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Abstract
In supersingular isogeny-based cryptography, the path-finding problem reduces to the
endomorphism ring problem. Can path-finding be reduced to knowing just one endo-
morphism? It is known that a small degree endomorphism enables polynomial-time
path-finding and endomorphism ring computation (in: Love and Boneh, ANTS XIV-
Proceedings of the Fourteenth Algorithmic Number Theory Symposium, volume 4 of
Open Book Ser. Math. Sci. Publ., Berkeley, 2020). An endomorphism gives an explicit
orientation of a supersingular elliptic curve. In this paper, we use the volcano structure
of the oriented supersingular isogeny graph to take ascending/descending/horizontal
steps on the graph and deduce path-finding algorithms to an initial curve. Each alti-
tude of the volcano corresponds to a unique quadratic order, called the primitive
order. We introduce a new hard problem of computing the primitive order given an
arbitrary endomorphism on the curve, and we also provide a sub-exponential quantum
algorithm for solving it. In concurrent work (in:Wesolowski, Advances in cryptology-
EUROCRYPT 2022, volume 13277 of Lecture Notes in Computer Science. Springer,
Cham, 2022), it was shown that the endomorphism ring problem in the presence of
one endomorphism with known primitive order reduces to a vectorization problem,
implying path-finding algorithms. Our path-finding algorithms are more general in the
sense that we don’t assume the knowledge of the primitive order associated with the
endomorphism.
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1 Introduction

The security of isogeny-based cryptosystems depends upon a constellation of hard
problems. Central are the path-finding problem introduced in [10] (to find a path
between two specified elliptic curves in a supersingular �-isogeny graph), and the
endomorphism ring problem (to compute the endomorphism ring of a supersingular
elliptic curve). Only exponential algorithms are known for general path-finding, in
the absence of information beyond the j-invariants of the desired starting and end-
ing vertices of the path. However, if the endomorphism rings are known, the KLPT
algorithm allows for polynomial-time path-finding [35]. In fact, it is known that the
path-finding and endomorphism ring problems are equivalent [25, 61]. These are the
central problems in isogeny based cryptography, despite the recent complete break of
SIDH/SIKE [7, 40, 45]. The hardness of these problems is in no way affected by the
attack, and they form the basis of the CGL hash function [10] and CSIDH [8], among
others.

A natural question to ask is whether knowledge of a single explicit endomorphism
(which generates only a rank 2 subring of the rank 4 endomorphism ring) can be used
for path-finding. Answering this question is the goal of this paper: we give explicit
algorithms transforming knowledge of one endomorphism into a way-finding tool
that can detect ascending, descending and horizontal directions with regards to the
corresponding orientation, and use this to walk to j = 1728.

By explicit endomorphism, we mean one given in some form in which its action on
the curve is computable, and its minimal polynomial is known (but note that, given an
endomorphism, both its norm and trace are in many cases computable; see Sect. 2.2).
For example, such an endomorphismmay be given as a rational map, or a composition
chain of rational maps, and these are the two cases we focus on in this paper. The data
of such an endomorphism is equivalent to the data of an orientation of a supersingular
elliptic curve E , namely a map ι : K → Q ⊗Z End(E), where K is the imaginary
quadratic field generated by a root of the minimal polynomial of the endomorphism.

The study of orientations provides some structure to the supersingular isogeny
graph, which has recently been exploited [15, 20, 43]. In particular, the �-isogeny
graph of oriented supersingular elliptic curves overFp has a volcano structure familiar
from the ordinary case: Each connected component consists of a single cycle, called
a rim, of vertices connected by horizontal edges, and descending edges connecting
the rim the non-rim vertices at lower altitudes of the volcano. Non-rim vertices only
have ascending/descending edges. This graph maps onto the supersingular �-isogeny
graph over Fp. Our approach is to use the orientation provided by a given explicit
endomorphism todiscern ascending, descending andhorizontal directionswith regards
to the volcano. This provides a sort of tool for ‘orienteering’. (The sport of orienteering
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involves finding one’s way to checkpoints across varied terrain using only map and
compass.)

The core result of our paper is an algorithm that finds an �-isogeny path from a
given supersingular elliptic curve E to an initial curve Einit , given a single explicit
endomorphism of E . We take Einit to be the curve with j-invariant j = 1728, but
other choices are possible (see Sect. 6.3). The overall plan is as follows. First, climb
the oriented volcano from E , oriented by the given endormorphism, to the volcano
rim (using the given endomorphism as our ‘orienteering tool’). Then, by orienting the
curve j = 1728 with the same field, we can climb to the rim from there also. Finally,
we attempt to meet by circling the rim.

This approach is limited by our ability to traverse a potentially large segment of
the rim, or to hit the same rim in a large cordillera of volcanoes, whose size is gen-
erally equal to the class number of the corresponding quadratic order. If we simply
walk the rim, then, classically, the runtime depends linearly on this class number.
Using a quantum computer to solve the vectorization problem (see Sect. 9.1) yields a
subexponential algorithm.

1.1 Main Theorems

We rely on a number of heuristic assumptions: (i) The Generalized Riemann Hypoth-
esis (hereafter referred to as GRH). (ii) Powersmoothness in a quadratic sequence or
form is as for random integers (a powersmooth analogue of the heuristic assumption
underlying the quadratic sieve; see Heuristics 5.10 and 9.3). (iii) The orienta-
tions of a fixed j-invariant are distributed reasonably across all suitable volcanoes
(Heuristic 3.7). (iv) This distribution is independent of a certain integer factorization
(Heuristic 6.7). (v) The aforementioned integer factorization is prime with the same
probability as a random integer (Heuristic 6.4; this heuristic is similar to those used
in [24] and [35]).

We state our main results here; their proofs can be found in Sect. 11.1. We use the
notation Lx (y) = exp(O((log x)y(log log x)1−y)). Our first theorem gives a classical
algorithm for �-isogeny path-finding that is subexponential in log p times a certain
class number, for a wide range of input endomorphisms.

For any endomorphism θ of a supersingular curve E , let �′ denote the �-
fundamental part of the discriminant � of θ (obtained1 by removing the largest even
power of �). Let h�′ be the class number of the quadratic order of discriminant �′.
Note that �′ can be significantly smaller than �.

Theorem 1.1 Assume |�′| ≤ p2+ε . Under the heuristic assumptions and notation
given above, there is a classical algorithm (given explicitly in Sect. 11; see also
Algorithm 8.1) that, given an endomorphism θ of sufficiently large degree d which can
be efficiently evaluated on points, finds an �-isogeny path of length O(log p + h�′)
from E to the curve with j = 1728 in runtime h�′Ld(1/2) poly(log p).

The term ‘sufficiently large’ as applied to the degree d asks that Ld(1/2) ≥
poly(log p). The term ‘efficiently’ means that the endomorphism can be evaluated

1 Except when � = 2, if � = 22k�′′ where 4 � �′′ and �′′ ≡ 2, 3(mod 4), then we set �′ := 4�′′.
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on points P ∈ E(Fpk ) in time polynomial in log d, in k and in log p. An exam-
ple of such an endomorphism is an endomorphism given as a chain of isogenies
of small degree, but we can also accommodate less efficient endomorphism repre-
sentations. The full formal statement given in Theorem 11.1 tracks the cost of this
evaluation in the final runtime: it is assumed that the endomorphism θ can be eval-
uated on points P ∈ E(Fpk ) in time denoted Tθ (k, p), and the algorithm runtime,
more precisely, is Tθ (Ld(1/2), p) + h�′Ld(1/2) poly(log p). The algorithm comes
in two phases: the first phase is to represent the given endomorphism as an isogeny
chain in runtime Tθ (Ld(1/2), p) depending on the representation of θ ; the second
phase walks the isogeny graph using this representation and always has runtime
h�′Ld(1/2) poly(log p). Phase one is included to allow for an abstract notion of an
input endomorphism (see Sect. 5.1).

Any θ of degree d which is represented in terms of rational maps has Tθ (k, p) =
poly(d, k, log p), hence the final runtime would be poly(d log p) + h�′Ld(1/2)
poly(log p). But θ could be represented as a composition chain of isogenies in such
a way that Tθ (k, p) is polynomial in log d. In this case, the final runtime would be
h�′Ld(1/2) poly(log p). The factor Ld(1/2) in the runtime arises from the need,
during the algorithm, to sieve for endomorphisms of powersmooth degree amongst
translates θ + [d], d ∈ Z.

The algorithm can perform significantly better in some special cases, such as when
the endomorphism is presented in an efficient way (in which case the first phase may
be skipped), the curve is already at a rim (in which case the sieving is avoided), or
the class number h�′ is small (in which case the walk is short), etc. Specifically,
modifications of the algorithm lead to special cases:

(1) If the input endomorphism is rationally represented in polynomial space, or the
class number is polynomial in log p (with some conditions on �), the algorithm
becomes polynomial in log p (Theorem 11.3). The cryptographic weaknesses in
these cases are already known by other methods [39].

(2) If � is inert in the field Q(
√

�), the runtime improves for endomorphisms in
suitable form to Ld(1/2) + h�′ poly(log p), and the path length is improved to
O(log p) (Proposition 8.1).

(3) If, in addition to (2),�′ = �, then the runtime improves further to h�′ poly(log p)
(Proposition 8.1).

