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Introduction: SARS-CoV-2 viral load has been related to COVID-19 severity. The 
main aim of this study was to evaluate the relationship between SARS-CoV-2 
viremia and SNPs in genes previously studied by our group as predictors of 
COVID-19 severity.

Materials and methods: Retrospective observational study including 340 patients 
hospitalized for COVID-19 in the University Hospital La Princesa between March 
2020 and December 2021, with at least one viremia determination. Positive 
viremia was considered when viral load was above the quantifiable threshold (20 
copies/ml). A total of 38 SNPs were genotyped. To study their association with 
viremia a multivariate logistic regression was performed.

Results: The mean age of the studied population was 64.5  years (SD 16.6), 60.9% 
patients were male and 79.4% white non-Hispanic. Only 126 patients (37.1%) had 
at least one positive viremia. After adjustment by confounders, the presence 
of the minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 p  <  0.0001), 
rs78958998 (probably associated with SERPING1 expression; A/T genotype OR 
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2.3, p  =  0.04 and T/T genotype OR 12.9, p  <  0.0001), and rs713400 (eQTL for 
TMPRSS2; C/T  +  T/T genotype OR 1.86, p  =  0.10) were associated with higher risk 
of viremia, whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 
0.5, p  =  0.04 and G/G genotype OR 0.3, p  =  0.01), rs2660 (OAS1; A/G genotype 
OR 0.6, p  =  0.08), rs896 (VIPR1; T/T genotype OR 0.4, p  =  0.02) and rs33980500 
(TRAF3IP2; C/T  +  T/T genotype OR 0.3, p  =  0.01) were associated with lower risk 
of viremia.

Conclusion: Genetic variants in HMOX1 (rs2071746), SERPING1 (rs78958998), 
TMPRSS2 (rs713400), CD69 (rs11052877), TRAF3IP2 (rs33980500), OAS1 (rs2660) 
and VIPR1 (rs896) could explain heterogeneity in SARS-CoV-2 viremia in our 
population.

KEYWORDS

SARS-CoV-2, viremia, COVID-19, single nucleotide polymorphism (SNPs), genetic 
variants

1. Introduction

Almost three years after the SARS-CoV-2 pandemic outbreak, 
nearly 780 million people have been infected and 65% of the 
worldwide population has been fully vaccinated against COVID-19. 
Despite this fact, SARS-CoV-2 circulation seems to persist worldwide 
and still 1,500 people die every week due to COVID-19 (1). The wide 
spectrum of clinical manifestations of the disease has encouraged 
scientists to keep studying different biomarkers that could help us to 
achieve an early stratification of those patients at higher risk of 
respiratory impairment and death. In this regard, many clinical 
conditions and biomarkers such as age, hypertension, Interleukin-6 
(IL-6) or D-dimer are associated with COVID-19 severity (2, 3) but 
the prediction of the clinical course and the pre-existing conditions 
that confer increased risk, remain a challenge for physicians.

In this sense, SARS-CoV-2 RNA detection in peripheral blood 
(viremia) has been proposed as a risk factor for severe COVID-19. In 
previous studies of our group, we have shown that patients with SARS-
CoV-2 viremia were more likely to die or be admitted to the Intensive 
Care Unit (ICU) (4, 5). Other studies (6–8), including a meta-analysis 
(9) have confirmed these findings correlating SARS-CoV-2 viremia 
with worse COVID-19 prognosis. Viremia is associated with an 
increase in the inflammatory response, with higher levels of C-reactive 
protein or IL-6, as described by Hagman et al. (10) and Myhre et al. 
(11). In a proteomic study Li et al., evaluated pathways related to the 
development of viremia and found that patients with viremia had 
higher expression of SARS-CoV-2 entry factors (ACE2, CTSL, 
FURIN), proinflammatory markers (such as IL6) as well as markers 
of tissue damage and coagulation (12). Nevertheless, the mechanisms 
and predisposing factors, such as genetic factors, leading to viremia 
are not clear yet.

