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Abstract
Evolutionary algorithms (EAs) have been widely
and successfully applied to solve multi-objective
optimization problems, due to their nature of
population-based search. Population update is a
key component in multi-objective EAs (MOEAs),
and it is performed in a greedy, deterministic man-
ner. That is, the next-generation population is
formed by selecting the first population-size ranked
solutions (based on some selection criteria, e.g.,
non-dominated sorting, crowdedness and indica-
tors) from the collections of the current popula-
tion and newly-generated solutions. In this paper,
we question this practice. We analytically present
that introducing randomness into the population
update procedure in MOEAs can be beneficial for
the search. More specifically, we prove that the ex-
pected running time of a well-established MOEA
(SMS-EMOA) for solving a commonly studied bi-
objective problem, OneJumpZeroJump, can be ex-
ponentially decreased if replacing its deterministic
population update mechanism by a stochastic one.
Empirical studies also verify the effectiveness of
the proposed stochastic population update method.
This work is an attempt to challenge a common
practice for the population update in MOEAs. Its
positive results, which might hold more generally,
should encourage the exploration of developing
new MOEAs in the area.

1 Introduction
Multi-objective optimization refers to an optimization sce-
nario that there are more than one objective to be considered
at the same time, which often appears in real-world applica-
tions. Since the objectives of a multi-objective optimization
problem (MOP) are usually conflicting, there does not exist
a single optimal solution, but instead a set of solutions which
represent different trade-offs between these objectives, called
Pareto optimal solutions. The images of all Pareto optimal so-
lutions of an MOP in the objective space are called the Pareto

∗This work was supported by the National Science Foundation
of China (62022039, 62276124). Chao Qian is the corresponding
author.

front. In multi-objective optimization, the goal of an opti-
mizer is to find a good approximation of the Pareto front.

Evolutionary algorithms (EAs) [Bäck, 1996; Eiben and
Smith, 2015] are a large class of randomized heuristic op-
timization algorithms, inspired by natural evolution. They
maintain a set of solutions, i.e., a population, and iteratively
improve it by generating new solutions and selecting better
ones. Due to the population-based nature, EAs are well-
suited to solving MOPs, and have been widely used in var-
ious real-world scenarios [Coello Coello and Lamont, 2004;
Deb, 2011; Zhou et al., 2019].

In multi-objective EAs (MOEAs), two key components
are solution generation and population update. The former
is concerned with parent selection and reproduction (e.g.,
crossover and mutation), while the latter (also called envi-
ronmental selection or population maintenance) is concerned
with maintaining a solution set which represents the best solu-
tions found so far. In the area of evolutionary multi-objective
optimization, the research focus is mainly on population up-
date. That is, when designing an MOEA, attention is placed
on how to update the population by newly-generated solu-
tions so that a set of well distributed non-dominated solutions
is preserved. With this aim, many selection criteria emerge,
such as non-dominated sorting [Goldberg, 1989], crowding
distance [Deb et al., 2002], scalarizing functions [Zhang and
Li, 2007] and quality indicators [Zitzler and Künzli, 2004].

A prominent feature in population update of MOEAs is its
deterministic manner (apart from random tie breaking). That
is, the next-generation population is formed by always select-
ing the first population-size ranked solutions out of the collec-
tions of the current population and newly-generated solutions.
It is believed that a population formed by the best solutions
has a higher chance to generate even better solutions.

In this paper, we challenge this belief. We analytically
show that introducing randomness into the population up-
date procedure may be beneficial for the search. Specifically,
we consider a well-established MOEA, S metric selection
evolutionary multi-objective optimization algorithm (SMS-
EMOA) [Beume et al., 2007], and propose a simple stochas-
tic population update method. Instead of removing the worst
solution1 from the collections of the current population and

1SMS-EMOA adopts a (µ+ 1) steady state mode, where select-
ing the µ best solutions means removing the worst solution.



newly-generated solution, the proposed stochastic method
first randomly selects a subset from the collections and then
removes the worst solution from the subset. We theoreti-
cally show that this simple modification makes SMS-EMOA
significantly better on OneJumpZeroJump, a bi-objective op-
timization problem commonly used in theoretical analyses
of MOEAs [Doerr and Zheng, 2021; Doerr and Qu, 2022;
Doerr and Qu, 2023a; Doerr and Qu, 2023b]. More specifi-
cally, we first prove that the expected running time of the orig-
inal SMS-EMOA is O(µnk) and Ω(nk), where µ is the pop-
ulation size, n is the problem size and k (2 ≤ k < n/2) is the
parameter of the problem. Then, we prove that using stochas-
tic population update can decrease the expected running time
to O(µnk ·min{1, µ/2k/4}). In other words, stochastic pop-
ulation update can bring an exponential acceleration when
µ = poly(n) and k = Ω(n), where poly(n) denotes any
polynomial of n. The intuitive reason for this occurrence is
that by introducing randomness into the population update
procedure, the evolutionary search can go across inferior re-
gions between different Pareto optimal solutions more easily,
thus facilitating to find the whole Pareto front. Experiments
are also conducted to verify our theoretical results.