(4) If the degree of the endomorphism has B(p)-powersmooth factorization and its
discriminant is coprime to �, then the runtime improves to h�′ poly(B(p) log p)
(Theorem 11.5).

(5) If degree and discriminant have suitable factorizations, then the runtime can
improve to poly(log p) even for non-small degree endomorphisms (Theorem11.4).
Such endomorphisms exist on all supersingular elliptic curves.

Our second theorem gives a quantum algorithm for finding a smooth isogeny to an
initial curve that runs in subexponential time in log |�|, and polynomial in log p.

Theorem 1.2 Under the heuristic assumptions and notation given above, there is a
quantum algorithm (given explicitly in Sect. 11; see also Algorithm 10.1) which, given
an endomorphism θ of degree d and discriminant � satisfying d 
 |�| ≤ p2+ε and
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which can be efficiently evaluated on points, will return an L |�|(1/2)-smooth isogeny
of norm O(

√|�|) from E to the curve of j = 1728, and runs in time subexponential
in log |�| and polynomial in log p.

The term ‘efficiently’ is as for Theorem 1.1. In the full formal statement in Theo-
rem 11.2, the runtime, more precisely, is Tθ (O(log2 d), p)L |�|(1/2).

In both theorems, one may use other suitable initial curves besides j = 1728; see
Sect. 6.3.

1.2 A NewHard Problem

Each altitude of an oriented volcano corresponds to a unique order in K , called the
primitive order for the oriented curves at that altitude. The orders get smaller as the
altitude gets lower, decreasing in index by � at each step. Given an elliptic curve E
oriented by an endomorphism θ , the knowledge of the primitive orderOwith respect to
(E, θ) plays a vital role in the algorithms: our classical algorithm computes a suborder
of O whose relative index in O is coprime to � in order to walk horizontally more
efficiently; our quantum algorithm requires the full knowledge of O in order to solve
the O-vectorization problem.

The primitive order O doesn’t come for free; this is Problem 1.3. To the best of
our knowledge, this paper is the first work that introduces this problem as a hard
problem and provides a quantum algorithm (Proposition 9.8) for solving it in quantum
sub-exponential time.

Problem 1.3 (PrimitiveOrientation). Given a supersingular elliptic curve E , and
an endomorphism θ ∈ End(E), determine the quadratic order O such that O ∼=
Q(θ) ∩ End(E).

The importance of Problem 1.3 comes from the increasing interest in orientations
on elliptic curves. Given an arbitrary supersingular elliptic curve E , the best known
way to define an orientation on E is to perform random walks on the supersingular
isogeny graph until a cycle on E is found, whereby an endomorphism on E is obtained
by composing the edges along the cycle. In order to take advantage of the associated
orientation, it is important to be able to answer Problem 1.3. This most general setting
for obtaining orientations on E is the setting our paper works with.

Classically, however, solving Problem 1.3 as discussed in Sect. 9.2 takes time
polynomial in the largest prime power factor of f , where f is the conductor of Z[θ ].
Luckily, with our classical path-finding algorithm (Theorem 11.1), we are able to
circumvent the issue by computing a specific smaller order instead, which can be
done in polynomial time. This is also what makes our path-finding algorithms more
general compared to the algorithms in a related paper [60] (See Sect. 1.4).

1.3 Other Algorithms Presented

Some of the explicit building blocks of the results above may have independent appli-
cations. In particular, we provide algorithms for the following tasks, among others:
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(1) Section 4 provides methods for detecting ascending, descending and horizontal
directions in general.

(2) Remark 4.9 explains how to adapt the algorithms of this paper to an endomorphism
given as an approximate element of the Tate module (i.e. given by its action on
�-torsion).

(3) Section 5.3 presents a technique for obtaining a prime-power powersmooth isogeny
chain endomorphism from the same quadratic order as a given endomorphism
(Algorithm 5.3).

(4) Section6discusses an algorithmwhich computes anorientationof the elliptic curve
of j-invariant 1728 (or other suitable curves; see Sect. 6.3) by an �-power multiple
of a given discriminant (Algorithm 6.1). In other words, given a quadratic order
O, it finds j = 1728 somewhere in the cordillera of an order containingO. In fact,
it finds arbitrarily many such orientations, moving gradually further ‘down’ the
volcanoes. This algorithm runs in heuristic polynomial timewhen the discriminant
is coprime to p and less than p2 in absolute value.

(5) Section 7.2 concerns a method for computing the class group action of Cl(O) on
SSpr

O , the set of curves primitively oriented by O. In fact, we demonstrate how to
navigate SSpr

O using the class group action of Cl(O′) for any O′ ⊆ O such that
� � [O : O′].

(6) Section 9 provides two new quantum algorithms. Namely, an algorithm for
vectorization on an oriented volcano rim (Proposition 9.4; prior work includes
[11, Section 6.1], [60, Proposition 4]; our approach includes a novel method to
evaluate isogenies on oriented curves), and for determining the quadratic order
for which a given orientation is primitive (Proposition 9.8). We provide runtime
analyses of these algorithms in terms of the degree and presentation of the given
orientation and the prime p.

(7) Given the input of an elliptic curve with orientation, Sect. 10 provides a quantum
algorithm (Algorithm 10.1) for finding a smooth isogeny to j = 1728. In Propo-
sition 10.1, we analyze the runtime of this algorithm in terms of the degree and
presentation of the given orientation and the prime p.

(8) Section 12 contains an efficient algorithm for dividing an isogeny by [�] (Algo-
rithm 12.2), originally outlined by McMurdy. We make McMurdy’s approach
explicit for an arbitrary small prime � (he only made explicit the case � = 2,
which is more straightforward).

1.4 RelatedWork

The question of the security of one endomorphism has recently been ‘in the air,’ for
example, with the uber isogeny assumption of [22] (see Remark 9.2). Knowledge of
a small explicit endomorphism is known to be a weakness [38, 39].

In a recent preprint [27], the authors design a generic framework for computing the
class group actions on oriented supersingular curves. They propose to use an imaginary
quadratic order O of large prime conductor f inside a maximal order of small class
number. By carefully choosing parameters such as the conductor f , the finite field
characteristic p and the norm of a generator α ofO, they made the computation of the
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class group action of arbitrary class group elements on the set of oriented supersingular
elliptic curves efficient, leading to a practical signature scheme. The security of their
scheme relies on the hardness of the path-finding problem on the associated oriented
supersingular isogeny graph. This problem is still hard even with the presence of our
path-finding algorithms due to the choice of a large prime conductor f .

The work in this paper was done concurrently with [60], which also provides path-
finding algorithms in the setting of oriented curves. However, the two papers are very
different in nature. The work in [60] covers a web of reductions between a wide vari-
ety of hard problems related to orientations using quaternion algebras, which are of
interest both in theory and applications. The path-finding algorithms are not presented
in explicit algorithmic form in [60] but implied by several reductions combined with
algorithms for solving the vectorization problem for oriented curves classically and
quantumly. Our paper, by contrast, focuses on the path-finding problem. Our method
is very explicit and works with isogenies and endomorphisms directly. We discuss the
practical representations of isogenies and endomorphisms, provide complete algo-
rithms, detailed runtime analysis and concrete numerical examples.

The most important advantage of our path-finding algorithms over those given by
[60] is thatwe dealwith orientations in greater generality. In both papers, an orientation
is identified with an endomorphism. As discussed in Sect. 1.2, our input is an arbitrary
endomorphism θ , and it is a hard problem (Problem 1.3) to find the primitive order
with respect to (E, θ). However, the input endomorphism θ in [60] is one such that
the order Z[θ ] is already the primitive order. Such an endomorphism is unlikely to be
found for an arbitrary supersingular elliptic curve.

With due consideration of the added constraints on input for the algorithm in [60],
we can more accurately compare runtimes. Let �, �′ and h�′ be as in Sect. 1.1.
Classically, the runtime of the algorithm in [60] is linear in h1/2

�′ whereas the runtime
of our algorithm is linear in h�′ . Quantumly, both algorithms run in subexponential
time. If we consider the same input endomorphism in [60] as in this work, then the
runtime for solving Problem 1.3 should be added to the runtime of [60]. As discussed
in Sect. 9.2, solving Problem 1.3 takes time polynomial in the biggest prime power
factor of the conductor of Z[θ ] classically and subexponential time quantumly.

Lastly, the paper [60] assumes the stronger hypothesis that the discriminant of the
input endomorphism has a known factorization. We do not assume this. The work [60]
is not heuristic beyond a dependence on GRH and the solution to the vectorization
problem ([60, Proposition 4]), whereas we rely on a number of heuristic assumptions
as given in Sect. 1.1. Our classical algorithm directly produces a path whose length
depends on the class number (since it traverses a volcano rim), whereas a reduction
to the vectorization problem as in the algorithms implied in [60] and our quantum
algorithm produces a path of poly(log p) length.

Other related work includes [9, 20]. In [2], the authors of the present article show
that appropriately defined closed walks of the isogeny graph are in bijection with the
rims of oriented isogeny volcanoes, giving a class number sum for their number.
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1.5 Other Contributions

We give careful runtime analyses for various tasks related to endomorphisms repre-
sented as rational functions or as composition chains of isogenies, including evaluation,
translation, division-by-[�], and Waterhouse transfer. Additionally, we provide a
review and some modest extensions to the theory of orientations as described in [15,
43]; see Sect. 3, in particular Sect. 3.3.

