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The intervertebral disc (IVD) is a load-bearing, avascular tissue that cushions
pressure and increases flexibility in the spine. Under the influence of obesity,
injury, and reduced nutrient supply, it develops pathological changes such as
fibular annulus (AF) injury, disc herniation, and inflammation, eventually leading to
intervertebral disc degeneration (IDD). Lower back pain (LBP) caused by IDD is a
severe chronic disorder that severely affects patients’ quality of life and has a
substantial socioeconomic impact. Patients may consider surgical treatment after
conservative treatment has failed. However, the broken AF cannot be repaired
after surgery, and the incidence of re-protrusion and reoccurring pain is high,
possibly leading to a degeneration of the adjacent vertebrae. Therefore, effective
treatment strategies must be explored to repair and prevent IDD. This paper
systematically reviews recent advances in repairing IVD, describes its advantages
and shortcomings, and explores the future direction of repair technology.
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1 Introduction

IDD is frequently asymptomatic (Matsumoto et al., 2010; Brinjikji et al., 2015), but it
remains one of the leading causes of LBP (Morlion, 2013; Hartvigsen et al., 2018), a severe
chronic disorder that is a significant cause of disability (Hicks et al., 2009; March et al., 2014).
It affects approximately 1 billion people worldwide (Hoy et al., 2014). It severely reduces
patients’ quality of life while imposing a substantial socioeconomic burden, costing
$253 billion per year in the United States alone (Hoy et al., 2014). Current measures to
treat LBP due to IDD include conservative and surgical treatment. It is commonly
recommended to undergo conservative treatment before surgical treatment, and the
choice of treatment depends on the effectiveness of conservative treatment and the
degree of IDD (Sabnis and Diwan, 2014; Wu et al., 2020). Conservative treatment
includes oral pain medication or topical pain relief, physical therapy and physical
exercise to strengthen the low back muscles (Wu et al., 2020). Pain will be relieved in
some patients, but recurrence is common and cannot be avoided (Hestbaek et al., 2003).
Surgical intervention may be considered when conservative treatment fails to improve
symptoms (Storm et al., 2002). There are three main types of surgical treatment:
percutaneous decompression, fusion, and disc replacement. Percutaneous decompression
includes thermal (radiofrequency ablation), chemical (protease) (Kim et al., 2018) and
endoscopic decompression (Aichmair et al., 2014). It relieves the protruding IVD from
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compressing the nerve root by eliminating the protruding tissue.
However, due to the low number of AF cells, avascularity (Hampton
et al., 1989; Vernon-Roberts et al., 2007) and poor regenerative
capacity (Bailey et al., 2013), there is a high incidence of reherniation
and recurrent pain after surgery (Andersson, 1999), which may even
lead to degeneration of the adjacent vertebrae (Häkkinen et al., 2007;
Hughes et al., 2012). Fusion surgery limits the mobility of the fused
segment (Helgeson et al., 2013), while the prosthesis is prone to
displacement after total disc replacement (van den Eerenbeemt et al.,
2010; Costi et al., 2011). Surgical treatment focuses on relieving
pressure to relieve pain and does little to regenerate tissue and
delay IDD.

Current strategies for treating IDD include AF sutures and
tissue-engineered biological repair. AF sutures maintain IVD
height and lumbar stability but do not provide high mechanical
loading for long periods. Moreover, suture manipulation is difficult
with larger defects (Heuer et al., 2008; Rickers et al., 2018; Li et al.,
2020; Ren et al., 2020; Chen et al., 2023). In the last decades, tissue-
engineered biological repairs, such as hydrogels and scaffolds, has
shown great advantages. However, it still has some limitations at
present: 1) Tissue-engineered repair may have a series of safety
issues such as implant-induced infections, sterility and
tumorigenicity (Agnol et al., 2019); 2) Since the benefit-risk ratio
of tissue-engineered repair for human treatment is unknown at
present, this will bring a series of ethical issues; 3) The process of
tissue-engineered repair is generally long, and it needs to be
considered whether it can be repaired efficiently and prevented
from recurrence; and 4) At the present stage, the majority of tissue-
engineered repair materials mostly remain in the experimental stage,
and the treatment of IDD remains a challenge. Hence, this article
systematically reviews the recent advances in IVD repair and
explores the future direction of IVD repair technology.