There is an increasing interest in the evolutionary computa-
tion area to theoretically study MOEAs. Primitive theoretical
work mainly focuses on analyzing the expected running time
of GSEMO/SEMO, a simple MOEA which employs the bit-
wise/one-bit mutation operator to generate an offspring solu-
tion in each iteration and keeps the non-dominated solutions
generated-so-far in the population, in solving multi-objective
synthetic and combinatorial optimization problems [Giel,
2003; Laumanns et al., 2004a; Laumanns et al., 2004b;
Neumann, 2007; Horoba, 2009; Giel and Lehre, 2010; Neu-
mann and Theile, 2010; Doerr et al., 2013; Qian et al., 2013;
Bian et al., 2018]. Based on GSEMO/SEMO, the effective-
ness of some parent selection and reproduction methods, e.g.,
greedy parent selection [Laumanns et al., 2004b], diversity-
based parent selection [Friedrich et al., 2010; Covantes Os-
una et al., 2020], fairness-based parent selection [Laumanns
et al., 2004b; Friedrich et al., 2011], fast mutation and stag-
nation detection [Doerr and Zheng, 2021], crossover [Qian et
al., 2013], and selection hyper-heuristics [Qian et al., 2016],
has also been studied.

Recently, researchers have started attempts to analyze
practical MOEAs. The expected running time of (µ + 1)
SIBEA, i.e., a simple MOEA using the hypervolume indi-
cator to update the population, was analyzed on several syn-
thetic problems [Brockhoff et al., 2008; Nguyen et al., 2015;
Doerr et al., 2016], which contributes to the theoretical un-
derstanding of indicator-based MOEAs. Later, people have
started to consider well-established algorithms in the evo-
lutionary multi-objective optimisation area. For example,
Huang et al. [2021] considered MOEA/D, and examined the
effectiveness of different decomposition methods by com-
paring the running time for solving many-objective synthetic
problems. Very recently, Zheng et al. [2022] analyzed the ex-
pected running time of NSGA-II (which uses non-dominated
sorting and crowding distance mechanisms to update the pop-
ulation) for solving OneMinMax and LOTZ. Later on, Zheng
and Doerr [2022] considered a modified crowding distance

method, which updates the crowding distance of solutions
once the solution with the smallest crowding distance is re-
moved, and proved that the modified method can approxi-
mate the Pareto front better than the original crowding dis-
tance method in NSGA-II. Bian and Qian [2022] proposed
a new parent selection method, stochastic tournament se-
lection (i.e., k tournament selection where k is uniformly
sampled at random), to replace the binary tournament se-
lection of NSGA-II, and proved that the method can de-
crease the expected running time asymptotically. There is
also some work analyzing the effectiveness of the muta-
tion [Doerr and Qu, 2022] and crossover [Dang et al., 2023;
Doerr and Qu, 2023b] operators in NSGA-II. The lower
bounds of NSGA-II solving OneMinMax and OneJumpZe-
roJump have also been analyzed [Doerr and Qu, 2023a].

Our running time analysis about SMS-EMOA contributes
to the theoretical understanding of another major type of
MOEAs, i.e., combining non-dominated sorting and qual-
ity indicators to update the population, for the first time.
More importantly, our work presents a potential drawback
of an important component, i.e., population update, in ex-
isting MOEAs. That is, instead of updating the population
in a deterministic way, introducing randomness may be help-
ful for the search, even reducing the expected running time
of MOEAs exponentially. Though being proved in a special
case, this finding may hold more generally, and may inspire
the design of more efficient MOEAs in practice.

2 Preliminaries
In this section, we first introduce multi-objective optimization
and SMS-EMOA, and then present a new population update
method, i.e., stochastic population update. Finally, we intro-
duce the OneJumpZeroJump problem studied in this paper.

2.1 Multi-objective Optimization
Multi-objective optimization aims to optimize two or more
objective functions simultaneously, as shown in Definition 1.
Note that in this paper, we consider maximization (minimiza-
tion can be defined similarly), and pseudo-Boolean functions,
i.e., the solution space X = {0, 1}n. The objectives are usu-
ally conflicting, thus there is no canonical complete order in
the solution space X , and we use the domination relationship
in Definition 2 to compare solutions. A solution is Pareto op-
timal if there is no other solution in X that dominates it, and
the set of objective vectors of all the Pareto optimal solutions
constitutes the Pareto front. The goal of multi-objective opti-
mization is to find the Pareto front or its good approximation.
Definition 1 (Multi-objective Optimization). Given a feasi-
ble solution space X and objective functions f1, f2, . . . , fm,
multi-objective optimization can be formulated as

max
x∈X

f(x) = max
x∈X

(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X →
Rm be the objective vector. For two solutions x and y ∈ X :
• x weakly dominates y (denoted as x � y) if for any

1 ≤ i ≤ m, fi(x) ≥ fi(y);
• x dominates y (denoted as x � y) if x � y and
fi(x) > fi(y) for some i;
• x and y are incomparable if neither x � y nor y � x.