In a follow-up paper [2], we establish a theoretical bijection between volcano rims
and cycles in the �-isogeny graph, and address some of the aforementioned heuristics
for oriented supersingular �-isogeny graphs used in this paper.

Throughout the paper we demonstrate our algorithms with a running example first
introduced in Example 3.2. The examples are given in more detail in SageMath [54]
worksheets with accompanying PDF details, available on GitHub [3].

1.6 Outline

In Sect. 2, we set some notations and conventions and also state a few runtime lemmata.
In Sect. 3, we introduce the main object of study, namely oriented �-isogeny graphs
and their properties, including some heuristic behaviour. In Sect. 4, the relationship
between an endomorphism and an orientation is explained, and we also introduce a
few new definitions that aid in navigating the oriented �-isogeny graph. In Sect. 5,
we discuss the representation of endomorphisms, along with the basic functionalities
for these representations required for later algorithms. We then compute orientations
for the supersingular elliptic curve of j-invariant 1728 in Sect. 6. In Sects. 7 and 8 ,
we present algorithms for walking on an oriented �-isogeny graph and for classical
path-finding to j = 1728 and give detailed runtime analyses and examples for illus-
tration. We then provide quantum algorithms to solve the oriented vectorization and
the primitive orientation problems in Sect. 9 and a quantum algorithm for finding a
smooth isogeny to j = 1728 in Sect. 10. In Sect. 11, we discuss the proofs of our
main theorems as well as some special cases. Lastly, we leave to Sect. 12 the technical
explanation of McMurdy’s division-by-� algorithm and provide its runtime analysis.
Throughout the paper, to aid in reading, important assumptions will be rendered in
bold.

2 Background

2.1 Notations and Conventions

Throughout the paper, let p be a cryptographically sized prime (upon which run-
times will depend), and let � be a small prime (whose size will be assumed O(1)
for runtimes). In particular, � �= p. We will assume both p and � are defined once
throughout the paper (so, for example, they will not be repeated as an input to every
algorithm); the only exception being Sects. 9 and 10 .
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Every elliptic curve considered in the paper is assumed to be a supersingular curve
over Fp. All such curves can be defined over Fp2 . Every isogeny and endomorphism
is assumed to have domains and codomains which are curves of this type. We use
the notation End(E) for the endomorphism ring of the elliptic curve E over Fp, and
End0(E) := Q ⊗Z End(E) for the endomorphism algebra of E . We use the notation
OE for the identity element of an elliptic curve E , and j(E) for the j-invariant.
We use the variables ϕ and ψ to denote isogenies, while θ is generally reserved for
endomorphisms. The dual isogeny to an isogeny ϕ is denoted by ϕ̂. Let E (p) denote the
curve obtained by the action of Frobenius on E (acting on theWeierstrass coefficients).
Let πp : E → E (p) denote the Frobenius isogeny, given by πp(x, y) = (x p, y p).
Note that Frobenius is an endomorphism if E is defined over Fp. Frobenius also acts
on any isogeny ϕ : E → E ′ (acting on its coefficients) to give ϕ(p) : E (p) → (E ′)(p)
of the same degree. Unless otherwise specified (such as Frobenius), isogenies will be
assumed to be separable throughout the paper (many of the algorithms herein would
not apply to inseparable endomorphisms or isogenies).

There is only one fixed supersingular �-isogeny graph under consideration at any
time, which we denote simply by G. Namely, this is the graph whose vertices are
Fp-isomorphism classes of supersingular elliptic curves (which we will often refer to
simply by their j-invariants), and whose directed edges are �-isogenies (when there
are no extra automorphisms, we can identify dual pairs to create an undirected graph).

We consider imaginary quadratic fields K = Q(
√

�), where � < 0 is a funda-
mental discriminant. Then the ring of integers has the form OK = Z[ω], where

ω =
{

1+√
�

2 if � ≡ 1 (mod 4),√
�
2 if � ≡ 0 (mod 4).

Since we sometimes have multiple quadratic orders under consideration, we use the
notation (α, β)O for the ideal generated by α and β inO. The (possibly non-maximal)
orders O of K are parameterized by a positive integer called the conductor. If O has
conductor f and ω is as above, then O = Z[ f ω] and the discriminant of O is f 2�.
If � � f , then we say that both O and its discriminant are �-fundamental. Given a
discriminant �, its �-fundamental part is the maximal �-fundamental discriminant
dividing �.

Write Bp,∞ for the rational quaternion algebra ramified at p and ∞. Every
quadratic field K is assumed to embed in the quaternion algebra Bp,∞, i.e. to
be an imaginary quadratic field in which p does not split [56, Proposition 14.6.7(v)];
the only exception is in the discussion of Heuristic 6.4. Every quadratic order O is
assumed to generate such a field K , and to have discriminant not divisible by p.
Every quadratic discriminant is assumed to be the discriminant of such a quadratic
orderO, and we write �O. We denote byOK the maximal order of the quadratic field
K and reserve �K for the discriminant of OK .

Complex conjugation (which is also the action of Gal(K/Q)) is denoted by an
overline: α �→ α. We use the notation Cl(O) and hO for the class group and class
number, respectively, of a quadratic order O.
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The reduced norm and trace of Bp,∞ coincide with the norm and trace of an element
when it is considered as a quadratic algebraic number; whenwe discuss norm and trace
it is always this we refer to.

For runtime analyses we use big O notation, including soft ˜O for absorbing log
factors. The notation M(n) will indicate the runtime of field operations (addition,
multiplication, inversion) in a finite field of cardinality n; here, we note thatM(nk) =
O(M(n))when k is constant. In the later portions of the paperwe aremainly concerned
with the distinction between polynomial, subexponential and exponential algorithms.
We write runtime as poly(x) if there exists a polynomial f so the runtime is O( f (x)).
When we are concerned only with whether runtime is polynomial, we will suppress
the notation M, by assuming that M(n) = poly(log n). For subexponential runtimes,
we use notation Lx (y) = exp(O((log x)y(log log x)1−y)).

For general background on isogeny-based cryptography and supersingular isogeny
graphs, we will assume the reader is familiar with a resource such as [25, Section 2]
or [21].

2.2 Runtime Lemmata

In this section, we recall some basic runtimes for isogenies and torsion points, etc.
The first lemma is standard.

Lemma 2.1 Given P, Q ∈ E[N ], and 0 ≤ a, b < N, computing [a]P + [b]Q takes
time O((log N )M(pN

2
)).

Lemma 2.2 ([4, Corollary 2.5]). Let ϕ : E → E ′ be an isogeny between two super-
singular elliptic curves, both defined over Fp2 . Then ϕ is defined over Fp12 . If neither
of j(E) or j(E ′) are 0 or 1728, then ϕ is defined over Fp4 .

Lemma 2.3 Let t denote the smallest integer such that E[N ] ⊆ E(Fpt ). Then t ≤
N 2 − 1. Finding a basis of E[N ] has runtime ˜O(N 4(log p)M(pN

2
)).

Proof This can be proved by adapting the second paragraph of the proof of Lemma 5
in [29]. In particular, the limiting runtime is the call to the equal-degree factorization
algorithm of [58], which takes time ˜O(N 4(log p)M(pN

2
)). See also [4, Lemma 6.9].

��
In practice, this can be done much faster in some cases, e.g. when N is large and t

is small.

Lemma 2.4 Let ϕ : E → E ′ be an isogeny of degree d, given as a rational map.
Let P ∈ E(Fpt ), where 12 | t . Then computing ϕ(P) takes time O(dM(pt )). In

particular, if P ∈ E[N ], then the time taken is O(dM(plcm(12,N2))).

Proof Write ϕ as ϕ(x, y) = (ϕ1(x), ϕ2(x)y). Then the denominators and numerators
of ϕ1(x) and ϕ2(x) are polynomials in x of degree at most 3d. By Lemma 2.2, we
can assume that their coefficients are in Fp12 ⊆ Fpt . To compute ϕ(P), we apply
Horner’s algorithm [34, p. 467], which requires O(d) operations in the field. Assume
that P is an N -torsion point on E . Then t can be chosen such that t ≤ lcm(12, N 2)

by Lemma 2.3. ��
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In the case that ϕ = [n] for some integer n, it is more efficient to use a standard
double-and-add approach, which will take logarithmic time in the degree [51, XI.1.1].

Lemma 2.5 ([55], [50, Theorem3.5], [31, Section 5.1]). Vélu’s formulas for an isogeny
of degree d compute the rational maps for the isogeny in time ˜O(dM(pd

2
)).

By Lemma 2.2, the isogeny created via Vélu’s formulas has coefficients in the field
Fp12 .

Lemma 2.6 Let ϕ : E → E ′ and ψ : E ′ → E ′′ be isogenies represented as rational
maps, of respective degrees d and d ′, where E, E ′, E ′′, ϕ andψ are defined over some
finite field F. Then computing the composition ψ ◦ ϕ : E → E ′′ as a rational map
takes time ˜O(dd ′M(#F)).