2 The structure and function of IVD

The IVD is a disc-like fibrocartilage between the vertebral bodies
of two adjacent vertebrae consisting of the AF and the nucleus
pulposus (NP) (Klein et al., 1983). The peripheral AF wraps around
the central NP and anchors within the superior and inferior EPs. The
IVD is composed mainly of type I and type II collagen fibres, with a
progressive decrease in the distribution of type I collagen from the
outside to the inside and the opposite trend for type II collagen. The
collagen fibres of the AF make up approximately 70% of its dry
weight and the NP approximately 20% (Eyre and Muir, 1976; Eyre
and Muir, 1977). The AF is a laminar complex of 15–25 concentric
circles (Humzah and Soames, 1988; Marchand and Ahmed, 1990).
The angle of the AF fibres varies and cross-aligns between 62° in the
outer layer and 20° in the inner layer (Cassidy et al., 1989). The
cellular distribution of AF varies, with the cells in the outer annulus
showing a tendency to be spindle-shaped fibroblast-like and the
inner annulus tending to be oval or spherical (Errington et al., 1998;
Bruehlmann et al., 2002). The NP is a heterogeneous structure
consisting of glycosaminoglycan (GAG), type II collagen fibres and a
small number of chondrocytes (Humzah and Soames, 1988; Mizuno
et al., 2004). NP cells are derived from notochordal cells (Choi et al.,
2008). The high water content of NP tissue allows it to absorb
spinal loads and transmit them to the surrounding tissues

(Chan et al., 2011). Endplate (EP) is a layer of hyaline cartilage
approximately 0.6 mm thick (Raj, 2008). The cell density in EP is
higher than in AF and NP (Maroudas et al., 1975). EP forms a
porous, semi-permeable barrier between the vertebrae, regulating
the transport of nutrients, mainly small solutes (Chan et al., 2011;
Pattappa et al., 2012). IVD loading mechanisms are complex and
allow the spine to produce movements such as extension, flexion,
bending and rotation (Roberts et al., 2006). IVD features nonlinear,
viscoelastic and anisotropic mechanics (Elliott and Setton, 2001),
contributing to the spine’s ability to increase flexibility and cushion
pressure (O’Connell et al., 2009).

3 Pathophysiology of IDD

The pathophysiology of IDD is complex, and the main
alterations include loss of proteoglycans, reduction of collagen
fibrils and increase in fibronectin (Oegema et al., 2000). The
most significant of these alterations is the loss of proteoglycans.
The major influential factors are smoking, obesity (Kim et al., 2020),
injury (Osti et al., 1990), abnormal mechanical loading (Lotz et al.,
1998), genetic susceptibility (Heikkilä et al., 1989), and reduction in
nutrient supply to IVD cells (Nachemson et al., 1970). As age
increases, the supply of nutrients to IVD cells decreases,
decreasing the oxygen content, pH and extracellular matrix
(ECM) synthesis of the IVD (Ishihara and Urban, 1999).
However, the reduced ECM synthesis would exacerbate the
decline in nutrient supply to the IVD (Kim et al., 2020).
Ultimately, it causes various pathological changes such as height
loss of IVD, vertebral osteophyte formation, EP sclerosis, AF injury,
disc herniation, inflammation and motion disorders (Lotz and
Ulrich, 2006; Guterl et al., 2013; Huang et al., 2013).

4 Hydrogel repair strategy

Hydrogel is a class of materials with a polymer network system
capable of absorbing vast amounts of fluid. It is capable of
mimicking the biological, chemical and mechanical properties of
native tissues. Notably, the mechanical and biological properties and
degradation kinetics of hydrogels can be customised to meet
different demands (Gauvin et al., 2012; Lewns et al., 2023).

4.1 Synthetic hydrogels

Synthetic hydrogels include polyacrylic acid and its derivatives,
polyethene oxide, derived copolymers, polyvinyl alcohol (PVA),
poly-vinyl pyrrolidone (PVP), polyethylene glycol (PEG) and
polyphosphazene nitrile (Yan et al., 2021). Table 1 outlines
recent novel strategies for synthetic hydrogels in IVD repair. The
biodegradable electrospun polycaprolactone (PCL) membranes
show no mass loss or dimensional change after 6 months of
exposure to aqueous solutions (Alexeev et al., 2021). Agnol et al.
made a polyurethane (PU) tissue adhesive-U2000-2 prepolymer by
combining polycarbonate diol and hexamethylene diisocyanate
(HDI) monomers. It features excellent dynamic compression
properties and adhesion, especially for covalent binding to
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gelatine without the use of catalysts. However, sterility,
biomechanics of in vivo and biocompatibility are yet to be
investigated (Agnol et al., 2019). HDI in copolymers of PEG with
trimethylene carbonate 3 (TMC3) and HDI end-groups is capable of
forming covalent bonds with natural AF tissue. At the same time,
TMC3 has properties such as high adhesion strength, slow
degradation, and excellent cytocompatibility, but extrusion occurs
under high stress and cyclic loading, requiring further optimization
of TMC (Long et al., 2018). Schmitz et al. reported that PEG
combined decellularisation of notochordal cell derived matrix
(DNCM) showed excellent biocompatibility, but further
biomechanical adjustments are required (Schmitz et al., 2023).
Regarding the progress of research on PVA hydrogel as an NP
replacement material, Leone et al. found that PVA with PVP molar
ratio of 1:1 has excellent biomechanical characteristics which is a
promising NP replacement material (Leone et al., 2019). Permana
et al. reported that the biomechanical properties of PVA combined
with Silicone Rubber close to human NP (Permana et al., 2022).