Algorithm 1 SMS-EMOA
Input: objective functions f1, f2 . . . , fm, population size µ
Output: µ solutions from {0, 1}n

1: P ← µ solutions uniformly and randomly selected from
{0,1}n with replacement;

2: while criterion is not met do
3: select a solution x from P uniformly at random;
4: generate x′ by flipping each bit of x independently

with probability 1/n;
5: P ← POPULATION UPDATE (P ∪ {x′})
6: end while
7: return P

Algorithm 2 POPULATION UPDATE (Q)
Input: a set Q of solutions, and a reference point r ∈ Rm
Output: |Q|−1 solutions fromQ

1: partition Q into non-dominated sets R1, R2, . . . , Rv;
2: let z = arg minx∈Rv

∆r(x, Rv);
3: return Q \ {z}

2.2 SMS-EMOA
The SMS-EMOA algorithm [Beume et al., 2007] as presented
in Algorithm 1 is a popular MOEA, which employs non-
dominated sorting and hypervolume indicator to evaluate the
quality of a solution and update the population. SMS-EMOA
starts from an initial population of µ solutions (line 1). In
each generation, it randomly selects a solution from the cur-
rent population (line 3), and then applies bit-wise mutation to
generate an offspring solution (line 4). Then, the worst solu-
tion in the union of the current population P and the newly
generated solution is removed (line 5), by using the POPULA-
TION UPDATE subroutine as presented in Algorithm 2.

As can be seen in Algorithm 2, the POPULATION UP-
DATE subroutine first partitions a set Q of solutions (where
Q = P ∪ {x′} in Algorithm 1) into non-dominated sets
R1, R2, . . . , Rv (line 1), where R1 contains all the non-
dominated solutions in Q, and Ri (i ≥ 2) contains all the
non-dominated solutions in Q \ ∪i−1

j=1Rj . Then, one solu-
tion z ∈ Rv that minimizes ∆r(x, Rv) := HVr(Rv) −
HVr(Rv \ {x}) is removed (lines 2–3), where HVr(Rv) =
Λ
(
∪x∈Rv

{f ′ ∈ Rm | ∀1 ≤ i ≤ m : ri ≤ f ′i ≤ fi(x)}
)

de-
notes the hypervolume ofRv with respect to a reference point
r ∈ Rm (satisfying ∀1 ≤ i ≤ m, ri ≤ minx∈X fi(x)), and
Λ denotes the Lebesgue measure. The hypervolume of a solu-
tion set measures the volume of the objective space between
the reference point and the objective vectors of the solution
set, and a larger hypervolume value implies a better approxi-
mation ability with regards to both convergence and diversity.
This implies that the solution with the least value of ∆ in the
last non-dominated set Rv can be regarded as the worst solu-
tion in Q, which is thus removed.

2.3 Stochastic Population Update
Previous MOEAs only considered deterministic and greedy
population update methods, i.e., a dominating solution or a
solution with better indicator value is always preferred. How-

Algorithm 3 STOCHASTIC POPULATION UPDATE (Q)
Input: a set Q of solutions, and a reference point r ∈ Rm
Output: |Q|−1 solutions fromQ

1: Q′ ← b|Q|/2c solutions uniformly and randomly se-
lected from Q without replacement;

2: partition Q′ into non-dominated sets R1, R2, . . . , Rv;
3: let z = arg minx∈Rv ∆r(x, Rv);
4: return Q \ {z}

ever, these methods may be too greedy, and thus limit the per-
formance of MOEAs. In this paper, we introduce STOCHAS-
TIC POPULATION UPDATE as presented in Algorithm 3 into
SMS-MOEA, to replace the original POPULATION UPDATE
procedure in line 5 of Algorithm 1. These two procedures are
similar, except that the removed solution is selected from a
subset Q′ of Q in Algorithm 3, instead of from the entire set
Q, where Q′ consists of N solutions chosen randomly from
Q. Note that we setN = b|Q|/2c here for examination, while
other values of N can also be used in practical applications.

2.4 OneJumpZeroJump Problem
The OneJumpZeroJump problem is a multi-objective coun-
terpart of the Jump problem, a classical single-objective
pseudo-Boolean benchmark problem in EAs’ theoretical
analyses [Doerr and Neumann, 2020]. The goal of the Jump
problem is to maximize the number of 1-bits of a solution, ex-
cept for a valley around 1n (the solution with all 1-bits) where
the number of 1-bits should be minimized. Formally, it aims
to find an n-bits binary string which maximizes

g(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else,

where k ∈ [2..n−1], and |x|1 denotes the number of 1-bits in
x. Note that we use [a..b] (where a, b ∈ N, a ≤ b) to denote
the set {a, a+ 1, . . . , b} of integers throughout the paper.