Several studies have assessed the association between genetic 
variants and COVID-19 prognosis by Single Nucleotide 
Polymorphism (SNP) genotyping and Genome-Wide Association 
Studies (GWAS). Two of the most studied genes are ACE2 and 
TMPRSS2, involved in SARS-CoV-2 entry, and some of their genetic 
variants have been associated with COVID-19 severity and infectivity 
(13–16). Moreover, other regions of genetic susceptibility for 

COVID-19 severity have been described, such as those related to the 
ABO blood group system or the antiviral response (OAS1, OAS2, 
OAS3, TYK2, IFNAR2 or IL-10) (17–19). The review by 
Anastassopoulou et al. described how disease severity is determined 
by variants of genes involved in the immune response to the virus, 
while susceptibility to infection is mainly related to genes that 
participate in the early stages of infection (such as virus binding and 
entry) (20). Although these variants could potentially lead to 
increased entry and dissemination of the virus into the bloodstream, 
to date no study has addressed the relationship between genetic 
variants of genes involved in COVID-19 pathogenesis and the 
detection of viremia.

The main aim of this study was to evaluate the relationship 
between SARS-CoV-2 viremia and several SNPs in genes previously 
studied by our group as predictors of COVID-19 severity (13).

2. Materials and methods

2.1. Study design, population and data 
collection

This is a subanalysis of two previous studies assessing the 
relationship between different genetic variants related to the 
pathogenesis of SARS-CoV-2 and COVID-19 severity (13). Both were 
retrospective observational studies including patients attended at the 
University Hospital La Princesa (Madrid).

The first study (hereafter study A) recruited 817 patients from 
the first months of the pandemic (March 29th – April 29th 2020) 
and studied 120 SNPs that had previously been related to COVID-
19, the coagulation cascade and the metabolism of COVID-19 
treatments (Supplementary Table S1) (13). The second study (from 
now on study B) included 1,350 patients between March 29th 2020 
and December 31st 2021 and mainly focused on 29 SNPs related to 
the regulation of immune, complement and coagulation pathways 
(Supplementary Table S2) (manuscript in preparation).

To enroll a significant number of patients with viremia 
determination that would enable assessment of the relationship 
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between viremia and COVID-19 related SNPs all participants in 
studies A and B who had been checked for the presence of viremia, at 
least one time in the first week of hospitalization (n = 340) were 
selected for the current study (Supplementary Figure S1). All patients 
were older than 18 years and had confirmed SARS-CoV-2 infection 
(RT-PCR, antigen or serological testing).

Blood samples for genotyping were collected during 
hospitalization since all patients included in this study required 
admission. Plasma samples for viremia quantification were collected 
during the first week of admission, following the hospital protocols 
and the criteria of the physician in charge.

All data were collected from the clinical charts and included in an 
anonymized electronic database.

2.2. Selection of the SNPs genotyped

A total of 38 SNPs were genotyped in the whole population of the 
study (Supplementary Table S3). As the 340 patients tested for viremia 
were part of study B (manuscript in preparation), the 29 SNPs 
analyzed in that study were included in the current manuscript. In 
study A, 120 SNPs were analyzed (13). However only 107 of the 340 
patients were included in study A. Since we could not genotype these 
120 SNPs in the remaining 233 patients due to the high cost, 
we performed a pre-analysis of the importance of these 120 SNPs 
among the 107 patients included in study A, selecting those with 
p < 0.15, as described below in the statistical analysis section. 
We selected 9 SNPs which were later genotyped in the remaining 233 
patients. Therefore, these 9 SNPs from study A were added to the 29 
SNPs from study B.