4.2 Natural hydrogels

Natural hydrogels commonly originate from animal and plant
extracts, many of which are essential components of human tissues
and organs. Its non-toxic and excellent biosafety, biocompatibility
and injectability make it widely used for tissue regeneration and
repair. The main components include gelatine, collagen, fibrin,
hyaluronate, alginate and chitosan. Table 2 overviews recent
strategies for natural hydrogels in IVD repair.

A novel temperature-sensitive chitosan hydrogel exhibits
mechanical properties similar to those of human IVD with the
ability to maintain NP cell activity and promote GAG production
(Alinejad et al., 2019). Nanostructured gelatin colloidal hydrogels
are characterised by shear thinning, self-healing behaviour,
homogeneous porous networks and tunable mechanical
properties. Notably, it can also prevent leakage of bone marrow
stem cells (BMSCs), maintain cell viability, and support the NP-like
differentiation of BMSCs (Wang et al., 2021b). The injectable high-

TABLE 1 Synthetic hydrogels repair strategies.

Material Component Advantages Drawbacks Type of
model

Refs

Biodegradable
electrospun PCL
membrane

Polycaprolactone (PCL) Slow degradability Long-term repair — In vitro Alexeev et al.
(2020)

U2000-2 prepolymer Polycarbonatediol; Hexamethylene
diisocyanate monomers

Excellent adhesion; Covalent binding
with gelatin without the catalyst

Sterility Biomechanics and
biocompa-tibility unknown

In vitro Agnol et al.
(2019)

Copolymers of TMC
and HDI

Polyetheneglycol; TMC; HDI Excellent adhesion and
cytocompatibility

Poor mechanics In vitro Long et al.
(2018)

PEG combined with
DNCM

PEG; DNCM Excellent biocompatibility Require further biomechanical
adjustment

In vitro Schmitz et al.
(2023)

PVA/PVP hydrogel PVA; PVP Excellent biomechanics — In vitro Leone et al.
(2019)

PVA combined with
Silicone Rubber

PVA; Silicone Rubber Biomechanical properties close to
human NP

— In vitro Permana et al.
(2022)

TABLE 2 Natural hydrogels repair strategies.

Material Component Advantages Drawbacks Type of
model

Refs

Novel temperature-
sensitive chitosan
hydrogel

Chitosan; sodium
bicarbonate 0.075/β-
glycerophosphate 0.1

Mechanical properties resembling human
IVD; Preserve NP cell activity; Promote the
production of GAG

— In vitro Alinejad et al.
(2019)

Nanostructured gelatin
colloidal hydrogels

Gelatin Shear-thinning; Self-healing; Adjustable
mechanical properties; Preserve cell activity
Support NP-like differentiation of BMSCs

— In vitro Wang et al.
(2021a)

High-density collagen
gels

Collagen Maintain the water content of the NP Require a longer follow-up
period Lack of biomechanical
testing

In vivo Moriguchi et al.
(2018)

ChABC-treated
collagen gels

Collagen Enhance adhesion Safety needs to be clinically
tested

In vitro Jiang et al. (2019)

Porcine fibrin gel Fibrin Maintain the water content of the NP Lack of molecular level studies In vitro Du et al. (2020)

Decellularized ultra-
purified alginate gel

Alginate Facilitate the generation of ECM; Proliferate
endogenous NP progenitor cells

Absence of safety tests for
immunogenicity; Less suitable
for the elderly

In vivo Ura et al. (2021),
Tsujimoto et al.

(2018)
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density collagen (HDC) gel reduced degeneration of the NP by
alleviating AF breakdown and forming a fibrous cap structure that
prevented protrusion of the NP contents and maintained the water
content of the NP. However, Moriguchi et al. concluded that the
long-term effects of the gel are unknown and that it would need to
further research analyses and a longer follow-up period (Moriguchi
et al., 2018). Jiang et al. used chondroitinase ABC (ChABC) to
improve collagen gel adhesion in a short-term manner by removing
proteoglycan locally from AF, which reduced the risk of material
migration. Moreover, short-term use has not significantly reduced
cell viability (Jiang et al., 2019). Porcine fibrin gel was effective in
enhancing the closure of AF sutures, helping maintain the NP’s
water content and delaying IDD. However, this study needed more
evidence at the molecular level (Du and Zhu, 2019).