The OneJumpZeroJump problem as presented in Defini-
tion 3 is constructed based on the Jump problem, and has
been widely used in MOEAs’ theoretical analyses [Doerr and
Zheng, 2021; Doerr and Qu, 2022; Doerr and Qu, 2023a;
Doerr and Qu, 2023b]. Its first objective is the same as the
Jump problem, while the second objective is isomorphic to
the first one, with the roles of 1-bits and 0-bits exchanged.
Figure 1 illustrates the values of f1 and f2 with respect to the
number of 1-bits of a solution.
Definition 3. [Doerr and Zheng, 2021] The OneJumpZero-
Jump problem is to find n bits binary strings which maximize

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else,

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else,
where k ∈ Z ∧ 2 ≤ k < n/2, and |x|1 and |x|0 denote the
number of 1-bits and 0-bits in x, respectively.

According to Theorem 5 of [Doerr and Zheng, 2021], the
Pareto set of the OneJumpZeroJump problem is

S∗ = {x ∈ {0, 1}n | |x|1 ∈ [k..n− k] ∪ {0, n}},
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Figure 1: The function value of the OneJumpZeroJump problem vs.
the number of 1-bits of a solution when n = 20 and k = 5.
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Figure 2: The objective vectors of the OneJumpZeroJump problem
when n = 20 and k = 5, where the set of all the green points
denotes the Pareto front.

and the Pareto front is

F ∗=f(S∗)={(a, n+ 2k − a) | a ∈ [2k..n] ∪ {k, n+ k}},
whose size is n − 2k + 3. Figure 2 illustrates the objective
vectors and the Pareto front. We use

S∗I = {x ∈ S∗ | |x|1 ∈ [k..n− k]} (1)

and

F ∗I = f(S∗I ) = {(a, 2k + n− a) | a ∈ [2k..n]} (2)

to denote the inner part of the Pareto set and Pareto front, re-
spectively. Note that each objective value of the OneJumpZe-
roJump problem must be larger than zero, thus we set the
reference point r = (0, 0) in SMS-EMOA.

3 Running Time Analysis of SMS-EMOA
In this section, we analyze the expected running time of SMS-
EMOA in Algorithm 1 for solving the OneJumpZeroJump
problem. Note that the running time of EAs is often mea-
sured by the number of fitness evaluations, the most time-
consuming step in the evolutionary process. As SMS-EMOA
generates only one offspring solution in each generation, its
running time is just equal to the number of generations. We
prove in Theorems 1 and 2 that the upper and lower bounds
on the expected number of generations of SMS-EMOA solv-
ing OneJumpZeroJump are O(µnk) and Ω(nk), respectively.
Note that we use poly(n) to denote any polynomial of n.
Theorem 1 (Upper bound). For SMS-EMOA solving One-
JumpZeroJump, if using a population size µ such that n −
2k + 3 ≤ µ, then the expected number of generations for
finding the Pareto front is O(µnk).

Theorem 2 (Lower bound). For SMS-EMOA solving One-
JumpZeroJump with n − 2k = Θ(n), if using a population
size µ such that n−2k+3 ≤ µ = poly(n), then the expected
number of generations for finding the Pareto front is Ω(nk).

The proof of Theorem 1 relies on Lemma 1, which shows
that once an objective vector f∗ in the Pareto front is found,
it will always be maintained, i.e., there will always exist a
solution whose objective vector is f∗ in the population.
Lemma 1. For SMS-EMOA solving OneJumpZeroJump, if
using a population size µ such that n− 2k + 3 ≤ µ, then an
objective vector f∗ in the Pareto front will always be main-
tained once it has been found.

Proof. Suppose the objective vector (a, n + 2k − a), a ∈
[2k..n] ∪ {k, n+ k}, in the Pareto front is obtained by SMS-
EMOA, i.e., there exists a solution x in Q (i.e., P ∪ {x′} in
line 5 of Algorithm 1) such that f(x) = (a, n + 2k − a). If
at least two solutions correspond to the objective vector, then
at least one of them will still be maintained in the next gener-
ation because only one solution is removed by Algorithm 2.

If only one solution (denoted as y) corresponds to the ob-
jective vector, then we have y ∈ R1 in the POPULATION UP-
DATE procedure because y cannot be dominated by any other
solution; and ∆r(y, R1) = HVr(R1)−HVr(R1 \{y}) > 0
because the region

{f ′ ∈ R2 | a−1 < f ′1 ≤ a, n+2k−a−1 < f ′2 ≤ n+2k−a}

cannot be covered by any objective vector in f({0, 1}n) \
{(a, n+ 2k − a)}. Then, we consider two cases.

(1) There exists one solution x in R1 such that k ≤ |x|1 ≤
n − k. Then, R1 cannot contain solutions whose number of
1-bits are in [1..k − 1] ∪ [n − k + 1..n − 1], because these
solutions must be dominated by x. If at least two solutions in
Q have the same objective vector, then they must have a zero
∆ value, because removing one of them will not decrease
the hypervolume covered. Thus, for each objective vector
(b, n+ 2k− b), b ∈ [2k..n]∪{k, n+k}, at most one solution
can have a ∆ value larger than zero, implying that there exist
at most n− 2k + 3 ≤ µ solutions in R1 with ∆ > 0.