Proof As usual, write ϕ =
(

u(x)
v(x) ,

s(x)
t(x) y

)

where u(x), v(x), s(x), t(x) ∈ F[x] are

polynomials of degree O(d) with gcd(u, v) = gcd(s, t) = 1. Similarly, write ψ =
(

u′(x)
v′(x) ,

s′(x)
t ′(x) y

)

with analogous conditions on u′(x), v′(x), s′(x), t ′(x) ∈ F[x]. Then

ψ ◦ ϕ =
(

u′( u(x)
v(x) )

v′( u(x)
v(x) )

,
s′( u(x)

v(x) )

t ′( u(x)
v(x) )

s(x)

t(x)
y

)

.

Obtaining ψ ◦ ϕ requires computing four compositions of the form f ( u(x)
v(x) ) where

f ∈ {u′, v′, s′, t ′} has degree O(d ′). Writing f (x) = ∑n
i=0 fi xi with n = O(d ′), we

have

f

(

u(x)

v(x)

)

= F(u(x), v(x))

v(x)n
where F(x, y) =

n
∑

i=0

fi x
i yn−i .

The computation of F(u(x), v(x)) is dominated by computing the powers of u(x)
and v(x) which can be accomplished in time ˜O(dd ′M(#F)) using fast polynomial
multiplication [30]. An alternative way to compute F(u(x), v(x)) that is slightly faster
but has asymptotically the same runtime is via the Horner-like recursion

Fn(x) = fn , Fi−1(x) = fi−1v(x)n−i+1 + Fi (x)u(x) (n ≥ i ≥ 1) ,

where it is easy to see that F0(x) = F(u(x), v(x)). ��
Lemma 2.7 Let E be an elliptic curve defined over some finite field F, θ ∈ End(E)

an endomorphism represented as a rational map, and N an integer. Then com-
puting the endomorphism θ + [N ] ∈ End(E) as a rational map takes time
˜O(max{deg θ, N 2}M(#F)).

Proof By [51, Exercise 3.7, pp. 105f.], we have

[N ](x, y) =
(

φN (x)

ψN (x)2
,

ωN (x, y)

ψN (x, y)3

)

,
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where φN = xψ2
N − ψN+1ψN−1, ωn = (ψN+2ψ

2
N−1 − ψN−2ψ

2
N+1)/4y and ψn is

the n-th division polynomial on E . The required division polynomials have degree
O(N 2) and can be computed in O(log(N )) steps using the recursive formulas

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 , ψ2n = 1

2y
ψn(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1) .

Using the point addition formulas on E and fast polynomial multiplication techniques
[30], the rational map θ +[N ] can be computed using ˜O(max{deg θ, N 2}) operations
in F. ��

Throughout the paper, we will assume that all endomorphisms are provided with
a trace and norm (which is the same as the degree) that carries through computations;
see Sect. 5.1.

3 Oriented Isogeny Graphs

In this section, we recall and strengthen basic results about oriented isogeny graphs,
mainly based on work of Colò-Kohel [15] and Onuki [43], and provide some minor
new extensions of the general theory.

3.1 Orientations

Fixing a curve E , we have End0(E) ∼= Bp,∞. The field K embeds into Bp,∞ if and
only if p does not split in K . There may be many distinct such embeddings. We
define a K-orientation of E to be an embedding ι : K → End0(E). If O is an order
of K , then an O-orientation is a K -orientation such that ι(O) ⊆ End(E). We say
that a K -orientation ι is a primitive O-orientation if ι(O) = End(E) ∩ ι(K ). It will
often be expedient to have a local notion of primitivity: for a prime �, we say that a
K -orientation ι is an �-primitive O-orientation if it is an O-orientation and the index
[End(E) ∩ ι(K ) : ι(O)] is coprime to �. In particular, a primitive O-orientation is
exactly one which is �-primitive for all primes �.

If ϕ : E → E ′ is an isogeny of degree �, where ι is a K -orientation of E , then there
is an induced K -orientation ι′ = ϕ∗(ι) on E ′ defined to be ϕ∗(ι)(ω) := 1

�
ϕ ◦ ι(ω)◦ ϕ̂ ∈

End0(E ′).
A K-oriented elliptic curve is a pair (E, ι) where ι : K → End0(E) is a K -

orientation. An isogeny of K -oriented elliptic curves ϕ : (E, ι) → (E ′, ι′) is an
isogenyϕ : E → E ′ such that ι′ = ϕ∗(ι);we call this a K -oriented isogeny andwriteϕ·
(E, ι) = (ϕ(E), ϕ∗(ι)). One verifies directly thatϕ2·ϕ1·(E, ι) = (ϕ2◦ϕ1)·(E, ι). A K -
oriented isogeny is a K-isomorphism if it is an isomorphism of the underlying curves.

3.2 Oriented Isogeny Graphs

Fixing a quadratic field K , we define the graph GK of K -oriented supersingular curves
over Fp. This is the graph whose vertices are K -isomorphism classes of pairs (E, ι)
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and for which an edge joins (E, ι) and (E ′, ι′) for each K -oriented isogeny (defined
over Fp) of degree � between these oriented curves. If ϕ : (E, ι) → (E ′, ι′) is a K -
oriented isogeny, then ϕ̂ : (E ′, ι′) → (E, ι) is also one (since ϕ̂∗(ι′) = ϕ̂∗(ϕ∗(ι)) =
[�]∗(ι) = ι). Therefore the edges may be taken to be undirected by pairing isogenies
with their duals, when the vertices involved are not j = 0 or 1728. Also, isogenies are
taken up to equivalence, meaning we quotient by the same isomorphisms as for the
vertices; see [43, Definition 4.1]. The graph GK has (out-)degree �+1 at every vertex.
(Note that our graph differs slightly from the definition in [43, Section 4], where only
the images of curves over a number field with complex multiplication are included;
we discuss this distinction in the next section.) This graph was first studied in [15].

Every K -orientation is a primitive O-orientation for a unique order O := ι(K ) ∩
End(E). Therefore, the set of vertices of GK is stratified by the order O by which a
vertex is primitively oriented.

Definition 3.1 Let SSpr
O denote the set of isomorphism classes of K -oriented super-

singular elliptic curves for which the orientation is a primitive O-orientation.

This set is non-empty if and only if p is not split in K and does not divide the
conductor of O [43, Proposition 3.2]. As mentioned in Sect. 2.1, we make those
assumptions throughout the paper.

Let ϕ : (E, ι) → (E ′, ι′) be a K -oriented �-isogeny. Suppose that ι is a primitive
O-orientation and ι′ is a primitive O′-orientation. There are exactly three possible
cases:

(1) O = O′, in which case we say ϕ is horizontal,
(2) O � O′, in which case [O : O′] = � and we say ϕ is descending,
(3) O � O′, in which case [O′ : O] = � and we say ϕ is ascending.

Example 3.2 (Introducing our running example). To illustrate the algorithms in this
paper,we consider supersingular elliptic curves definedoverFp for p = 179.As p ≡ 3
(mod 4), the curve E : y2 = x3 − x with j(E) = 1728 is supersingular. This curve is
well-known to have extra automorphisms, and its endomorphism ring is generated by
the endomorphisms [1], [i], [1]+πp

2 ,
[i]+[i]◦πp

2 , where [i](x, y) := (−x, iy) and πp is

as defined in Sect. 2.1. We define K := Q(
√

�) with � = −47 and ω = 1+√−47
2 . We

consider the oriented 2-isogeny graph of supersingular elliptic curves with respect to
this imaginary quadratic field K .

3.3 Frobenius and Class Group Actions

Let O be a quadratic order of K . Next we define an action of Cl(O) on SSpr
O . For

an invertible ideal a of O embedded into End(E) via a K -orientation ι, there exists a
horizontal isogeny ϕa defined by the kernel E[ι(a)] := ∩θ∈ι(a) ker(θ) [15, Section 3]
[43, Proposition 3.5], and we write

a · (E, ι) := ϕa · (E, ι).

A different choice of ϕa with the same kernel gives an isomorphic oriented curve [43,
Section 3.3], so this is well-defined on the oriented �-isogeny graph GK . The action
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of Cl(O) is free, but not necessarily transitive; it may have as many as two orbits [43,
Proposition 3.3]. In particular,

# SSpr
O ∈ {hO, 2hO}. (1)

Consider the effect of the Frobenius isogeny on an oriented curve, namely
πp · (E, ι) = (E (p), ι(p)) where ι(p) := (πp)∗(ι). For any isogeny ϕ, we have
πp ◦ ϕ(x, y) = ϕ(p)(x p, y p) = ϕ(p) ◦ πp(x, y). Hence, one has (πp)∗(ι)(α) =
1
pπp ◦ ι(α) ◦ π̂p = 1

p ι(α)(p) ◦ πp ◦ π̂p = ι(α)(p). Since ϕ �→ ϕ(p) gives an iso-

morphism End(E) ∼= End(E (p)), we see that πp is horizontal, so this gives an action
on SSpr

O for any O by the two-element group {1, πp} = 〈πp〉. In fact, it is an action
on the graph GK , not just the vertices, i.e. it preserves adjacency. Onuki shows that
when there are two orbits of the action of Cl(O) on SSpr

O , then the second orbit can
be reached from the first by the action of Frobenius [43, Proposition 3.3]. In [2], a
complete classification of when there are two (instead of one) orbit is given.