Alginate is a naturally occurring polymeric polysaccharide
found in algal and bacterial cell walls, with high porosity and
adjustable viscosity. Decellularised ultrapure alginate (UPAL) gel
promotes ECM production and proliferation of endogenous NP
progenitor cells. Notably, it also inhibits TNF-α and IL-6

production, downregulates TrkA expression, inhibits vascular
endothelial cell degeneration, and reduces acute postoperative
pain (Ura et al., 2021). However, the UPAL gel lacks safety tests
for immunogenicity, and there is a risk of re-protrusion on the other
side of the IVD after injection. It is not well suited to the elderly
population owing to its decellularisation (Tsujimoto et al., 2018).
Future studies need to refine immunogenicity testing to assess the
body’s rejection of it and incorporate stem cell repair to adapt it to
the elderly population.

4.3 Composite hydrogel

Composite hydrogels are composed of both synthetic and
natural polymer materials. Synthetic or natural hydrogels are not
able to satisfy both excellent biomechanics and biocompatibility, so
in recent years more and more research has turned to composite
hydrogels. Table 3 outlines recent strategies for composite hydrogels
in IVD repair.

TABLE 3 Composite hydrogels repair strategies.

Material Component Advantages Drawbacks Type of
model

Refs

FibGen Genipin; Fibrin Better axial compression
performance; Improved tensile
stiffness and axial neutral zone
length of IVDs; Restoration of the
water content of IVDs; Delivery
of biological factors and cells

Inability to restore axial and
torsional parameters to
normal levels

In vitro Alexeev et al. (2021),
Scheibler et al. (2018), Fujii
et al. (2020), Cruz et al.
(2018), Frauchiger et al.
(2018), Panebianco et al.

(2020)

Conjunction of FibGen
and CMC-MC

Genipin; Fibrin; CMC-MC Recover the biomechanics of
IVDs; Encapsulate cells and
decrease cell leakage

Only axial and torsional
mechanics were tested

In vitro Hom et al. (2019)

g-DAF-G Genipin; Decellularized
annulus fibrosus

Differentiate human bone
marrow stem cells (BMSCs) to AF
cells; Excellent bioactivity and
cellular extensibility; Restore the
water content of the NP

The method of induced
regeneration is inconvenient
and not very operable

In vitro Peng et al. (2020)

HA injection combined
with photocrosslinked
collagen patch

HA photocrosslinked
collagen patch

Recover the biomechanics and
the hydration of IVDs; Rapidly
translate into the clinic

Functional analysis is not
focused on the kinematics of
the entire spine

In vivo Sloan et al. (2020)

PCL-Supported
Electrocompacted
Aligned Collagen Type-I
Patch

PCL; Collagen Recover the biomechanics of
IVDs Produce sufficient type I
collagen and GAG; Promote the
adequate proliferation of AF cells

— In vitro Dewle et al. (2021)

Injectable
interpenetrating network
hydrogels

Fibronectin-conjugated
fibrin; Poly (ethylene glycol)
diacrylate; Doubly
modified GAG

Higher lap shear adhesive
strength than riboflavin cross-
linked and Genipin cross-linked
fibronectin hydrogels; Non-
cytotoxic; Easily apply to AF
defects in a short time

Immune responses, changes
in pain behavior, in vivo
degradation, endogenous
cellular repair were not
assessed

In vitro DiStefano et al. (2020)

Cellulose Nanofiber-
Reinforced Chitosan
Hydrogel

Cellulose nanofibers;
Chitosan

Enhance the mechanical
properties; The range of activity
of IVD is close to natural IVD

Non cellular repair In vitro Doench et al. (2019)

Nanocomposite hydrogel Methacrylated gellan-gum;
Cellulose nanocrystals

Enhance the mechanical
properties; Mimick the structure
of the natural AF interior and
exterior; Self-gel

— In vitro Pereira et al. (2018)

Injectable photocurable
hydrogel

PEGDA; (DAFM) Maintain its porous structure;
Promote ECM deposition

Lack of specific markers for
AF cells

In vivo Wei et al. (2023)
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4.3.1 Restoration and improvement of IVD
biomechanics