(2) Any solution x in R1 satisfies |x|1 < k or |x|1 >
n − k. Note that for the solutions with the number of 1-bits
in [1..k − 1], a solution with more 1-bits must dominate a
solution with less 1-bits. Meanwhile, two solutions with the
same number of 1-bits will have a zero ∆ value, thus R1 can
only contain at most one solution in {x | |x|1 ∈ [1..k − 1]}
with ∆ value larger than zero. Similarly, at most one solution
in {x | |x|1 ∈ [n−k+1..n−1]}with ∆ value larger than zero
belongs to R1. For solutions with number of 1-bits in {0, n}
(note that there may exist reduplicative solutions in Q), it is
also straightforward to see that at most two of them can have
a ∆ value larger than zero. By the problem setting k < n/2,
we have µ ≥ n − 2k + 3 ≥ 4, thus there exist at most µ
solutions in R1 with ∆ value larger than zero.

Combining the above two cases, we show that there exist at
most µ solutions in R1 with ∆ value larger than zero, imply-
ing that y will still be maintained in the next generation.

The main proof idea of Theorem 1 is to divide the opti-
mization procedure into two phases, where the first phase



aims at finding the inner part F ∗I (in Eq. (2)) of the Pareto
front, and the second phase aims at finding the remaining
two extreme vectors in the Pareto front, i.e., F ∗ \ F ∗I =
{(k, n+ k), (n+ k, k)}, corresponding to the two Pareto op-
timal solutions 0n and 1n.

Proof of Theorem 1. We divide the optimization procedure
into two phases. The first phase starts after initialization and
finishes until all the objective vectors in the inner part F ∗I of
the Pareto front has been found; the second phase starts af-
ter the first phase and finishes when the whole Pareto front
is found. We will show that the expected number of genera-
tions of the two phases are O(µ(n log n+ kk)) and O(µnk),
respectively, leading to the theorem.

For the first phase, we consider two cases.
(1) At least one solution in the inner part S∗I of the Pareto

set exists in the initial population. Let

D1 ={x∈P |(H+(x) ∩ P = ∅ ∧H+(x) ∩ S∗I 6= ∅)
∨ (H−(x) ∩ P = ∅ ∧H−(x) ∩ S∗I 6= ∅)},

where H+(x) := {x′ | |x′|1 = |x|1 + 1} and H−(x) :=
{x′ | |x′|1 = |x|1 − 1} denote the Hamming neighbours of
x with one more 1-bit and one less 1-bit, respectively. Intu-
itively, D1 denotes the set of solutions in P whose Hamming
neighbour is Pareto optimal but not contained by P . Then,
by selecting a solution x ∈ D1, and flipping one of the 0-bits
or one of the 1-bits, a new objective vector in F ∗I can be ob-
tained. By Lemma 1, one solution corresponding to the new
objective vector will always be maintained in the population.
By repeating the above procedure, the whole set F ∗I can be
found. Note that the probability of selecting a specific solu-
tion in P is 1/µ, and the probability of flipping one of the
0-bits (or 1-bits) is (n− |x|1) · (1/n) · (1− 1/n)n−1 ≥ (n−
|x|1)/(en) (or (|x|1/n) · (1− 1/n)n−1 ≥ |x|1/(en)). Thus,
the total expected number of generations for finding F ∗I is at
most

∑|x|1
i=k+1(µen)/i+

∑n−|x|1
i=k+1 (µen)/i = O(µn log n).

(2) Any solution in the initial population has at most (k−1)
1-bits or at least (n−k+1) 1-bits. Without loss of generality,
we can assume that one solution y has at most (k− 1) 1-bits.
Then, selecting y and flipping (k − |y|1) 0-bits can generate
a solution in S∗I , whose probability is at least

1

µ
·

(
n−|y|1
k−|y|1

)
nk−|y|1

·
(

1− 1

n

)n−k+|y|1
≥ 1

eµ
·

(
n−|y|1
k−|y|1

)
nk−|y|1

.

Let g(i) =
(
n−i
k−i
)
/nk−i, 0 ≤ i ≤ k − 1, then we have

g(i+ 1)

g(i)
=

(
n−i−1
k−i−1

)(
n−i
k−i
) · n =

n(k − i)
(n− i)

≥ 1,

implying(
n−|y|1
k−|y|1

)
nk−|y|1

= g(|y|1) ≥ g(0) =

(
n
k

)
nk
≥
(n
k

)k
· 1

nk
=

1

kk
.

Thus, the expected number of generations for finding a solu-
tion in S∗I is at most eµkk. By Lemma 1, the generated solu-
tion must be included into the population. Thus, combining

the analysis for case (1), we can derive that the total expected
number of generations for finding F ∗I is O(µ(n log n+ kk)).

For the second phase, we need to find the two extreme so-
lutions 1n and 0n. To find 1n (or 0n), it is sufficient to select
the solution in the population P with (n − k) 1-bits (or k
1-bits) and flip its k 0-bits (or k 1-bits), whose probability
is (1/µ) · (1/nk) · (1 − 1/n)n−k ≥ 1/(eµnk). Thus, the
expected number of generations is O(eµnk).