2.3. Genotyping

In study A, a Maxwell RSC automated DNA extractor (Promega) 
was used to extract DNA from peripheral blood. A customized 
genotyping array was designed and the genotype analysis was 
performed with a QuantStudio 12 K flex thermal cycler along with an 
OpenArray thermal block (Thermo Fisher Scientific). In study B 
(ongoing manuscript), DNA was extracted using MagNA Pure 2.0 
and MagNA Pure LC DNA Isolation Kit (Roche Life Science, Basel 
Switzerland). To genotype the selected SNPs, qPCR was performed 
using QuantStudio 12 k, TaqManTM Genotyping Master Mix and 
TaqManTM customized 384 plates (ThermoFisher Scientific, 
Waltham, MA) in Parque Científico of Universidad Autónoma de 
Madrid. Allelic discrimination was based on allele-specific 
fluorescence, which was automatically defined by TaqMan SNP 
Genotyping App (Applied Biosystems Software). To verify assay’s 
accuracy, negative controls and duplicate samples were used.

The candidate SNPs selected from the study A were genotyped by 
qPCR using a predesigned single nucleotide polymorphism (SNP) 
Genotyping Taqman Assays (Applied Biosystems, Waltham, MA. Part 
number in Supplementary Table S3). The assay was carried out 
following the manufacturer’s recommendations; duplicate samples 
and negative controls were also included to check the accuracy of the 
genotyping. Each sample’s genotype was determined automatically by 
measuring allele-specific fluorescence on a CFX Touch Real-Time 

PCR System using the software CFX 3.1 Manager (BioRad, Hercules, 
CA, United States).

2.4. SARS-CoV-2 RNA extraction, detection 
and quantification

SARS-CoV-2 viremia was detected by quantitative RT-PCR 
(QuantStudio™ 5 Real-Time PCR System) (Applied Biosystems) 
using the TaqPath™ COVID-19 CE IVD RT-PCR kit (Thermo 
Fisher Scientific). Amplification curves were analyzed with 
QuantStudio™ Design and Analysis software version 2.4.3 (Applied 
Biosystems). All plasma samples were included in duplicates in the 
assay. Viral load quantification was obtained by plotting Ct values 
through the standard curve and only viremias with mean Ct ≤37 
(approximately 1.3 log 10, namely 20 copies/mL) and standard 
deviation (SD) <0.5  in the duplicate test for each gene were 
considered quantifiable.

2.5. Variables

The main outcome of this study was the detection of SARS-
CoV-2 viremia in the first week of hospitalization. A positive 
viremia was defined as the presence of at least one determination 
with a viral load above the quantification threshold (20 
copies/mL).

Age was considered as an ordinal qualitative variable and was 
categorized in three groups: <45 years, 45–70 years and > 70 years.

Severe COVID-19 was defined as the need for mechanical 
ventilation (invasive or non-invasive), high-flow oxygen, or death.

2.6. Statistical analysis

Quantitative variables were expressed as mean and standard 
deviation (SD) or median and interquartile range (IQR) for the 
variables with non-normal distribution. For qualitative variables, 
frequency and proportions were used. To analyze statistical differences 
between variables, Student’s t test, Mann–Whitney or Kruskall-Wallis 
tests were performed for quantitative variables, and χ2 test for 
qualitative variables.

The selection of the candidate SNPs from study A to genotype in 
the remaining 233 patients was performed by analyzing the most 
relevant SNPs in the 107 patients who had all the SNPs genotyped. To 
this end, the clinical variables associated with viremia in the bivariate 
analysis in these 107 patients were included in a multivariate logistic 
regression analysis. Then, each SNP was forced in the model. SNPs 
with a p < 0.15 in the model were selected. Also, an analysis of the 
variance of the model of each SNP was performed to help make 
the selection.

Finally, to determine which clinical variables were associated with 
the presence of viremia, a multivariate logistic regression analysis was 
performed (Supplementary Table S4). It was first modeled by adding 
all the variables with a p value lower than 0.15 in the bivariate analysis. 
The final clinical model was reached through backward stepwise 
removal of variables with p value higher than 0.15. Then, all SNPs 
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were independently included in the clinical model. Those SNPs 
reaching a p value lower than 0.15 were included together in the final 
clinical model in order to analyze interactions between them. As 
previously described, we  used a stepwise backwards approach to 
design the best model for predicting viremia. Then, the jackknife 
method was applied to reduce bias.