For our algorithms, we will sometimes need to compute the action of O on SSpr
O

without actually knowingO.We can define and use an action of a suborderO′ ⊆ O as a
proxy. To accomplish this, define, for [a′] ∈ Cl(O′), that a′ · (E, ι) := ∩θ∈ι(a′) ker(θ).
Observe that there is a homomorphism ρ : Cl(O′) → Cl(O). Using the previous
proposition, this gives a group action of Cl(O′) on SSpr

O . The following proposition
states that these two definitions agree. Although it implements the action of O, using
the kernel intersection formula does not require knowledge of O.

Proposition 3.3 LetO′ ⊆ O with relative index f . Let a′ be an ideal ofO′ which has
norm coprime to f . Suppose that E has a K -orientation ι which is O-primitive. Let
ϕa′ be defined as the isogeny with kernel∩θ∈ι(a′) ker(θ). Let a := a′O be the extension
of a′ to O. Then a · (E, ι) = ϕa′(E, ι).

Proof We have ι(a′) ⊆ ι(a) ⊆ End(E). We will show ∩θ∈ι(a′) ker(θ) =
∩θ∈ι(a) ker(θ). From that, we can complete the proof, since

a · (E, ι) = ϕa(E, ι) = ϕa′(E, ι).

We immediately have ∩θ∈ι(a′) ker(θ) ⊇ ∩θ∈ι(a) ker(θ). We will show the index
between these two groups must divide a power of f . But the larger of the groups
has cardinality coprime to f by hypothesis. So this would imply they are equal.

Write a′ = α1O′ + α2O′ and O = Z + gωZ using the notation of Sect. 2.1. Then

∩θ∈ι(a′) ker(θ) = ker(ι(α1)) ∩ ker(ι(α2)) ∩ ker(ι(α1 f gω)) ∩ ker(ι(α2 f gω)),

∩θ∈ι(a) ker(θ) = ker(ι(α1)) ∩ ker(ι(α2)) ∩ ker(ι(α1gω)) ∩ ker(ι(α2gω)).

We have ker(ι(αi gω)) ⊆ ker(ι(αi f gω)) with index f 2. Thus the index of
∩θ∈ι(a) ker(θ) inside ∩θ∈ι(a′) ker(θ) must divide a power of f . ��
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Fig. 1 On the left hand side is a component ofGK for p = 179, � = 2 and K = Q(
√−47). On the right hand

side is the supersingular 2-isogeny graph over Fp2 . Here j1 = 64i + 5, j2 = 99i + 107, j3 = 5i + 109,
where i denotes a root of −1 in Fp2 . Since the oriented graph is undirected while the supersingular isogeny
graph is directed, we have undirected edges in the left graph and directed edges in the right graph. Note
that the green 5-cycle represents the rim of the volcano

3.4 Volcano Structure

Anycomponent of the oriented �-isogeny graphGK has a volcano structure (see Fig. 1),
which is made precise by the following statement. (This behaviour is similar to the
ordinary �-isogeny graph, except here volcanoes have no floor; they descend forever.)
Here we remind the reader that p �= � throughout the paper.

Proposition 3.4 ([43, Proposition 4.1]). Consider a vertex (E, ι) of the oriented �-
isogeny graph associated to K , a quadratic field of discriminant �. Suppose that ι

is a primitive O-orientation for E. If � does not divide the conductor of O, then the
following hold.

(1) There are no ascending edges from (E, ι).
(2) There are

(

�
�

) + 1 horizontal edges from (E, ι).
(3) The remaining edges from (E, ι) are descending.

If � divides the conductor of O, then the following hold.

(1) There is exactly one ascending edge from (E, ι).
(2) The remaining edges from (E, ι) are descending.

When O has unit group {±1}, i.e. except for the Gaussian and Eisenstein integers,
the out-degree of (E, ι) is � + 1. For the out-degree in these special cases, see [2,
Proposition 2.11].

Proposition 3.4 implies that each connected component of the oriented �-isogeny
graph GK is a volcano, containing a rim comprised of the vertices with no ascending
edges. Each vertex on a rim is the root of a tree that radiates infinitely downward
and in which each node other than the root generically has one parent and � children.
The vertices at altitude r are precisely those pairs (E, ι) for which ι is a primitive
O-orientation such that the conductor of O has �-adic valuation r . Specifically, the
vertices at the rims are exactly those for which O is �-fundamental. For any fixed
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�-fundamental order O, we define the O-cordillera to be subgraph of GK comprised
of only those volcanoes whose rims are pairs (E, ι) with ι a primitive O-orientation.
The vertices at the rims of the O-cordillera are exactly SSpr

O .
The action of an ideal class [a] ∈ Cl(O) gives a permutation on SSpr

O , which we
can visualize as a directed graph. This consists of cycles, all of which are the same
size, given by the order of [a] in Cl(O). Applying this to a prime ideal l of O lying
above �, the rims of the O-cordillera are exactly these cycles. All these rims have the
same size dividing hO, and each of them is either a single vertex, a single or double
edge or a cycle. If � is inert, they are each singletons. If � is ramified, they are each
of size 2 with one connecting edge (the isogeny and its dual are identified). If � splits
into two classes of order 2, we obtain a rim of size two with two connecting edges.
Otherwise, the rims are non-trivial cycles in the oriented �-isogeny graph, of size equal
to the order of [l] ∈ Cl(O). We summarize the discussion as follows.

Proposition 3.5 Let O be �-fundamental. Let R� be the order of [l] ∈ Cl(O), for l a
prime ideal ofO lying above �. TheO-cordillera consists of # SSpr

O /R� volcanoes of
rim size R�.

3.5 FromOriented Isogeny Graph to Isogeny Graph

There is a graph quotient GK → G induced by forgetting the orientation.

Proposition 3.6 Under this quotient, every component of GK (i.e. every volcano) cov-
ers G.
Proof Fix a volcano V ⊂ GK . Choose a vertex (E, ι) ∈ V . The image E under the
quotient map lies on G. Since both V and G are regular of degree �+1 at every vertex,
the image of V must be all of G. ��

As a corollary, every j-invariant occurs on every volcano infinitely many times.
Given p, a result of Kaneko [32, Theorem 2’] implies that the multiple occurrences of
a given j-invariant cannot occur too quickly as one descends the oriented �-isogeny
volcano. In fact, there is at most one occurrence in the range |�| < p (here � is the
discriminant at a certain altitude in the volcano).

3.6 Graph Statistics and Heuristics

In the �-isogeny graph G, two vertices are at distance d if the shortest path between
them in the graph consists of d edges. The distance between two arbitrary vertices is
known to be at most 2 log p [44, Theorem 1]. In fact, for most pairs of vertices, the
distance between them is at most (1 + ε) log p (see [48, Theorem 1.5] for a precise
statement).

We will use the following heuristic to justify the runtimes in the paper. One expects
the number of occurrences of a j-invariant in a volcano to be governed by the number
of trees emanating from the rim of the volcano. The heuristic in essence asserts a
uniform behaviour within any cordillera. Specifically, the proportion of occurrences
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of any j-invariant in any individual volcano of a cordillera approaches the overall
proportion of trees (or equivalently, of edges descending from a rim). A more precise
statement is given in Heuristic 3.7. In a follow-up paper [2], we discuss this and some
related heuristics in more detail.

Heuristic 3.7 Let O be an �-fundamental quadratic order. Consider the finite union
SSO of O′-cordilleras in the oriented supersingular �-isogeny graph for all O′ ⊇ O.
Let d(v) denote the distance of a vertex v to the rim of its volcano. Let j(v) denote its
j -invariant. Define:

• RV , the number of edges descending from the rim of the volcano V ∈ SSO;
• RSSO , the sum of the number of edges descending from all rims in SSO.

Then for any j-invariant j0 and any volcano V ∈ SSO, the ratio

#{v ∈ V : j(v) = j0, d(v) ≤ t}
#{v ∈ SSO : j(v) = j0, d(v) ≤ t}

approaches RV/RSSO as t → ∞.

Briefly, one expects this because sufficiently long randomwalks fromany rimvertex
will visit all vertices with an asymptotically uniform distribution [29, Theorem 1]. This
observation suffices to prove the case the rims are singletons; other cases should behave
similarly.

The following lemma is useful for runtime analyses of our main algorithms (Propo-
sitions 8.1 and 10.1). It states that sum of the class numbers of all the orders containing
O (approximately the cardinality of the union of the sets SSpr

O involved in SSO in
Heuristic 3.7) is only marginally bigger than just the class number hO (approximately
the size of the largest SSpr

O in the union).

Lemma 3.8 LetO be an imaginary quadratic order of conductor f in some quadratic
field K with class number hO, and put

HO =
∑

O⊆O′⊆OK

hO′ , (2)

where the sum ranges over all the quadratic ordersO′ containingO and hO′ denotes
the class number of O′. Then HO ≤ hO O((log log f )2) as f → ∞.