Combining the derived upper bounds on the expected num-
ber of generations of the two phases, the theorem holds.

The proof idea of Theorem 2 is that all the solutions in the
initial population belong to the inner part S∗I (in Eq. (1)) of
the Pareto set with probability Θ(1), and then SMS-EMOA
requires Ω(nk) expected number of generations to find the
two extreme Pareto optimal solutions 1n and 0n.

Proof of Theorem 2. Let G denote the event that all the solu-
tions in the initial population belong to S∗I , i.e., for any solu-
tion x in the initial population, k ≤ |x|1 ≤ n − k. We first
show that event G happens with probability 1 − o(1). For
an initial solution y, it is generated uniformly at random, i.e.,
each bit in y can be 1 or 0 with probability 1/2, respectively.
Thus, the expected number of 1-bits in y is exactly n/2. By
Hoeffding’s inequality and the condition n − 2k = Θ(n) of
the theorem, we have

Pr
(∣∣∣|y|1 − n

2

∣∣∣ > n

2
− k
)
< 2e−2(n/2−k)2/n = e−Θ(n).

Then, we can derive that

Pr
(
∀x in the initial population,

∣∣∣|x|1 − n

2

∣∣∣ ≤ n

2
− k
)

≥
(
1− e−Θ(n)

)µ ≥ 1− µ · e−Θ(n) = 1− o(1),

where the last inequality holds by Bernoulli’s inequality, and
the equality holds by the condition µ = poly(n).

Next we show that given event G, the expected number of
generations for finding the whole Pareto front is at least nk.
Starting from the initial population, if a solution x with 1 ≤
|x|1 ≤ k−1 or n−k+1 ≤ |x|1 ≤ n−1 is generated in some
generation, it must be deleted because it is dominated by any
of the solutions in the current population. Thus, the extreme
solution 1n can only be generated by selecting a solution in
S∗I and flipping all the 0-bits, whose probability is at most
1/nk. Thus, the expected number of generations for finding
1n is at least nk.

Combining the above analyses, the expected number of
generations for finding the whole Pareto front is at least
(1− o(1)) · nk = Ω(nk).

4 Analysis of SMS-EMOA Using Stochastic
Population Update

In the previous section, we have proved that the expected
number of generations of SMS-EMOA is O(µnk) and Ω(nk)
for solving OneJumpZeroJump. Next, we will show that by
employing stochastic population update in Algorithm 3, in-
stead of the original population update procedure in Algo-
rithm 2, SMS-EMOA can use much less time to find the
whole Pareto front.



In particular, we prove in Theorem 3 that the expected
number of generations of SMS-EMOA using stochastic pop-
ulation update is O(µnk · min{1, µ/2k/4}) for solving the
OneJumpZeroJump problem when 2(n − 2k + 4) ≤ µ. Re-
call from Theorem 2 that the expected number of generations
of the original SMS-EMOA is Ω(nk) when n − 2k = Θ(n)
and n−2k+ 3 ≤ µ = poly(n). Thus, when k = Ω(n)∧k =
n/2 − Θ(n) and 2(n − 2k + 4) ≤ µ = poly(n), using
stochastic population update can bring an acceleration of at
least Ω(2k/4/µ2), implying an exponential acceleration. The
main reason for the acceleration is that introducing random-
ness into the population update procedure allows a bad solu-
tion, i.e., a solution x with |x|1 ∈ [1..k−1]∪[n−k+1..n−1],
to be included into the population with some probability, thus
making SMS-EMOA much easier to generate the two ex-
treme Pareto optimal solutions 0n and 1n.
Theorem 3. For SMS-EMOA solving OneJumpZeroJump, if
using stochastic population update in Algorithm 3, and a pop-
ulation size µ such that 2(n − 2k + 4) ≤ µ, then the ex-
pected number of generations for finding the Pareto front is
O(µnk ·min{1, µ/2k/4}).

Before proving Theorem 3, we first present Lemma 2,
which shows that given proper value of µ, an objective vec-
tor in the Pareto front will always be maintained once it has
been found; any solution (even the worst solution) in the col-
lections of the current population and the newly generated
offspring solution can survive in the population update pro-
cedure with probability at least 1/2.
Lemma 2. For SMS-EMOA solving OneJumpZeroJump, if
using stochastic population update in Algorithm 3, and a pop-
ulation size µ such that 2(n− 2k + 4) ≤ µ, then
(1) an objective vector f∗ in the Pareto front will always be

maintained once it has been found;

(2) any solution in P ∪ {x′} can be maintained in the next
population with probability at least 1/2, where P de-
notes the current population and x′ denotes the off-
spring solution produced in the current generation.

Proof. The proof of the first clause is similar to that of
Lemma 1, and we only need to consider the case that only
one solution x∗ corresponding to f∗ exists in Q = P ∪{x′}.
By the proof of Lemma 1, there exist at most n − 2k + 3
solutions in R1 with ∆ value larger than zero. Note that the
removed solution is chosen from b(µ+ 1)/2c ≥ n− 2k + 4
solutions in Q, thus x∗ will not be removed because it is one
of the best n− 2k + 3 solutions. Then, the first clause holds.