All the analyses were performed with Stata 14.0 for Windows 
(Stata Corp LP, College Station, TX, United States). Figures were 
depicted with R Studio (R Core Team 2022. R: A language and 
environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria).

2.7. Ethics

This study followed the ethical principles of the Declaration of 
Helsinki and it was approved by the Research Ethics Committee of 
University Hospital La Princesa, Madrid, (register numbers 4,111 and 
4,070). All patients, except those who died, gave oral or written 
consent to participate, which was registered in their electronic clinical 
chart. Due to the COVID-19 pandemic emergency, oral consent was 

accepted as proposed by the AEMPS (Agencia Española de 
Medicamentos y Productos Sanitarios, The Spanish Agency for 
Medicines and Medical Devices).

3. Results

3.1. Clinical variables associated with 
SARS-CoV-2 viremia

The study population included 60.9% male and 79.4% white 
non-Hispanic patients, with a mean age of 64.5 years (SD 16.6). The 
most frequent comorbidities were hypertension (40.3%), dyslipidemia 
(38.5%), obesity (15.9%) and diabetes mellitus (15.4%) as shown in 
Table 1. Treatment during hospitalization and analytical variables are 
shown in Supplementary Table S5.

Of all patients, 126 (37.1%) had at least one positive SARS-CoV-2 
viremia during the first week of hospitalization. Patients with viremia 
were more frequently male (72.2% vs. 54.2%, p = 0.001), dyslipidemic 
(45.2% vs. 34.6%, p = 0.05), had more severe disease (16.4% vs. 62.7%, 
p < 0.0001) and were more frequently treated with Angiotensin 

TABLE 1  Demographic and clinical data by viremia status.

Study population 
(n  =  340)

No viremia  
(n  =  214)

Viremia  
(n  =  126)

p value

Age; mean (SD) 64.5 (16.6) 63.5 (18.3) 66 (13.2) 0.19

Male sex; n (%) 207 (60.9) 116 (54.2) 91 (72.2) 0.001

Race/ethnicity; n (%)

 � White, non-Hispanic 270 (79.4) 164 (76.6) 106 (84.1) 0.07

 � White, Hispanic 63 (18.5) 47 (22) 16 (12.7)

 � Afrodescendent 1 (0.3) 1 (0.5) 0

 � Asian 6 (1.8) 2 (0.9) 4 (3.2)

Hypertension; n (%) 137 (40.3) 81 (37.9) 56 (44.4) 0.23

Dyslipidemia; n (%) 131 (38.5) 74 (34.6) 57 (45.2) 0.05

Diabetes mellitus

 � Without organ damage 41 (12.2) 22 (10.3) 19 (15.1) 0.43

 � With organ damage 11 (3.2) 7 (3.3) 4 (3.2)

Obesity; n (%) 54 (15.9) 34 (15.9) 20 (15.9) 1

Dementia; n (%) 14 (4.1) 12 (5.6) 2 (1.6) 0.07

Chronic Obstructive Pulmonary Disease; n (%) 32 (9.4) 24 [24 (11.2)] 8 (6.4) 0.14

Cancer; n (%)

 � Without metastasis 5 (1.5) 4 (1.9) 1 (0.8) 0.54

 � With metastasis 1 (0.3) 1 (0.5) 0

Severe COVID-19 114 (33.5) 35 (16.4) 79 (62.7) <0.0001

Previous treatment

Angiotensin Converting Enzyme Inhibitors; n (%) 48 (14.1) 20 (9.35) 28 (22.2) 0.001

Angiotensin Receptor Blocker; n (%) 66 (19.4) 47 (22) 19 (15.1) 0.12

Anticoagulants; n (%) 31 (9.1) 18 (8.4) 13 (10.4) 0.54

Antiplatelets; n (%) 48 (14.1) 26 (12.2) 22 (17.5) 0.17

Systemic glucocorticoids; n (%) 9 (2.7) 5 (2.3) 4 (3.2) 0.64

Immunosuppressants; n (%) 11 (3.2) 8 (3.7) 3 (2.4) 0.49

https://doi.org/10.3389/fmed.2023.1215246
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Roy-Vallejo et al.� 10.3389/fmed.2023.1215246

Frontiers in Medicine 05 frontiersin.org

Converting Enzyme Inhibitors (ACEI) (22.2% vs. 9.4%, p = 0.001), as 
described in Table 1.