Proof LetO′ be a quadratic order of discriminant D′ containingO and f ′ = [O′ : O]
the index of O in O′. Then f ′ divides f . By [18, Corollary 7.28], we have

hO = f ′hO′

w′/w
∏

q| f ′
q prime

(

1 −
(

D′

q

)

1

q

)

,
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where w,w′ ∈ {2, 4, 6} are the sizes of the unit groups of O and O′, respectively.
Thus,

hO′ ≤ w′

w f ′ hO
∏

q| f ′
q prime

(

1 − 1

q

)−1

= w′

wϕ( f ′)
hO,

were ϕ(·) denotes Euler’s phi function. It follows that

HO ≤
∑

O⊆O′⊆OK

w′

wϕ( f ′)
hO = w′

w

⎛

⎝

∑

f ′| f

1

ϕ( f ′)

⎞

⎠ hO .

By [1, Exercise 3.9 (a)], we have

n

ϕ(n)
<

π2

6

σ(n)

n

for all integers n ≥ 3, where σ(·) is the sum of divisors function. From Robin’s
Theorem [46], we obtain σ(n)/n < c log log n for all n ≥ 3 and some constant c.
Therefore,

∑

3≤ f ′| f

1

ϕ( f ′)
<

cπ2

6

∑

3≤ f ′| f

log log f ′

f ′ <
cπ2

6
(log log f )

∑

f ′| f

1

f ′

= cπ2

6
(log log f )

σ ( f )

f
<

(cπ)2

6
(log log f )2 ,

and hence HO = hO O((log log f )2). ��

4 Navigating the K -Oriented �-Isogeny Graph

In this section,wewill showhow to transformagiven endomorphismof a supersingular
elliptic curve into a suitable orientation, and then use it to navigate the oriented �-
isogeny graph.

4.1 Conjugate Orientations and Orientations from Endomorphisms

Motivated by our computational goals, we replace the abstract data of an orientation
with the more computational data of an endomorphism. Given an element θ ∈ End(E)

along with its minimal polynomial mθ (x), we can infer a unique Z[θ ]-orientation
only up to conjugation. Namely, if α is a quadratic irrational root of mθ (x), then we
define ιθ (α) = θ and extend to a ring homomorphism. The conjugate orientation is
defined by ι̂θ (α) = ̂θ , or equivalently, by ι̂θ (α) = θ . An example in [43, Section
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3.1] demonstrates a pair of Gal(K/Q)-conjugate K -oriented curves which are not
isomorphic. In other words, given ϕ ∈ End(E), one may be in either of two locations
in the oriented �-isogeny graph: (E, ι) or (E, ι̂). However, locally at least, navigating
from either location looks the same, in the sense of ascending/descending/horizontal
edges and j-invariants.

Lemma 4.1 Themap (E, ι) �→ (E, ι̂) is a graph isomorphismandan involution, taking
SSpr

O back to itself for eachO. If ϕ : (E, ι) → (E ′, ι′) is a K -oriented �-isogeny, then
ϕ : (E, ι̂) → (E ′,̂ι′) is a K -oriented �-isogeny, and the type (ascending, descending,
or horizontal) is the same.

Proof The map is clearly a bijection on vertices. Observe that the dual of ϕ̂ ◦ ι ◦ ϕ is
ϕ̂ ◦ ι̂ ◦ ϕ. From this, it follows that the map is a graph isomorphism. The observation
about type follows from the fact that SSpr

O is taken back to itself. ��
As consequences of this lemma, for two vertices (E, ι) and (E, ι̂), we have the

following:

(1) the j-invariant is the same at both vertices;
(2) both vertices are at the same altitude in the volcano;
(3) if the vertices are not at a rim, the ascending isogeny from either vertex is the

same;
(4) if the vertices are at the rim, the pair of horizontal isogenies from either vertex is

the same;
(5) given an �-power isogeny originating at E , the resulting path of j-invariants does

not depend on the orientation ι or ι̂.

For these reasons, it will not, in practice, be necessary for us to know which of two
conjugate orientations we are dealing with. Therefore, we do not make any choice
between the two. In the remainder of the paper, we will not dwell on this distinction
and will work with endomorphisms instead of orientations.

Remark 4.2 It is a natural question to ask when a subset of the four oriented curves
(E, ι), (E (p), ι(p)), (E, ι̂) and (E (p), ι̂(p)) coincide. This question may have impor-
tance to a more detailed runtime analysis than we present in this paper, for example.
It is considered in [2].

4.2 �-Primitivity, �-Suitability, and Direction Finding

Having associated an endomorphism to an orientation, we can now define the follow-
ing.

Definition 4.3 Let θ ∈ End(E) be an endomorphism and α the corresponding
quadratic element (up to conjugation). Then θ (as well as α) is called �-primitive
if the associated orientations ιθ : α �→ θ and ι̂θ : α �→ θ are �-primitive Z[α]-
orientations. Moreover, θ (as well as α) is called N-suitable, for an integer N , if α is
of the form f ω + kN where k is some integer, f is the conductor of Z[α], and f ω is
the generator of Z[α] as described in the conventions of Sect. 2.1.
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The purpose of this definition is made clear by the following lemma.

Lemma 4.4 If θ ∈ End(E) is �-suitable, then θ is not �-primitive if and only if θ/� ∈
End(E).

Proof The endomorphism θ is not �-primitive if and only if there exists a (unique) order
O′ ⊆ End(E) of index � = [O′ : Z[θ ]]. But this happens if and only if θ/� ∈ End(E),
since under the �-suitability hypothesis, Z[θ/�] is precisely this order O′. ��
Lemma 4.5 Let α ∈ OK \Z with trace t. Let f be the conductor and �K the funda-
mental discriminant of Z[α]. Then

{T ∈ Z : α + T is N-suitable} =
{ f−t

2 + NZ if �K ≡ 1 (mod 4)
−t
2 + NZ if �K ≡ 0 (mod 4)

.

In our algorithms, we sometimes choose an optimal T in the sense of the following
definition.

Definition 4.6 If α + T has the smallest possible non-negative trace amongst all N -
suitable translates of α, we say that α + T is a minimal N-suitable translate.

Knowing just one suitable endomorphism θ on an elliptic curve E , we can determine
the type (ascending, descending or horizontal) of isogenies originating at (E, ιθ ).

Proposition 4.7 Suppose ψ : E → E ′ is an �-isogeny and θ ∈ End(E) is an �-
suitable �-primitive endomorphism. Then, with regards to the orientation ιθ induced
by θ ,

(1) ψ is ascending if and only if [�]2 | ψ ◦ θ ◦ ̂ψ in End(E ′).
(2) ψ is horizontal if and only if [�] | ψ ◦ θ ◦ ̂ψ but [�]2 � ψ ◦ θ ◦ ̂ψ in End(E ′).
(3) ψ is descending if and only if [�] � ψ ◦ θ ◦ ̂ψ in End(E ′).

Proof Let ιθ be the orientation on E associated to θ . Let ι′ be the induced orientation
on E ′ by ιθ via ψ . Let O, O′ ⊆ K be two orders such that ιθ is O-primitive and
ι′ is O′-primitive. The three cases in the proposition correspond to the cases when
O � O′, O = O′ and O � O′, respectively. Therefore, ψ is ascending, horizontal
and descending correspondingly. ��

The previous proposition demonstrates that it is enough to check the action of
ψ ◦ θ ◦ ̂ψ on E[�] to determine whether ψ is ascending, horizontal or descending.
However, we can also write down the ascending or horizontal endomorphisms directly
by analysing the eigenspaces of θ on E[�], as follows. Note that a version of this for
Frobenius is used in CSIDH [8] to walk horizontally, earlier used in [33, Section 3.2]
and [23, Section 2.3].

Proposition 4.8 Suppose θ ∈ End(E) is �-suitable and �-primitive. For each P ∈ E[�]
of order � letψP denote the degree � quotient isogeny induced by 〈P〉. Let λ1, λ2 ∈ F�2

be the eigenvalues of θ acting on E[�]. Consider the oriented curve (E, ιθ ).

(1) If λ1, λ2 ∈ F�2\F�, then all ψP’s are descending.
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(2) If λ1, λ2 ∈ F�, and

(2a) λ1 = λ2 = 0, then there is a unique eigenspace 〈Q〉 and that gives rise to an
ascending isogeny ψQ; the other ψP’s are descending.

(2b) λ1 = λ2 �= 0, then there is a unique eigenspace 〈Q〉 and that gives rise to a
horizontal isogeny ψQ; the other ψP’s are descending.

(2c) λ1 �= λ2, then there are two eigenspaces 〈Q1〉, 〈Q2〉 that correspond to λ1, λ2
respectively. The two isogenies ψQ1 , ψQ2 are horizontal, and the other ψP’s
are descending.

Proof Suppose α �→ θ gives a K -orientation of E , for K = Q(α). Define O to be
Z[α]. Let f (x) ∈ Z[x] denote theminimal polynomial ofα overQ, then f (x)(mod �)

is the characteristic polynomial of the action of θ on E[�]. From this one can show
that Case (2a) appears if and only if α is divisible by � as an algebraic integer. Since
α is �-suitable, this is equivalent to O being non-maximal at �. Therefore we divide
the proof into two cases. In both cases, the statements on the number of descending
isogenies follow from the volcano structure as described in Proposition 3.4.

Case I :O is not maximal at �. The eigenspace corresponds to 0 is one-dimensional
as otherwise it violates the fact that α is �-primitive, denote the eigenspace by 〈Q〉.
Then 〈Q〉 = E[l] where l := (α, �)O is a non-invertible ideal inO. According to [43,
Proposition 3.5], the corresponding isogeny ψQ is ascending.