The second clause holds, because for any solution in P ∪
{x′}, it can be removed only if it is chosen for competition,
whose probability is at most b(µ+1)/2c/(µ+1) ≤ 1/2.

The basic proof idea of Theorem 3 is similar to that of
Theorem 1, i.e., dividing the optimization procedure into two
phases, which are to find F ∗I and F ∗ \F ∗I = {(k, n+k), (n+
k, k)}, respectively. However, the analysis for the second
phase is a little more sophisticated here, because dominated
solutions can be included into the population when using
stochastic population update, leading to a more complicated
behavior of SMS-EMOA.

We will use the additive drift analysis tool in Lemma 3 to
derive an upper bound on the expected number of generations
of the second phase. Because the population of SMS-EMOA
in the (t + 1)-th generation only depends on the t-th popula-
tion, its process can be naturally modeled as a Markov chain.
Given a Markov chain {ξt}+∞t=0 and ξt̂ = x ∈ X , we define
its first hitting time as τ = min{t | ξt̂+t ∈ X ∗, t ≥ 0}, where
X and X ∗ denote the state space and target state space of the
Markov chain, respectively. For the analysis in Theorem 3,
X denotes the set of all the populations after phase 1, and X ∗
denotes the set of all the populations which contain the Pareto
optimal solution 1n (or 0n). Let E(·) denote the expectation
of a random variable. The mathematical expectation of τ ,
E(τ | ξt̂ = x) =

∑+∞
i=0 i · P(τ = i | ξt̂ = x), is called the

expected first hitting time (EFHT) starting from ξt̂ = x. The
additive drift as presented in Lemma 3 is used to derive upper
bounds on the EFHT of Markov chains. To use it, a function
V (x) has to be constructed to measure the distance of a state
x to the target state space X ∗, where V (x ∈ X ∗) = 0 and
V (x /∈ X ∗) > 0. Then, we need to investigate the progress on
the distance to X ∗ in each step, i.e., E(V (ξt)−V (ξt+1) | ξt).
An upper bound on the EFHT can be derived through dividing
the initial distance by a lower bound on the progress.

Lemma 3 (Additive Drift [He and Yao, 2001]). Given a
Markov chain {ξt}+∞t=0 and a distance function V (·), if for
any t ≥ 0 and any ξt with V (ξt) > 0, there exists a real num-
ber c > 0 such that E(V (ξt) − V (ξt+1) | ξt) ≥ c, then the
EFHT satisfies that E(τ | ξ0) ≤ V (ξ0)/c.

Proof of Theorem 3. Similar to the proof of Theorem 1, we
divide the optimization procedure into two phases. That is,
the first phase starts after initialization and finishes until all
the objective vectors in F ∗I have been found; the second phase
starts after the first phase and finishes when 0n and 1n are also
found. The analysis of the first phase is the same as that of
Theorem 1, because the objective vectors in F ∗I will always
be maintained by Lemma 2. That is, the expected number of
generations of phase 1 is O(µ(n log n+ kk)).

Now we analyze the second phase. Without loss of gen-
erality, we only consider the expected number of generations
for finding 1n, and the same bound holds for finding 0n anal-
ogously. We use Lemma 3, i.e., additive drift analysis, to
prove. Note that the process of SMS-EMOA can be directly
modeled as a Markov chain by letting the state of the chain
represent a population of SMS-EMOA. Furthermore, the tar-
get space consists of all the populations which contain 1n.
In the following, we don’t distinguish a state from its corre-
sponding population. First, we construct the distance function

V(P )=


0 if maxx∈P |x|1 = n,

eµnk/2 if n− k
2 ≤ maxx∈P |x|1 ≤ n−1,

eµnk/2+1 if n−k ≤ maxx∈P |x|1 < n− k
2 .

It is easy to verify that V (P ) = 0 if and only if 1n ∈ P .
Then, we examine E(V (ξt) − V (ξt+1) | ξt = P ) for any

P with 1n /∈ P . Assume that currently maxx∈P |x|1 = q,
where n−k ≤ q ≤ n− 1. We first consider the case that n−
k/2 ≤ q ≤ n−1. To make V decrease, it is sufficient to select
the solution in P with q 1-bits and flip its remaining (n − q)



0-bits, whose probability is (1/µ) · (1/nn−q) · (1− 1/n)q ≥
1/(eµnn−q) ≥ 1/(eµnk/2), where the last inequality is by
n − k/2 ≤ q. Note that the newly generated solution is 1n,
which must be included in the population. In this case, V can
decrease by eµnk/2. To make V increase, the solution in P
with q 1-bits needs to removed in the next generation, whose
probability is at most 1/2 by Lemma 2. In this case, V can
increase by eµnk/2 + 1− eµnk/2 = 1. Thus, we have

E(V (ξt)− V (ξt+1) | ξt = P ) ≥ eµnk/2

eµnk/2
− 1

2
· 1 ≥ 1

2
. (3)

Now we consider the case that n−k ≤ q < n−k/2. Note
that in this case, V cannot increase, thus we only need to con-
sider the decrease of V . We further consider two subcases.
(1) q > n−3k/4. To make V decrease, it is sufficient to select
the solution with q 1-bits, flip k/4 0-bits among the (n − q)
0-bits, and include the newly generated solution into the pop-
ulation, whose probability is at least (1/µ) · (

(
n−q
k/4

)
/nk/4) ·

(1 − 1/n)n−k/4 · (1/2) ≥
(
k/2
k/4

)
/(2eµnk/4). In this case, V

can decrease by 1. Thus, E(V (ξt) − V (ξt+1) | ξt = P ) ≥(
k/2
k/4

)
/(2eµnk/4).