Multivariate analysis shown in Supplementary Table S6 and 
Figure 1 demonstrated that viremia was higher in males above 45 y-o 
compared to women younger than 45 y-o (OR 6.72 for 45 to 70y-o and 
OR 7.47 for >70 y-o; p = 0.08 and p = 0.07 respectively), in those with 
dyslipidemia [OR 1.57 (95%CI 0.89–2.76); p = 0.12], severe COVID-19 
[OR 7.73 (95%CI 4.39–13.62); p < 0.0001], and those treated with 
ACEI (OR 1.79 [95%CI 0.82–3.89]; p = 0.14). By contrast, patients 
with dementia [OR 0.27 (95%CI 0.05–1.58); p = 0.147] and treatment 
with Angiotensin Receptor Blocker (ARB) [OR 0.34 (95%CI 0.34–
0.7); p = 0.007] had viremia less frequently.

3.2. Genetic factors associated with viremia

Once the clinical model was established each of the 38 SNPs (9 
from study A and 29 from study B) were individually included/forced 
in the model (Supplementary Table S7). Among them, 15 reached a 
value of p<0.15: rs33980500, rs13196377 and rs13190932 
(TRAF3IP2), rs11052877 (CD69), rs2071746 (HMOX1), rs713400 
(TMPRSS2), rs78958998 (SERPING1), rs541862 (CFB), rs438781 
(CFHR1), rs12408446 (CFHR3), rs731034 (COLEC11), rs2660 
(OAS1), rs280500 (TYK2), rs896 (VIPR1) and rs885863 (VIPR2). Of 
the three SNPs in TRAF3IP2, only rs33980500 was considered, as the 
three of them act in the same pathway and this SNP had the best 
performance. Also, rs43878 in CFHR1 and rs12408446 in CFHR3 
were excluded because they had a high number of missing values. The 
rest of SNPs were included altogether with the clinical variables in 

order to determine interactions between them and also with 
clinical variables.

Interestingly, in this last composite multivariate analysis (Table 2) 
most variables, especially the relationship with age and sex, improved 
their association with viremia both in terms of OR and value of p, 
except for rs713400 in TMPRSS2 which slightly worsened. Thus, after 
adjustment by clinical and therapeutic variables the presence of the 
minor alleles of rs2071746 (HMOX1; T/T genotype OR 9.9 
p < 0.0001), rs78958998 (probably associated with SERPING1 
expression; A/T genotype OR 2.3, p = 0.04 and T/T genotype OR 12.9, 
p < 0.0001), and rs713400 (eQTL for TMPRSS2; C/T + T/T genotype 
OR 1.86, p = 0.10) were associated with higher risk of viremia, 
whereas the minor alleles of rs11052877 (CD69; A/G genotype OR 
0.5, p = 0.04 and G/G genotype OR 0.3, p = 0.01), rs2660 (OAS1; A/G 
genotype OR 0.6, p = 0.08), rs896 (VIPR1; T/T genotype OR 0.4, 
p = 0.02) and rs33980500 (TRAF3IP2; C/T + T/T genotype OR 0.3, 
p = 0.01) were associated with lower risk of viremia. The predicted 
probability of viremia per genotype of every significant SNP in this 
model is shown in Figure 2.

