, M. L., Nunemaker, C. S., Satin, L. S., Piston, D. W., and
Benninger, R. K. (2012). Connexin-36 gap junctions regulate in vivo first-and second-
phase insulin secretion dynamics and glucose tolerance in the conscious mouse.
Diabetes 61, 1700–1707. doi:10.2337/db11-1312

Johnston, N. R., Mitchell, R. K., Haythorne, E., Pessoa, M. P., Semplici, F., Ferrer, J.,
et al. (2016). Beta cell hubs dictate pancreatic islet responses to glucose. Cell metab. 24,
389–401. doi:10.1016/j.cmet.2016.06.020

Kohen, E., Kohen, C., Thorell, B., Mintz, D. H., and Rabinovitch, A. (1979).
Intercellular communication in pancreatic islet monolayer cultures: A
microfluorometric study. Science 204, 862–865. doi:10.1126/science.35828

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world networks.
Phys. Rev. Lett. 87, 198701. doi:10.1103/PhysRevLett.87.198701

Loppini, A., Braun, M., Filippi, S., and Pedersen, M. G. (2015). Mathematical
modeling of gap junction coupling and electrical activity in human β-cells. Phys.
Biol. 12, 066002. doi:10.1088/1478-3975/12/6/066002

Loppini, A., and Chiodo, L. (2019). Biophysical modeling of β-cells networks: realistic
architectures and heterogeneity effects. Biophys. Chem. 254, 106247. doi:10.1016/j.bpc.
2019.106247

Loppini, A., Pedersen, M. G., Braun, M., and Filippi, S. (2017). Gap-junction coupling
and atp-sensitive potassium channels in human β-cell clusters: effects on emergent
dynamics. Phys. Rev. E 96, 032403. doi:10.1103/PhysRevE.96.032403

Marinelli, I., Fletcher, P. A., Sherman, A. S., Satin, L. S., and Bertram, R. (2021).
Symbiosis of electrical and metabolic oscillations in pancreatic β-cells. Front. Physiology
12, 781581. doi:10.3389/fphys.2021.781581

Markovič, R., Stožer, A., Gosak, M., Dolenšek, J., Marhl, M., and Rupnik, M. S. (2015).
Progressive glucose stimulation of islet beta cells reveals a transition from segregated to
integrated modular functional connectivity patterns. Sci. Rep. 5, 7845. doi:10.1038/srep07845

Nittala, A., Ghosh, S., and Wang, X. (2007). Investigating the role of islet
cytoarchitecture in its oscillation using a new β-cell cluster model. PloS one 2, e983.
doi:10.1371/journal.pone.0000983

Nittala, A., andWang, X. (2008). The hyperbolic effect of density and strength of inter
beta-cell coupling on islet bursting: a theoretical investigation. Theor. Biol. Med. Model.
5, 17–13. doi:10.1186/1742-4682-5-17

Pedersen, M. G. (2010). A biophysical model of electrical activity in human β-cells.
Biophysical J. 99, 3200–3207. doi:10.1016/j.bpj.2010.09.004

Quesada, I., Todorova, M. G., Alonso-Magdalena, P., Beltrá, M., Carneiro, E. M.,
Martin, F., et al. (2006). Glucose induces opposite intracellular ca2+ concentration
oscillatory patterns in identified α-and β-cells within intact human islets of langerhans.
Diabetes 55, 2463–2469. doi:10.2337/db06-0272

Rao, V. P., and Rizzo, M. A. (2020). Diffusion of metabolites across gap junctions
mediates metabolic coordination of β-islet cells. BioRxiv. Available at: https://www.

biorxiv.org/content/10.1101/2020.12.23.424180v1.full (Accessed December 23,
2020).