Genipin is an excellent natural biological cross-linking agent.
Genipin cross-linked fibrin (FibGen) hydrogel forms a dense seal at
the defect site (Alexeev et al., 2020). It has better axial compression
properties than the semi-synthetic binder consisting of
glutaraldehyde and albumin (BioGlue) (Scheibler et al., 2018),
which improves the tensile stiffness and axial neutral zone length
of IVDs. However, it fails to restore the axial and torsional
parameters to normal levels (Fujii et al., 2020). Cruz found that
FibGen with a ratio of 140 mg/mL fibrinogen and 6 mg/mL genipin
(F140G6) provided excellent initial and long-term mechanical
properties without cell proliferation and deposition of ECM,
making it suitable as a decellularised adhesive and repair
biomaterial (Cruz et al., 2018). Notably, FibGen combined with
the NP substitute carboxymethylcellulose - methylcellulose (CMC-
MC) (Hom et al., 2019), FibGen combined with silk scaffolds
(Frauchiger et al., 2018), and injected hyaluronic acid (HA)
combined with photo cross-linked collagen patches for repair
strategies enhance the mechanical properties of IVD and prevent
IDD (Sloan et al., 2020). PCL-supported electrically densified

oriented Collagen type I patches have high tensile strength and
modulus in the wet state or at sharp increases in stress values (Dewle
et al., 2021).

Polysaccharides have various application values such as
immune regulation, antiviral, anticancer, and hypoglycemic
effects. GAGs doubly modified by oxidation and methacrylation
can covalently bind interpenetrating network (IPN) hydrogels
composed of fibronectin and polyethene glycol diacrylate
(PEGDA) to natural AF tissue, which produces a higher lap
shear bond strength than riboflavin cross-linked and genipin
cross-linked fibronectin hydrogels. In particular, the degree of
oxidation correlates more closely with the adhesion strength than
methacrylation. Notably, it is not cytotoxic (DiStefano et al., 2020).
The mechanical properties of cellulose nanofibre-reinforced
chitosan hydrogels were enhanced due to the addition of
cellulose nanofibres. In particular, the range of activity of the
IVD after implantation is close to natural IVD. Nevertheless,
because of its non-cellular repair, it fails to ensure that the
tissue regenerates in the long term (Doench et al., 2019). Gellan
gels are polymeric linear polysaccharides widely used in various
applications such as food and pharmaceuticals. Pereira et al.

TABLE 4 Tissue engineering scaffold repair strategies.

Material Component Advantages Drawbacks Type of
model

Refs

Novel hybrid scaffold of PCL and
PLLA

PCL; PLLA Provide adequate and long-term
mechanical support; close to
native IVD in terms of tensile
properties and cellular response
activity; save cost

ECM secretion and scaffold
degradation are required to
further studies

In vitro Shamsah et al.
(2019)

PCL scaffold with angular layer
structure

PCL Excellent elastic response, radial
tensile modulus and axial
compressibility

Its performance under torsional
and fatigue conditions is
unknown

In vitro Christiani et al.
(2019)

Cell-free biodegradable
electrospin PCL scaffold

PCL Mimic the lamellar structure of
natural AF; Excellent mechanical
properties; Promote cell
colonization, proliferation and
organization

Further studies are required to
determine the long-term effects
of maintaining the structural and
mechanical integrity of the IVD.

In vivo Gluais et al.
(2019)

Multilayer nanomicrofiber bionic
biodegradable scaffold

PCL Laminar structure resembling
native AF; Recover the volume of
the NP and slow down the IDD

Scaffold degradation are required
to further studies

In vivo Kang et al.
(2018)

Electrospin PLLA fibre scaffold PLLA Mimic natural AF tissues; Cell
morphology, ECM gene
expression and protein
production resemble native AF
tissues

Adjustment of fiber diameter and
direction alone is not sufficient, it
requires multi-factor adjustment

In vitro Zhou et al.
(2021)

Bionic artificial scaffold PLA; GG/PEGDAPLLA/
POSS-(PLLA)8

Maintain the IVD height;
facilitate proteoglycan deposition;
fosters the transfer of cellular
nutrients and waste fluid
replacement

— In vivo Zhu et al.
(2021)

Aligned nanoyarn scaffold (AYS) PLLA-PCL Gelatin Excellent mechanical support Small pore size In vitro Wang et al.
(2021b)

Nanoyarn/three-dimensional
porous nano-fibrous hybrid
scaffold

PLLA-PCL Excellent mechanical support
Moderate pore size

The cell infiltration efficiency is
low and a significant amount of
cells are distributed on the
surface of scaffolds

In vitro Ma et al. (2018)

Collagen-PU scaffold Type I collagen; PU Excellent cell seeding ability Its random porous structure is
not conducive to matrix
deposition

In vitro Du and Zhu
(2019)
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reinforced methacrylated gellan-gum (GGMA) with cellulose
nanocrystals (nCell), which enhance the ability of AF to
withstand loading and create gradient structures that mimic the
internal and external structure of natural AF (Pereira et al., 2018).
A photocurable hydrogel consisting of PEGDA and decellularised
annular fibrous matrix (DAFM) improves the lack of the DAFM
hydrogel’s mechanical strength and maintains the porous structure
(Wei et al., 2023).