4. Discussion

After 3 years of pandemic, COVID-19 remains as a very 
heterogeneous clinical picture with few reliable biomarkers for 
severity prediction at the beginning of disease. Among them, the 
presence of SARS-CoV-2 viremia seems to be the most solid (5). 
Although several genome wide analysis studies have been 
performed to find genetic variants associated with disease severity, 

FIGURE 1

Clinical model. Forest plot with the Odds ratio and 95% Confidence Interval of each variable in the clinical model. Blue dots: protective effect against 
viremia. Red dots, favors viremia. ARB, Angiotensin II Receptor Blocker; ACEI, Angiotensin Converting Enzyme Inhibitor; y.o.: years old.
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to the best of our knowledge, this is the first study that has assessed 
the relationship between different genetic variants and SARS-
CoV-2 viremia. Our results show than only one genetic variant 
related with SARS-CoV-2 replication (rs713400 for TMPRSS2), 
and four related with inflammation/immune regulation 
(rs33980500 for TRAF3IP2, rs11052877 for CD69, rs2071746 for 
HMOX1 and rs78958998 for SERPING1) were associated with the 
presence of viremia.

These results were obtained under careful adjustment by several 
confounding variables previously suggested as factors associated with 
COVID-19 severity (3, 21). On the other hand, we must take into 
account that severity and viremia correlate. However, after adjusting 
our analysis by COVID-19 severity, the 7 SNPs described remained 
significant (except for rs713400 in TMPRSS2 and rs2660 in OAS1), 
meaning that their association with viremia was independent of 
severity (Supplementary Table S8). This approach allowed us to realize 
that both genetic and clinical variables improved their performance 
when they were analyzed together, suggesting that the mechanisms 

leading to viremia and, therefore, COVID-19 severity involve complex 
interactions between genetic, sociodemographic, therapeutic and 
clinical factors. Furthermore, the most important variables to predict 
viremia seemed to be age and sex, supporting that, as in many other 
diseases, genetic background is made up of many items with a low 
contribution by each one (22, 23).

TMPRSS2 encodes a transmembrane protease serine 2 involved 
in SARS-CoV-2 entry into host cells, by cleaving the spike (S) protein 
(24). rs713400 location in the 5’UTR of TMPRSS2 could influence the 
expression of this gene (25). Our data indicate that carrying one copy 
of the T allele in rs713400 could be associated with higher prevalence 
of viremia, although after adjusting by COVID-19 severity this SNP 
was not significant (data not shown: p = 0.004 in a previous model 
without severity). Taking into account the role of TMPRSS2 in viral 
entrance, this SNP could be associated with both viremia and severity. 
Thus, changes in TMPRSS2 expression could modify the ability of 
SARS-CoV-2 to infect host cells and disseminate. In addition, several 
authors have assessed the influence of genetic variants of TMPRSS2, 
finding that some SNPs such as rs12329760 or rs75603675 are 
associated with COVID-19 severity (13, 15, 26–28).

Regarding immune system modulation, TRAF3IP2 encodes for 
ACT1, a signaling adaptor involved in the regulation of IL-17-
dependent immune responses and the activation of NF-κB (29). The 
variant rs33980500 is mainly associated with psoriasis and is located 
in a coding region of this gene, causing a change from aspartic to 
asparagine. Functional assays have found that this change causes a 
reduced binding of TRAF6 to ACT1, thereby leading to a decrease in 
IL-17 and Th17 responses (30, 31). In this regard, it has been 
proposed that Th17 cells play an important role in COVID-19 by 
promoting a proinflammatory immune response, with a correlation 
between intense Th17 responses and COVID-19 severity (32). 
Patients carrying the T allele in rs33980500 might have a weaker 
activation of IL-17-dependent proinflammatory pathways with a 
better viral control.

CD69 also plays an important regulatory role in the immune 
system. CD69 deficient mice display more severe clinical pictures in 
the collagen induced arthritis and autoimmune myocarditis murine 
models (33, 34) and show an enhanced differentiation toward Th17 
cells (35). In addition, in humans CD69 expression is decreased in 
Treg cells from patients with systemic scleroderma (36) and response 
to tocilizumab is higher in rheumatoid arthritis patients homozygous 
for the mayor allele of rs11052877 (37). Here, we have described that 
patients carrying the minor allele of rs11052877 show a lower risk of 
SARS-CoV-2 viremia, in an additive fashion. In addition, 
we previously reported that patients with viremia show higher levels 
of IL-6 compared to those without viremia (38), and therefore, higher 
possibility of having a good response to tocilizumab (39). Although 
there are no studies on the role of rs11052877 in CD69 expression, 
this SNP is located in the 3’ UTR which usually involves regulatory 
functions. Accordingly, it is tempting to propose that patients 
carrying the minor allele of rs11052877 could have higher levels of 
CD69 expression, therefore leading to decreased Th17 responses to 
the virus allowing less inflammatory responses though with a better 
control of viral spreading.