Ravier, M. A., Guldenagel, M., Charollais, A., Gjinovci, A., Caille, D., Sohl, G., et al.
(2005). Loss of connexin36 channels alters β-cell coupling, islet synchronization of
glucose-induced ca2+ and insulin oscillations, and basal insulin release. Diabetes 54,
1798–1807. doi:10.2337/diabetes.54.6.1798

Riz, M., Braun, M., and Pedersen, M. G. (2014). Mathematical modeling of
heterogeneous electrophysiological responses in human β-cells. PLOS Comput. Biol.
10, 1003389–e1003414. doi:10.1371/journal.pcbi.1003389

Rodgers, J. L., and Nicewander, W. A. (1988). Thirteen ways to look at the correlation
coefficient. Am. Statistician 42, 59–66. doi:10.1080/00031305.1988.10475524

Rorsman, P., and Braun, M. (2013). Regulation of insulin secretion in human pancreatic
islets. Annu. Rev. physiology 75, 155–179. doi:10.1146/annurev-physiol-030212-183754

Rorsman, P., Eliasson, L., Kanno, T., Zhang, Q., and Gopel, S. (2011).
Electrophysiology of pancreatic β-cells in intact mouse islets of langerhans. Prog.
biophysics Mol. Biol. 107, 224–235. doi:10.1016/j.pbiomolbio.2011.06.009

Saadati, M., and Jamali, Y. (2021). The effects of beta-cell mass and function,
intercellular coupling, and islet synchrony on ca2+ dynamics. Sci. Rep. 11, 10268.
doi:10.1038/s41598-021-89333-x

Salem, V., Silva, L. D., Suba, K., Georgiadou, E., Neda Mousavy Gharavy, S., Akhtar,
N., et al. (2019). Leader β-cells coordinate ca2+ dynamics across pancreatic islets in vivo.
Nat. Metab. 1, 615–629. doi:10.1038/s42255-019-0075-2

Sherman, A., and Rinzel, J. (1991). Model for synchronization of pancreatic beta-cells by
gap junction coupling. Biophysical J. 59, 547–559. doi:10.1016/S0006-3495(91)82271-8

Smolen, P., Rinzel, J., and Sherman, A. (1993). Why pancreatic islets burst but single
beta cells do not. the heterogeneity hypothesis. Biophysical J. 64, 1668–1680. doi:10.
1016/S0006-3495(93)81539-X

Speier, S., Gjinovci, A., Charollais, A., Meda, P., and Rupnik, M. (2007). Cx36-
mediated coupling reduces β-cell heterogeneity, confines the stimulating glucose
concentration range, and affects insulin release kinetics. Diabetes 56, 1078–1086.
doi:10.2337/db06-0232

Stamper, I., Jackson, E., and Wang, X. (2014). Phase transitions in pancreatic islet
cellular networks and implications for type-1 diabetes. Phys. Rev. E 89, 012719. doi:10.
1103/PhysRevE.89.012719

Steiner, D. J., Kim, A., Miller, K., and Hara, M. (2010). Pancreatic islet plasticity:
interspecies comparison of islet architecture and composition. Islets 2, 135–145. doi:10.
4161/isl.2.3.11815

Šterk, M., Barać, U., Stožer, A., and Gosak, M. (2023a). Both electrical and metabolic
coupling shape the collective multimodal activity and functional connectivity patterns
in beta cell collectives. arXiv preprint arXiv:2304.13961. Available at: https://arxiv.org/
abs/2304.13961 (Accessed April 27, 2023).

Šterk, M., Dolenšek, J., Bombek, L. K., Markovič, R., Zakelšek, D., Perc, M., et al. (2021).
Assessing the origin and velocity of ca2+waves in three-dimensional tissue: insights from a
mathematical model and confocal imaging in mouse pancreas tissue slices. Commun.
Nonlinear Sci. Numer. Simul. 93, 105495. doi:10.1016/j.cnsns.2020.105495

Šterk, M., Dolenšek, J., Klemen, M. S., Bombek, L. K., Leitgeb, E. P., Kerčmar, J., et al.
(2023b). Functional characteristics of hub and wave-initiator cells in β cell networks.
Biophysical J. 122, 784–801. doi:10.1016/j.bpj.2023.01.039

Stožer, A., Dolenšek, J., and Rupnik, M. S. (2013a). Glucose-stimulated calcium
dynamics in islets of langerhans in acute mouse pancreas tissue slices. PloS one 8,
e54638. doi:10.1371/journal.pone.0054638

Stožer, A., Gosak, M., Dolenšek, J., Perc, M., Marhl, M., Rupnik, M. S., et al. (2013b).
Functional connectivity in islets of langerhans from mouse pancreas tissue slices. PLOS
Comput. Biol. 9, e1002923. doi:10.1371/journal.pcbi.1002923