4.3.2 Restore the functionality of NP and AF
The repair strategy of FibGen and injected HA combined with

photo cross-linked collagen patches restores hydration and
pressurization of IVD, and the latter delivers cells to the NP
(Fujii et al., 2020; Sloan et al., 2020). FinGen with a ratio of 70 mg/
mL fibrinogen and 1 mg/mL genipin (F70G1) produces ECM at
the early stage (Cruz et al., 2018). Low concentrations of FibGen
are effective in both delivering biofactors to the injured IVD to
enhance endogenous repair and delivering live cells capable of
synthesizing ECM for exogenous repair (Panebianco et al., 2020).
The repair strategies of photocurable hydrogel consisting of
PEGDA and DAFM and PCL-supported electrically dense
directed collagen type I patches promote the deposition of
ECM and prevent NP atrophy. The latter repair strategy also
enables the adequate proliferation of AF cells while providing
sufficient ligands for cell attachment (Dewle et al., 2021; Wei
et al., 2023).

The repair strategy of PCL-supported electrically dense
directed collagen type I patches enables the adequate
proliferation of AF cells while providing sufficient ligands for
cell attachment (Dewle et al., 2021). Genipin cross-linked
decellularised fibrillar ring hydrogel (g-DAF-G) enables the
directed differentiation of BMSCs towards AF cells and
possesses excellent bioactivity and cell stretching properties.
DAF retains the natural microstructure, which reduces the
risk of implant rejection (Peng et al., 2020).

5 Tissue engineering scaffold repair
strategy

Tissue engineering repair is a new therapeutic strategy for repairing
IDD using seed cells as the core, scaffolds as the support vehicle and
bioactive factors as a facilitating adjunct. Table 4 outlines recent
strategies for tissue-engineered scaffolds in IVD repair.

5.1 Mechanical support and imitation of
natural AF structures

The mechanical support of the scaffold is important for
restoring the biomechanics of the IVD. The fibre angle, diameter
and spacing influence the mechanical support of the scaffold (Page
and Puttlitz, 2019). A new hybrid scaffold of 50% PCL and 50% poly
(L-lactic acid) (PLLA) provides adequate and long-term mechanical
support and tensile properties. It is cost-effective compared to 20%
PCL and 80% PLLA (Shamsah et al., 2019; Shamsah et al., 2020).
PCL scaffolds with an angular layer structure show excellent elastic
response and radial tensile modulus, with axial compressibility
exceeding natural AF tissue (Christiani et al., 2019).

Mimicking the structure of AF enables scaffolds to exhibit
mechanical properties similar to natural AF, restoring NP volume
and promoting cell colonisation, cell proliferation and ECM
generation (Kang et al., 2018; Gluais et al., 2019). The
admixture of GAG in fibrous scaffolds featuring interlaminar
structures further enhances the ability of the scaffold to
withstand simulated impact loading (Borem et al., 2019). It is
insufficient to mimic natural AF tissue by simply regulating fibre
diameter and orientation. To better simulate the
microenvironment of AF, multifactorial modulation is essential
(Zhou et al., 2021). Notably, the biocomposite laminate prepared
by Sharabi et al. using alginate hydrogel-embedded long collagen
fibres mimics the entire stress-strain mechanical behaviour of the

TABLE 5 Additional promising repair strategies.

Strategy Effects Defect Type of
model

Refs

ADAM8 Partial inhibition of ADAM8 protein hydrolysis may
retard IDD

Only test a small fraction of genes In vivo Zhang et al.
(2021)

Bleomycin Induction of cellular pro-fibrosis and maintain IVD
height; Short-term application of bleomycin would not
induce noticeable alterations in the cell cycle and
apoptotic rate

— In vivo Yang et al. (2021)

Low-loading hydrostatic
pressure

Low-loading hydrostatic pressure facilitate to maintain
cell survival and ECM homeostasis

Bioreactor pressure setting is not precise
enough

In vitro Wang et al.
(2020)

Low doses of short Link N Inhibits cell death and promotes IVD synthesis ECM — In vivo Mwale et al.
(2018)

Autologous PRP Facilitates early recovery after injury Need more studies and longer follow-up
periods for evaluation

In vivo Gelalis et al.
(2019)

Short-term continuous
low-tension traction

Provides stable intervertebral environment; Inhibits ECM
degradation; Reduces AF tension; Restores IVD height

Excessive traction time lead to IVD
degeneration

In vivo Che et al. (2019),
Guo et al. (2020)

PBM; Light-guided systems
or photosensitizers

Downregulates MMP1 and MMP3 to restrain catabolism Need more information on additional
photoreceptors and effective doses before
clinical application

In vitro Hwang et al.
(2020)
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AF lamina in both the longitudinal and circumferential directions,
which has great potential for application in IVD repair (Sharabi
et al., 2019).