VIPR1 encodes the Vasoactive Intestinal Peptide (VIP) receptor 
type 1, called VPAC1. Through its binding to VPAC1 (constitutively 
expressed) o VPAC2 (inducible), VIP is involved in the anti-
inflammatory response by promoting the expression of 

TABLE 2  Final model of variables predicting viremia.

OR (95%CI) p value

Age and sex (reference female <45 years)

  Female 45–70 years 21.99 (5.17–93.55) <0.0001

  Female >70 years 8.69 (1.94–38.99) 0.005

  Male <45 years 6.06 (1.22–30.17) 0.03

  Male 45–70 years 21.00 (5.62–78.54) <0.0001

  Male >70 years 11.02 (2.69–45.22) 0.001

Severe COVID-19 11.13 (5.27–23.50) <0.0001

Angiotensin Converting Enzyme 

Inhibitors

2.40 (0.99–5.82) 0.052

Angiotensin II Receptor blocker 0.41 (0.16–1.10) 0.08

CD69 rs11052877 (reference A/A)

  A/G 0.48 (0.24–0.96) 0.04

  G/G 0.29 (0.11–0.74) 0.01

HMOX1 rs2071746 (reference A/A)

  A/T 1.85 (0.86–3.99) 0.11

  T/T 9.86 (3.42–28.42) <0.0001

SERPING1 rs78958998 (reference C/C)

  C/T 2.32 (1.02–5.28) 0.04

  T/T 12.90 (3.91–42.63) <0.0001

TMPRSS2 rs713400 (reference C/C)

  C/T + T/T 1.86 (0.88–3.94) 0.10

TRAF3IP2 rs33980500 (reference C/C)

  C/T + T/T 0.34 (0.15–0.78) 0.01

OAS1 rs2660 (reference A/A)

  A/G 0.56 (0.29–1.07) 0.08

  G/G 0.50 (0.13–1.99) 0.33

VIPR1 rs896 (reference C/C)

  C/T 0.80 (0.40–1.60) 0.52

  T/T 0.35 (0.15–0.83) 0.02

CI, Confidence Interval; OR, Odds Ratio.
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anti-inflammatory cytokines and inhibiting the production of 
pro-inflammatory cytokines such as TNF-∝ or IL-12 (40). In 
addition, VIP also plays a role in the regulation of Th cells, decreasing 
the profile of cytokines related to Th1 and Th17, inhibiting Th17 and 
its pathogenic phenotype (40). The rs896 in the 3’UTR of VIPR1 has 
been shown to regulate the expression of VPAC1. The presence of the 
C allele has been associated with a decreased gene expression and an 
enhanced binding of the miRNA 525-5p, which decreases VPAC1 
expression (41). This SNP has not been studied in COVID-19, but 
VIP levels were increased in patients with severe disease and 
correlated with lower levels of inflammatory biomarkers and survival 
of those patients (42). In this regard, we show that the T allele of 
rs896 was associated with lower risk of viremia, probably due to an 
increased expression of VPAC1 compared to C allele, promoting an 
anti-inflammatory response and the inhibition of Th17.

OAS1 (2′-5′ oligoadenylate synthetase 1) is part of the interferon 
I pathway and its main role is the activation of L RNAse, which is 
involved in the control of viral dissemination by degrading viral RNA 
(43). rs2660 in the 3’ UTR of OAS1 has been previously associated with 
SARS-CoV infection, being the genotypes A/G and G/G protective 
(44). This SNP has also been studied in COVID-19, the study of Banday 
et al. found that the A allele entailed higher risk of hospitalization, as 
well as lower viral clearance efficiency (although this was not significant) 
(45). Probably these results are due to an increased enzymatic activity 
in OAS1 associated to the G/G genotype, the Neanderthal variant, 
compared to A/A genotype (46, 47). In our cohort, the A/G genotype 
had a tendency (p = 0.08) to be protective against viremia, which is 
consistent with the evidence described, as the G allele is associated with 
increased OAS1 activity and thus, viral clearance.