Tsaneva-Atanasova, K., Zimliki, C. L., Bertram, R., and Sherman, A. (2006). Diffusion
of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork.
Biophysical J. 90, 3434–3446. doi:10.1529/biophysj.105.078360

Westacott, M. J., Ludin, N. W., and Benninger, R. K. (2017). Spatially organized β-cell
subpopulations control electrical dynamics across islets of langerhans. Biophysical J.
113, 1093–1108. doi:10.1016/j.bpj.2017.07.021

Westermark, P. O., and Lansner, A. (2003). A model of phosphofructokinase and
glycolytic oscillations in the pancreatic β-cell. Biophysical J. 85, 126–139. doi:10.1016/
S0006-3495(03)74460-9

Frontiers in Network Physiology frontiersin.org12

Luchetti et al. 10.3389/fnetp.2023.1264395

https://doi.org/10.1063/1.4949020
https://doi.org/10.1006/jtbi.2000.2193
https://doi.org/10.1006/jtbi.2000.2193
https://doi.org/10.1016/S0168-8227(11)70014-6
https://doi.org/10.1016/j.bpj.2019.10.037
https://doi.org/10.1016/j.chaos.2015.06.009
https://doi.org/10.1016/j.chaos.2015.06.009
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.2337/db22-0004
https://doi.org/10.2337/db11-1312
https://doi.org/10.1016/j.cmet.2016.06.020
https://doi.org/10.1126/science.35828
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1088/1478-3975/12/6/066002
https://doi.org/10.1016/j.bpc.2019.106247
https://doi.org/10.1016/j.bpc.2019.106247
https://doi.org/10.1103/PhysRevE.96.032403
https://doi.org/10.3389/fphys.2021.781581
https://doi.org/10.1038/srep07845
https://doi.org/10.1371/journal.pone.0000983
https://doi.org/10.1186/1742-4682-5-17
https://doi.org/10.1016/j.bpj.2010.09.004
https://doi.org/10.2337/db06-0272
https://www.biorxiv.org/content/10.1101/2020.12.23.424180v1.full
https://www.biorxiv.org/content/10.1101/2020.12.23.424180v1.full
https://doi.org/10.2337/diabetes.54.6.1798
https://doi.org/10.1371/journal.pcbi.1003389
https://doi.org/10.1080/00031305.1988.10475524
https://doi.org/10.1146/annurev-physiol-030212-183754
https://doi.org/10.1016/j.pbiomolbio.2011.06.009
https://doi.org/10.1038/s41598-021-89333-x
https://doi.org/10.1038/s42255-019-0075-2
https://doi.org/10.1016/S0006-3495(91)82271-8
https://doi.org/10.1016/S0006-3495(93)81539-X
https://doi.org/10.1016/S0006-3495(93)81539-X
https://doi.org/10.2337/db06-0232
https://doi.org/10.1103/PhysRevE.89.012719
https://doi.org/10.1103/PhysRevE.89.012719
https://doi.org/10.4161/isl.2.3.11815
https://doi.org/10.4161/isl.2.3.11815
https://arxiv.org/abs/2304.13961
https://arxiv.org/abs/2304.13961
https://doi.org/10.1016/j.cnsns.2020.105495
https://doi.org/10.1016/j.bpj.2023.01.039
https://doi.org/10.1371/journal.pone.0054638
https://doi.org/10.1371/journal.pcbi.1002923
https://doi.org/10.1529/biophysj.105.078360
https://doi.org/10.1016/j.bpj.2017.07.021
https://doi.org/10.1016/S0006-3495(03)74460-9
https://doi.org/10.1016/S0006-3495(03)74460-9
https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2023.1264395

	Multilevel synchronization of human β-cells networks
	1 Introduction
	2 Materials and Methods
	2.1 β-cell networks modeling
	2.2 Islet architecture
	2.3 Functional network and motif analysis
	2.4 Numerics

	3 Results
	3.1 Electrical and metabolic coupling: bursting and activation waves
	3.2 Electrical and metabolic functional networks: multiplex description
	3.3 Noise effect on synchronization motifs
	3.4 Multiple sub-populations: bimodal heterogeneity

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