5.2 The effect of scaffold aperture size and
construction on the repair of IVDs

The porosity and structure of the scaffold are critical for cell
migration and diffusion deep into the scaffold, transport of nutrients
andmetabolites, deposition of ECM and information transfer between

cells (Zhu et al., 2021). Although the mechanical support of the
nanoyarn scaffold (AYS) is strong, its pore size is small, and the rate of
cell diffusion to depth is slow (Wang et al., 2020). The electrospun
AYS and nanoyarn/three-dimensional porous nanofibrous hybrid
scaffolds (HS) modify the small porosity of AYS, leading to faster
cell infiltration efficiency (Ma et al., 2018). The type I collagen-PU
scaffold contributes to maintaining the phenotype of human AF cells.
However, its random porous structure fails to promote ECM
deposition and the formation of a corneal lamellar microstructure
similar to natural AF. It would require pretreatment with TGF-β1 to
promote cell proliferation and matrix production (Du et al., 2020).

FIGURE 1
(A) The AnchorKnot

®
Suture-Passing Device. (B) The Barricaid

®
Annular Closure Device and post-implantation simulation.

FIGURE 2
Disposable AF suture device from Beijing 2020 medical science & technology.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Ying et al. 10.3389/fbioe.2023.1259731

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1259731


6 Several potential repair strategies

Table 5 outlines recent strategies with the potential for IVD
restoration.

The strategies of timely and controlled hypotonic traction and
photobiomodulation (PBM) improve the microenvironment of IDD
by reducing catabolic genes such as MMP-1 and MMP-3 to inhibit
ECM degradation, which offers the possibility of non-surgical
interventions for patients (Che et al., 2019; Guo et al., 2020;
Hwang et al., 2020; Che et al., 2021; Che et al., 2022).

Low hydrostatic pressure facilitates the maintenance of cell
survival and ECM homeostasis by upregulating N-cadherin,
prominently expressed in NP, and integrin β1, prominently
expressed in AF. High hydrostatic pressure triggers apoptosis via
the Hippo-YAP/TAZ pathway. Therefore, the repair strategy to keep
IVD hydrostatic pressure in a physiologically low load state shows
potential (Wang et al., 2021a).

Short-term local injection of bleomycin induces AF cells
and BMSCs to promote fibrosis and maintain IVD height
through the TGFβ-TGFβR1-Smad2/3 pathway without
causing significant changes in cell cycle and apoptosis rates,
which preserves the possibility of future clinical application
(Yang et al., 2021).

ADAM8 may regulate inflammation and collagen fibril
assembly, so partial inhibition of ADAM8 may serve as an
intervention to delay IDD (Zhang et al., 2021).

Link N is a glycoprotein consisting of 16 amino acids that
stabilize proteoglycan aggregates by combining with HA and
integrins. Low doses of short Link N, consisting of one to eight
amino acids, inhibit cell death and promote ECM synthesis (Mwale
et al., 2018).

The injection of autologous platelet-rich plasma (PRP) within
the IVD facilitates early recovery after injury. However, additional

studies and more extended follow-up periods are required (Gelalis
et al., 2019).

Cell leakage dramatically affects the effectiveness of the repair.
Some repair strategies have been shown to reduce cell leakage (Hom
et al., 2019; Wang et al., 2021b). Further research on reducing cell
leakage is required in the future.

7 Currently marketed available IVD
repair devices

Suturing of the IVD is a common repair method in clinical
practice today. Advantages of AF suturing include 1) maintaining
the pressurising effect of the NP and reducing the risk of recurrence
of herniation; 2) decreasing mechanical irritation to the nerve root
and alleviating postoperative symptoms of low back and leg pain; 3)
diminishing the release of inflammatory mediators from the IVD
and reducing the incidence of chemical radiculitis; 4) facilitating the
healing of the scar in the AF (Bateman et al., 2016; Li et al., 2020).
Ahlgren et al. found that sutured sheep IVDs exhibited a greater
tendency to heal than non-sutured IVDs (Ahlgren et al., 2000).

In recent years, AF suture repair of IVD has been carried out in
clinical practice and has shown promising results. The currently
marketed available devices include Beijing 2020 Medical Science &
Technology’s Disposable AF Suture Devices (EFIT-I-II-III-IV-V,
ELAS-A, SMILE, STAR), The Xclose® Tissue Repair System, The
AnchorKnot® Suture-Passing Device and The Barricaid® Annular
Closure Device. The devices are shown in Figure 1 and Figure 2. The
Xclose® Tissue Repair System reduces the risk of re-protrusion and
re-operation, favouring short-term patient outcomes (2 years). It
carries no additional risk of surgery. However, postoperative back
and leg pain is significant (Bailey et al., 2013; Bartlett et al., 2013;
Choy et al., 2018).