Case II : O is maximal at �.

• Case (1) is equivalent to � being inert in K , there are only descending isogenies.
• Case (2b) is equivalent to � ramifying in K . In this case, the eigenspace is again
one-dimensional, we denote it by 〈Q〉. Let λ := λ1 = λ2, then 〈Q〉 = E[l] where
l := (α − λ, �)O is an invertible ideal in O. According to [43, Proposition 3.5],
the corresponding isogeny ψQ is horizontal.

• Case (2c) is equivalent to � splitting in K . In this case, there are two distinct F�-
eigenvalues and two eigenspaces 〈Q1〉, 〈Q2〉. For i = 1 or 2, 〈Qi 〉 = E[li ] where
li := (α − λi , �)O are invertible ideals in O. They give rise to two horizontal
isogenies. ��

Remark 4.9 Observe from the proposition that in order to detect which outgoing �-
isogeny at an oriented curve (E, θ) is ascending or horizontal, we only need to know
how θ acts on E[�]. Indeed, we can formalize as follows. Let T�(E) have basis P =
(Pn), Q = (Qn), where Pn, Qn ∈ E[�n]. Let θ ∈ End(E) have matrix Mθ =
(

α β

γ δ

)

∈ M2(Z�) with respect to that basis. Let φa have kernel 〈P1 − [a]Q1〉 for
0 ≤ a < � and kernel 〈Q1〉 for a = ∞. We determine a basis P ′, Q′ for the
codomain T�(φa(E)) as follows: take any P ′ satisfying [�]P ′ = φa(P − [a]Q) and
take Q′ = φa(Q), in the case a �= ∞. In the case a = ∞, we take P ′ = φ∞(P) and
take Q′ to be any point satisfying [�]Q′ = φ∞(Q). With the setup as described above,
for any �-isogenyφ : E → E ′, we have thatφ = φa for some a ∈ {0, 1, . . . , �−1,∞}.
Furthermore, for any endomorphism θ ∈ End(E), with respect to bases P , Q and P ′,
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Q′ as described above, φaθ ̂φa ∈ End(E ′) has �-adic matrix representation

(

� 0
a 1

)

Mθ

(

1 0
−a �

)

∈ M2(Z�) or

(

1 0
0 �

)

Mθ

(

� 0
0 1

)

∈ M2(Z�),

depending upon whether a �= ∞ or a = ∞ respectively. Furthermore, as a conse-
quence of Proposition 4.8,

(1) Suppose (E, θ) is not at the rim in the oriented isogeny graph. Then, the ascending
isogeny is given by φa for a ≡ α/β (mod �) (where a = ∞ if β ≡ 0 (mod �)).

(2) Suppose instead that (E, θ) is at the rim. Then, the two horizontal isogenies are
given by the two values of a satisfying βa2 − (α − δ)a − γ ≡ 0 (mod �), if such
exist (if β ≡ 0 (mod �), the solutions are a = ∞ and a ≡ γ /(δ − α) (mod �)).

These observations show that one can navigate in the oriented graph, one can perform a
Waterhouse transfer (see the next section), divide by �, and translate by integers, using
the matrix representation. In fact, the algorithms presented in this paper for finding
a path to j = 1728 can be adapted (using the observations just mentioned) to work
for an endomorphism given as an approximate element of T�(E). Note that one loses
precision every time one divides by �, so that one’s precision limits the number of steps
one can take. A situation where one may be provided with such an endomorphism is
the situation of the cryptographic SIDH problem (the subject of recent attacks [7, 40]),
where an unknown isogeny ϕ : E → Einit to a starting curve gives rise to various
endomorphisms ϕ̂θϕ for θ ∈ End(Einit) whose action on certain torsion groups is
known.

5 Representing Orientations and Endomorphisms

In this section, we will introduce several ways to represent isogenies and endomor-
phisms and then provide functionality for each type of representation.

5.1 Representations and Functionality

We remind the reader that throughout the paper, isogenies and endomorphisms will be
assumed separable unless otherwise stated (see Sect. 2.1). In this section, we discuss
two types of representations of an endomorphism. The first is the most basic.

Definition 5.1 A rationally represented isogeny is an isogeny given by a rational
map. A rationally represented endomorphism is an endomorphism which is rationally
represented as an isogeny.

We may also represent endomorphisms of large degree (e.g. not polynomial in
log p) by writing them as a chain of isogenies of manageable degree.

Definition 5.2 An isogeny chain isogeny ϕ : E0 → Ek is an isogeny which is given
in the form of a sequence of rationally represented isogenies (ϕi : Ei−1 → Ei )

k
i=1

which compose to ϕ, i.e. ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 = ϕ.
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Let B > 0. Recall that an integer is called B-smooth (or B-friable) if its largest
prime factor is at most B. It is called B-powersmooth (or B-ultrafriable) if its largest
prime power factor is at most B. In order to handle isogeny chain endomorphisms, we
will generally refactor them, meaning we will replace the chain with another chain
representing the same endomorphism, but whose component isogenies have coprime
prime power degrees. Moreover, we also fix a powersmooth bound B for the prime
power degrees. In Sect. 5.3.4, we explain our choice of B for the best algorithm
runtime.

Definition 5.3 An isogeny chain whose component isogenies have coprime prime
power degrees is called a prime-power isogeny chain. Moreover, it is called a B-
powersmooth prime-power isogeny chain if its component isogenies have coprime
prime power degrees at most B.

For isogenies represented in any manner, we will need the following functionality:

(1) Evaluation at �-torsion: Given θ ∈ End(E), and P ∈ E[�], compute θ(P) ∈
E[�]. (See Lemma 2.4.)

(2) �-suitable translation: Given θ ∈ End(E), compute θ + [t] ∈ End(E), for
some t ∈ Z, so that θ + [t] is �-suitable (Definition 4.3) and again separable. (See
Lemma2.7 for rational representations andAlgorithm5.3 for isogeny chains.)Note
that for powersmooth prime power isogeny chains, by computing an �-suitable
translation, we always mean that we compute a translate that is a B-powersmooth
prime power isogeny chain unless otherwise specified. This is exactly what Algo-
rithm 5.3 does.

(3) Division by �: Given θ ∈ End(E) such that θ = [�] ◦ θ ′, compute θ ′ ∈ End(E).
(See Algorithm 12.2 for rational representations and Algorithm 5.2 for isogeny
chains.)

(4) Waterhouse transfer: Given θ ∈ End(E) and ϕ : E → E ′ an �-isogeny, compute
ϕ◦θ◦ϕ̂ ∈ End(E ′). (SeeLemma2.6 for rational representations andAlgorithm5.1
for isogeny chains.) The terminology is based on [59].

We have endeavoured towrite the paper in amodular fashion, so that these two types
of representations—or another unforeseen type of representation, as long as it pro-
vides these functionalities—can be used at will. In particular, we write our algorithms
(Sects. 7.1 onwards) in terms of these functionalities (writing for example θ ← θ/[�]
for division by �, to be implemented according to the endomorphism representation
chosen).

Although isogeny chain endomorphisms may have large degree, we assume that for
any typeof endomorphism representation, theoverall degree, traceanddiscriminant
are polynomially bounded in p.

It can be rather involved to compute the trace of an endomorphism ([60, Lemma
1], [25, Lemma 4], [4, Theorem 3.6]); however, the manipulations we perform in our
algorithms transform the trace predictably. Therefore, it is to our advantage to attach
the trace data to all endomorphisms under consideration and update it as needed. For
either rationally represented or isogeny chain endomorphisms, our data type will be
the following.
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Definition 5.4 A traced endomorphism is a tuple of data (E, θ, t, n) where θ ∈
End(E) is either rationally represented or an isogeny chain, and t and n are the reduced
trace and norm (degree) of θ , respectively.

5.2 Functionality for Rationally Represented Endomorphisms

In the case of a rationally represented endomorphism, we can evaluate at �-torsion
directly (Lemma 2.4). We can translate by an integer by adding the rational maps
under the group law (Lemma 2.7). We can Waterhouse transfer by composing the
maps (Lemma 2.6). However, division by � requires a dedicated algorithm. In Sect. 12,
we describe the algorithm of McMurdy [42] for exactly this purpose, and analyse its
runtime in greater detail. For the completeness of this section, we record here that the
runtime of dividing an isogeny ϕ : E → E ′ of supersingular elliptic curves defined
over Fp2 (Algorithm 12.2) is O(deg2(ϕ)M(p)).

5.3 Functionality for Isogeny Chain Endomorphisms

An isogeny chain representation of an endomorphism can be more space efficient
than its rational representation, and more efficient to compute with. Computing the
Waterhouse transfer of an isogeny chain endomorphism is essentially trivial: include
the transfer isogenies in the chain. To evaluate at �-torsion, we evaluate the sequence
of maps one-by-one (Lemma 2.4); the runtime depends polynomially on the largest
degree of their component isogenies.

In this section, we give algorithms for the more onerous tasks of division-by-�
and translation by integers. Their runtimes will depend polynomially on the largest
prime power appearing in the degree of the endomorphism, which must therefore be
kept small for efficiency. To address this problem, which arises when translating to
something �-suitable, we use a search step to find a translate of powersmooth degree.

