

## **OPEN ACCESS**

EDITED AND REVIEWED BY
Jacobo Arango,
International Center for Tropical
Agriculture (CIAT), Colombia

\*CORRESPONDENCE
Mark D. McDonald
mcdonaldm@anl.gov

RECEIVED 25 August 2023 ACCEPTED 15 September 2023 PUBLISHED 22 September 2023

### CITATION

McDonald MD, Lewis KL, DeLaune PB, Hux BA, Boutton TW and Gentry TJ (2023) Corrigendum: Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil. *Front. Soil Sci.* 3:1283367. doi: 10.3389/fsoil.2023.1283367

## COPYRIGHT

© 2023 McDonald, Lewis, DeLaune, Hux, Boutton and Gentry. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Corrigendum: Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil

Mark D. McDonald<sup>1,2,3\*</sup>, Katie L. Lewis<sup>2</sup>, Paul B. DeLaune<sup>4</sup>, Brian A. Hux<sup>1</sup>, Thomas W. Boutton<sup>5</sup> and Terry J. Gentry<sup>1</sup>

<sup>1</sup>Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States, <sup>2</sup>Texas A&M AgriLife Research, Lubbock, TX, United States, <sup>3</sup>Environmental Sciences Division, Argonne National Laboratory, Lemont, IL, United States, <sup>4</sup>Texas A&M AgriLife Research, Vernon, TX, United States, <sup>5</sup>Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States

## KEYWORDS

nitrous oxide, pore-space gases, microbial abundance, semi-arid soils, no-tillage, cover crop

## A Corrigendum on

Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil

by McDonald MD, Lewis KL, DeLaune PB, Hux BA, Boutton TW and Gentry TJ (2023) Front. Soil Sci. 2:1050779. doi: 10.3389/fsoil.2022.1050779

In the published article, 'Argonne National Laboratory' was erroneously listed as a present address for author Mark D. McDonald. It should have been captured in the **Affiliations** section

In the published article, there was an error in Table 1. The primer sequences for the Target group 16S rRNA were incorrectly written as "Eub338: ATCATGGTSCTGCCGCG" and "Eub518: GCCTCGATCAGRTTGTGGTT". In addition, references for all target groups were incorrect as published. The corrected Table 1 and its caption appear below:

McDonald et al. 10.3389/fsoil.2023.1283367

TABLE 1 Primer sequences and thermal profiles for total bacterial and bacterial N-cycle functional gene abundances.

| Target<br>group  | Primer<br>Name | Sequence (5'→3')        | Thermal profile                                                                                                                                    | Average Amplifi-<br>cation efficiency<br>(R <sup>2</sup> > 0.95) (%) | References |
|------------------|----------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------|
| 16S rRNA         | Eub338         | ACTCCTACGGGAGGCAGCAG    | 95°C for 15 min; 95°C for 1 min, 53°C for 30 s,<br>72°C for 1 min × 40 cycles                                                                      | 97                                                                   | (33)       |
|                  | Eub518         | ATTACCGCGGCTGCTGG       |                                                                                                                                                    |                                                                      |            |
| Bacterial amoA   | AOB<br>amoA-1F | GGGGWTTCTACTGGTGGT      | 95°C for 5 min; 94°C for 45 s, 60°C for 45 s, 72°C for 1.5 min × 40 cycles                                                                         | 100                                                                  | (34)       |
|                  | AOB<br>amoa-2R | CCCCTCKGSAAAGCCTTCTTC   |                                                                                                                                                    |                                                                      |            |
| nirS             | nirS4F         | GTSAACGTSAAGGARACSGG    | 94°C for 2 min; 94°C for 30 s, 58°C for 1 min, 72°<br>C for 1 min × 40 cycles, 72°C for 10 min                                                     | 104                                                                  | (35)       |
|                  | R3cd           | GASTTCGGRTGSGTCTTGA     |                                                                                                                                                    |                                                                      |            |
| nirK             | nirK876        | ATYGGCGGVCAYGGCGA       | 94°C for 2 min; 94°C for 30 s, 58°C for 1 min, 72°<br>C for 1 min × 40 cycles                                                                      | 95                                                                   | (36,37)    |
|                  | nirK1055       | GCYTCGATVAGRTTRTGGTT    |                                                                                                                                                    |                                                                      |            |
| nosZ clade<br>I  | nosZ2F         | CGCRACGGCAASAAGGTSMSSGT | 50°C for 2 min, 95°C for 3 min;<br>95°C for 15 s, 67-62°C for 30 s, 72°C for 30 s;<br>95°C for 15 s, 62°C for 1 min, 72°C for 1 min × 34<br>cycles | 97                                                                   | (38)       |
|                  | nosZ2R         | CAKRTGCAKSGCRTGGCAGAA   |                                                                                                                                                    |                                                                      |            |
| nosZ clade<br>II | clade II F     | CTIGGICCIYTKCAYAC       | 95°C for 2 min; 95°C for 30 s, 56°C for 30 s, 72°C for 40 s × 40 cycles                                                                            | 90                                                                   | (39)       |
|                  | clade II R     | GCIGARCARAAITCBGTRC     |                                                                                                                                                    |                                                                      |            |

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.