TABLE 6 Currently marketed available IVD repair devices.

Strategy Effects or scope of application Defect Refs

Disposable AF
suture device

EFIT-I-
II-III-IV

Available under small incisions, dilated channels,
Microendoscopic Discectomy (MED)

It is uncertain whether it significantly
reduces the recurrence rate of herniation;
Need larger sample size

Ren et al. (2019)

STAR-S

SMILE-S

ELAS-
A-175

SMILE-L Available under large channel spinal endoscopic
minimally invasive surgery system and
Percutaneous Transforaminal Endoscopic
Discectomy (PTED)

STAR-L

ELAS-
A-300

Xclose® Tissue Repair System Reduced risk of re-herniation and re-operation
(2 years); There is no additional increase in
surgical risk

Significant postoperative back and leg pain Choy et al. (2018), Bartlett et al. (2013),
Bailey et al. (2013)

AnchorKnot® suture-passing
device

Display the surgical field in minimally invasive
fashion; Minimise the removal of IVD tissue

Safety and effectiveness need to be evaluated Peredo et al. (2021), Miller et al. (2020),
Nunley et al. (2021), Kienzler et al. (2021),
Strenge et al. (2019), Zengerle et al. (2020)

Barricaid® Annular Closure
Device

Maintain IVD height; Relieve pain; Decrease
reherniation rates; Slow the progression of small
joint degeneration

There are risks of EP fracture, device
prolapse, inflammation, fibrosis, osteolysis,
and bone redundancy formation
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The AnchorKnot® Suture-Passing Device allows minimally
invasive visualisation of the surgical field and minimises removal
of IVD tissue, but safety and efficacy need to be evaluated. The
Barricaid® Annular Cloure Device is a titanium body anchored to the
adjacent vertebral body that maintains IVD height, reduces pain,
decreases reherniation rates and slows the progression of small joint
degeneration. However, there are risks of EP fracture, device
dislodgement, inflammation, fibrosis, osteolysis, and osteophyte
formation (Strenge et al., 2019; Miller et al., 2020; Zengerle et al.,
2020; Kienzler et al., 2021; Nunley et al., 2021; Peredo et al., 2021).
Parker et al. found that The Barricaid® Annular Closure Device
maintained the height of IVD and alleviated symptoms of pain.
According to their statistics, the potential savings is approximately
$220,000 per 100 surgeries (Parker et al., 2013). A study by Ardeshiri
et al. showed that the application of The Barricaid® Annular Closure
Device was safe, with a significant reduction in IVD reherniation in
postoperative patients (Ardeshiri et al., 2019).

Ren et al. reported that Beijing 2020 Medical Science &
Technology’s Disposable AF Suture Devices maintained the height
of IVD, relieved postoperative pain and improved function. Its
postoperative recurrence rate is lower than that of Percutaneous
Transforaminal Endoscopic Discectomy (PTED), but there is no
statistically significant difference between them. Table 6 outlines
currently marketed available IVD repair devices (Ren et al., 2020).

8 Conclusion and outlook

As the pathophysiology of IDD has been increasingly studied in
recent years, various repair strategies for IVD have been proposed,
including hydrogel repair, tissue-engineered scaffold repair and
several promising repair modalities. These therapeutic strategies
aim to restore the mechanical properties of IVD, promote cell
proliferation and differentiation to repair AF and promote the
production of ECM to maintain the water content of NP.
However, mechanical properties and biocompatibility are not
well satisfied simultaneously, and clinical application is still far off.

Synthetic hydrogel repair strategies are poorly biocompatible, with
advantages in terms of mechanical properties. Natural hydrogel repair
strategies are poor in mechanical properties, with advantages in
maintaining cell activity, promoting cell proliferation and
differentiation, promoting ECM synthesis and maintaining the water
content of NP. Composite hydrogel repair strategies can improve the
biomechanics of IVDs while ensuring biocompatibility, but strategies to
enhance mechanical properties still require exploration. In future,
hydrogel repair strategies should guarantee biocompatibility with
continuous enhancement of mechanical properties or guarantee

mechanical properties with continuous enhancement of
biocompatibility.

The priority of the scaffold repair strategy is that the scaffold is in
place and provides sufficient mechanical strength. Secondly, it is
necessary to achieve the appropriate porosity. If the scaffold is less
poresize, it is lessconducive tocellularpenetration,andif theporesize is
too large, it is less conducive tomechanical support. Finally,mimicking
the AF structure shows excellent potential to exhibit mechanical
properties similar to natural AF and facilitate the deposition of ECM.
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