(2) q ≤ n− 3k/4. To make V decrease, it is sufficient to se-
lect the solution with q 1-bits, flip (n−k/2−q) 0-bits among
the (n − q) 0-bits, and include the newly generated solution
into the population, whose probability is at least

1

µ
·

(
n−q

n−k/2−q
)

nn−k/2−q
·
(

1− 1

n

)k/2+q

· 1

2

≥

(
n−q
k/2

)
2eµnk/2

≥

(
3k/4
k/2

)
2eµnk/2

≥

(
k/2
k/4

)
2eµnk/2

,

where the first inequality is by n − k ≤ q. In this case, V
can decrease by 1. Thus, E(V (ξt) − V (ξt+1) | ξt = P ) ≥(
k/2
k/4

)
/(2eµnk/2).

Combining subcases (1) and (2), we can derive

E(V (ξt)−V (ξt+1) | ξt = P ) ≥

(
k/2
k/4

)
2eµnk/2

≥ 2k/4

2eµnk/2
. (4)

By Eqs. (3) and (4), we have E(V (ξt) − V (ξt+1) | ξt =
P ) ≥ 2k/4/(2eµnk/2). Then, by Lemma 3 and V (P ) ≤
eµnk/2+1, the expected number of generations for finding 1n

is at most (eµnk/2 + 1) · (2eµnk/2)/2k/4 = O(µ2nk/2k/4).
Thus, combining the two phases, the expected num-

ber of generations for finding the whole Pareto front is
O(µ(n log n + kk)) + O(µ2nk/2k/4) = O(µ2nk/2k/4),
where the equality holds by 2 ≤ k < n/2.

Now we analyze the expected number of generations from
another perspective. To generate 1n, it is sufficient to select
a solution with (n − k) 1-bits and flip the remaining k 0-
bits, whose probability is (1/µ) · (1/nk) · (1 − 1/n)n−k ≥
1/(eµnk). Thus, the expected number of generations of
phase 2 can also be upper bounded by O(µnk), implying
that the total expected number of generations for finding the
Pareto front is O(µ(n log n+ kk)) +O(µnk) = O(µnk).

Figure 3: Average #generations of SMS-EMOA using determinis-
tic and stochastic population update methods for solving the One-
JumpZeroJump problem.

Thus, the expected number of generations of SMS-
EMOA using stochastic population update for finding the
Pareto front is min{O(µ2nk/2k/4), O(µnk)} = O(µnk ·
min{1, µ/2k/4}), implying that the theorem holds.

5 Experiments
In the previous sections, we have proved that the stochastic
population update method can bring significant acceleration
for large k. However, it is unclear whether it can still perform
better for small k. We empirically examine this case here.

Specifically, we compare the number of generations of
SMS-EMOA for solving OneJumpZeroJump, when the two
population update methods are used, respectively. We set k
to 2, the problem size n from 10 to 30, with a step of 5, and
the population size µ= 2(n−2k + 4), as suggested in Theo-
rem 3. For each n, we run SMS-EMOA 1000 times indepen-
dently, and record the number of generations until the Pareto
front is found. Figure 3 shows the average number of genera-
tions of the 1000 runs. Note that the standard deviation is not
included because it is very close to the mean and may make
the figure look cluttered. We can observe that the stochas-
tic population update method can bring a clear acceleration.
Note that using non-dominated sorting and hypervolume in-
dicator to rank solutions may also be time-consuming, thus
the stochastic population update method which only requires
to compare b|P ∪ {x′}|/2c = b(µ+ 1)/2c solutions in each
generation can make the optimization procedure even faster.

6 Conclusion
In this paper, we challenge a common practice for a key com-
ponent in MOEAs, population update, through rigorous theo-
retical analysis. Existing MOEAs always update the popula-
tion in a deterministic manner, while we prove that for the
well-known SMS-EMOA solving the bi-objective problem
OneJumpZeroJump, introducing randomness into the popula-
tion update procedure can significantly decrease the expected
running time. Though being proved in a special case, this
finding may hold more generally. In fact, our results echo
some recent empirical studies [Liang et al., 2023], where a
simple non-elitist MOEA (which is of the stochastic popu-
lation update nature) has been found to outperform SMS-
EMOA on popular practical problems like the knapsack prob-
lem [Zitzler and Thiele, 1999] and NK-landscape [Aguirre
and Tanaka, 2004].
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