Another gene related to COVID-19 pathogenesis is HMOX1, 
which encodes heme oxygenase one (HO-1), a protein involved in 
heme catabolism with anti-inflammatory effects (48). HO-1 levels 
are associated with acute respiratory distress syndrome (ARDS) (49, 
50), as well as with COVID-19 severity (51, 52) and this gene has 
been proposed as a therapeutic target for this disease (53–55). The 
SNP rs2071746 has not been linked specifically to COVID-19 but 
Ono et al. showed that the A allele increased HMOX1 promoter 
activity compared to the T allele (56, 57). This fact could lead to a 
protective anti-inflammatory and antiviral effect of the A allele by 
increasing the expression of IL-10 and the interferon signaling 
pathway as well as promoting the switch to anti-inflammatory M2 
macrophages (58–60). This fits well with our observation that 
patients homozygous for the T allele of rs2071746 show higher 
levels of viremia.

Finally, and also in accordance with the notion that excessive 
inflammatory responses can be associated with lower capability to 
control SARS-CoV-2 spreading, rs78958998 has been described as an 
eQTL for SERPING1, and one study suggested its association with 
COVID-19 (61). SERPING1 encodes the protein C1 inhibitor 
(C1INH) which is involved in complement and coagulation pathways 
as well as contact system by inhibiting C1r and C1s or activated factor 
XI and XII, among others (62). Although C1INH levels are increased 
in patients with COVID-19, it might be  insufficient to control 
thromboinflammation. Reasons for this include a relative deficiency 
due to an uncontrolled activation of complement and coagulation 
cascades, together with the limitation of its regulatory activity caused 
by the interaction with SARS-CoV-2 proteins (63, 64). Since 
complement activation is involved in virus neutralization and 

FIGURE 2

Predicted probability of viremia. Percentage and 95% Confidence Interval of predicted probability of viremia for each SNP genotype in the final model: 
SERPING1 (rs78958998), CD69 (rs11052877), HMOX1 (rs2071746), TRAF3IP2 (rs33980500), TMPRSS2 (rs713400), OAS1 (rs2660) and VIPR1 (rs896).
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virolysis, impaired SERPING1 expression could contribute to virus 
dissemination and viremia (65).

Although the implication of the variants presented in this manuscript 
in the prevalence of viremia is attractive and based on the function of 
each of the genes, many of the SNPs described above have not been 
studied in COVID-19 patients. In addition, functional studies are needed 
to correlate these variants with their gene expression and protein activity.

The main limitation of this study is the small sample size, which 
was affected by the previous studies of our group. However, this 
sample size was enough to find significant differences in those SNPs 
with the strongest effect. Obviously, a wider approach in terms of 
genetic variations would be desirable; however, the study of a higher 
number of genes was precluded by two issues, the high economic cost 
of these studies, and the need of a larger number of patients. Another 
important limitation is the lack of data about SARS-CoV-2 variants 
and vaccination status, which could differentially affect infectivity and 
prevalence of viremia. However, most of the patients suffered from 
COVID-19 between the first and the fourth waves of the pandemic, 
so the effect of vaccination could be considered minor.

In conclusion, SARS-CoV-2 viremia was associated with variants 
of rs2071746 (HMOX1) rs78958998 (SERPING1), rs713400 
(TMPRSS2), rs11052877 (CD69), rs33980500 (TRAF3IP2), rs2660 
(OAS1) and rs896 (VIPR1), after adjusting by age and sex, COVID-19 
severity and treatment with ACE inhibitors and Angiotensin II blockers. 
Nevertheless, these results should be validated in a different cohort.
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