In order to keep the largest prime power in the degree below a certain bound, wewill
be interested in B-powersmooth prime power isogeny chains. In the last subsection
of this section, we balance the runtime considerations by choosing a subexponential
powersmoothness bound B for the degree of an isogeny chain endomorphism. Thus,
working with a general such endomorphism is a subexponential endeavour.

Although our concern is with endomorphisms, both Algorithm 5.1 and Algo-
rithm 5.2 work for isogenies in general.

5.3.1 Refactoring into an Isogeny Chain

If an endomorphism is not in the prime power isogeny chain form, we can refactor
it. To achieve this, one factors the degree, then builds the new chain from scratch
kernel-by-kernel, as described in Algorithm 5.1. In fact, any endomorphism that can
be evaluated at arbitrary points on the curve can be converted to an isogeny chain
representation using this algorithm.

Remark 5.5 In principle, it is possible to refactor into degrees that are primes as
opposed to primepowers.However, this doesn’t circumvent the need for powersmooth-
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ness (in practice, it would provide some savings, e.g. inVélu’s formulas, but it wouldn’t
avoid the overall polynomial dependence on the powersmoothness bound). During
refactoring, for any prime power factor qk of the degree, the endomorphism needs
to be evaluated on the qk-torsion, which should therefore be defined over a field of
manageable size. See [10, Section 5.2.1] for a nice discussion of this issue in another
context.

Algorithm 5.1: Refactoring into an isogeny chain
Input: A traced endomorphism (E, θ, t, n) in any form in which it can be evaluated (such as rationally

represented or a translation of an isogeny chain), of degree coprime to p.
Output: The same traced endomorphism (E, θ, t, n) ∈ End(E) in prime-power isogeny chain form.

1 H ← []
2 E0 ← E

3 Write n = ∏u
j=0 q

k j
j by factoring.

4 For j = 0, . . . , u do

5 Compute a basis for E[qk jj ].
6 Compute G j = ker(θ) ∩ E[qk jj ] by evaluating θ on E[qk jj ].
7 Compute a rationally represented isogeny ϕ j : E j → E j+1 given by the kernel

ϕ j−1 ◦ . . . ◦ ϕ0(G j ), using Velu’s formulas.
8 Append (ϕ j : E j → E j+1) to H .

9 Return (E, θ, t, n) where θ is given by the isogeny chain H .

Proposition 5.6 Let B be the largest prime power dividing deg θ . Then Algorithm 5.1
is correct and has runtime O(log deg θ) times the maximum of the following three
runtimes: O(B4(log p)M(pB

2
)), O(B2(log B)M(pB

2
)) and the runtime of evalua-

tion of θ on O(B)-torsion. The space requirement of Algorithm 5.1 is O(B2 log p). In
particular, if θ is an integer translate of an isogeny chain with B-powersmooth degree,
then the runtime is O((log deg θ)B4(log p)M(pB

2
)).

Proof The For loop builds an isogeny chain for θ . One can see this by induction:
assuming θ = ν′ ◦ ν where ν := ϕ j−1 ◦ . . . ◦ ϕ0, we have by construction that ν(G j )

vanishes under ν′. Hence θ factors through ϕ j ◦ ν.
To write the factorization of n is at worst O(B log2 B) in time (by trial division),

but O(log n) in space. For each prime power factor (so at most log n times), we
must do each of the following: (i) Compute a basis for the torsion subgroup in time
O(B4 log pM(pB

2
)) and space O(B2 log p) by Lemma 2.3. (ii) Evaluate θ on the

basis (iii) List the elements of the kernel G j ; this involves computing all linear combi-
nations of the basis images and recording those combinations which vanish; and then
computing the corresponding linear combinations of the original torsion points, a total
of B2+ B linear combinations; by Lemma 2.1, this takes time O(B2(log B)M(pB

2
)).

(iv) Apply Vélu’s formulas in time O(BM(pB
2
)) by Lemma 2.5. Writing down the

resulting isogeny takes O(B) coefficients in a subfield of Fp12 (Lemma 2.2), hence
we use O(B log p) space for each isogeny of the chain.
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If θ is a translate of an isogeny chain whose component degrees are bounded by B,
we can further estimate the time taken to evaluate θ on the torsion basis. This involves
one evaluation for each component isogeny (at most log n such). Each evaluation of
a component ϕi takes time O((degϕi )M(pB

2
)) by Lemma 2.4. (Evaluation of the

integer translation is of smaller runtime by Lemma 2.1; since the integer is taken
modulo the torsion, its size is irrelevant.) ��
Remark 5.7 The exponent of the dependence on B can surely be improved here; for
example, if deg θ is prime, then our bound on the number of linear combinations on
which to evaluate θ is a substantial overestimate.

5.3.2 Division by �

In this section, we demonstrate in Algorithm 5.2 how to divide an isogeny chain
endomorphism by [�].

Algorithm 5.2: Dividing-by-[�] for an endomorphism given as a prime-power
isogeny chain.
Input: A traced endomorphism (E, θ, t, n) in prime-power isogeny chain form , such that

θ(E[�]) = {OE }.
Output: A traced endomorphism (E, θ ′, t ′, n′) ∈ End(E) such that θ = [�] ◦ θ ′, in prime-power

isogeny chain form.
1 i ← the index at which the chain has �-power degree.
2 Modify the chain for θ by replacing ϕi with ϕi /[�] using Algorithm 12.2.
3 t ← t/�

4 n ← n/�2.
5 Return (E, θ, t, n).

Proposition 5.8 Let B be an upper bound on the degrees of the prime powers in θ .
Then Algorithm 5.2 is correct and runs in time O(B2 poly(log p)).

Proof The runtime is negligible except for the call to Algorithm 12.2. By Proposi-
tion 12.6, that algorithm runs in time O(deg2(ϕi )M(p)) (and we bound M(p) by
poly(log p) as discussed in Sect. 2.1). ��
5.3.3 Finding a B-Powersmooth �-Suitable Translate

As discussed earlier, we wish to keep the powersmoothness bound B on the degree of
an isogeny chain endomorphism low when translating by an integer. Since our goal is
to find �-suitable endomorphisms, and translation by � preserves �-suitability, we may
search amongst nearby translates for one which is B-powersmooth for our desired
bound B. This is done in Algorithm 5.3.

Proposition 5.9 Algorithm 5.3 is correct, and the runtime is that of Algorithm 5.1 plus
the time taken for Step 2.

Proof The �-suitability of the output is guaranteed by Lemma 4.5. ��
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Algorithm 5.3: Computing a B-powersmooth �-suitable translate in prime-power
isogeny-chain form.
Input: A traced endomorphism (E, θ, t, n) in prime-power isogeny chain form, and a

powersmoothness bound B (where B = ∞ is acceptable).
Output: A traced endomorphism (E, θ ′, t ′, n′) which satisfies Z[θ ′] = Z[θ ] but where θ ′ is �-suitable,

and is given as a separable prime-power isogeny chain, with prime powers ≤ B.
1 Compute the minimal �-suitable translate T for θ (Lemma 4.5).

2 Try values n(b) = n + (T + b�)t + (T + b�)2 for small integers b, to find b such that n(b) is
B-powersmooth and coprime to p.

3 θ ′ ← a refactored prime-power isogeny chain for θ + T + b�, using Algorithm 5.1.
4 t ′ ← t + 2T + 2b�

5 n′ ← n + (T + b�)t + (T + b�)2.
6 Return (E, θ ′, t ′, n′)

5.3.4 Choosing a Powersmoothness Bound B

In practice, we need to balance the runtimes of the various functionalities of an isogeny
chain endomorphism by choosing an appropriate powersmoothness bound B.

The number of B-smooth and B-powersmooth numbers below a bound X is asymp-
totically the same, provided that B/ log2 X → ∞ [53] (another reference shows they
are asymptotically proportional, provided log B/(log log X) → ∞ [16, Section 3.1]).
In our situation, we expect to handle endomorphisms which may have degree as much
as exponential in log p. Fortunately, we can, at least heuristically, find subexponen-
tially smooth translates in subexponential time [16, Section 3.1].

Heuristic 5.10 Given integers n, t , and T , values of the function n(b) = n + (T +
b�)t+(T +b�)2, as b → ∞, are powersmooth with the same probability as randomly
chosen integers of the same size.

This is the powersmooth analogue of the heuristic assumption underlying the
quadratic sieve; see [19].

Proposition 5.11 Assume Heuristic 5.10. Let θ ∈ End(E) have degree d such that
Ld(1/2) > poly(log p), and assume that its trace t is polynomial in d. Then Algo-
rithm 5.3 produces an Ld(1/2)-powersmooth prime power isogeny chain of total
degree O(d). Furthermore, on Ld(1/2)-powersmooth prime power isogeny chains
of total degree O(d), the maximum runtime of Algorithm 5.1, Algorithm 5.2 and
Algorithm 5.3 is Ld(1/2), and the output of these algorithms is again an Ld(1/2)-
powersmooth prime power isogeny chain of total degree O(d).

Proof We have seen that all the runtimes in Algorithms 5.1 through 5.3 are polynomial
in B, log d, and log p, with the exception of Step 2 in Algorithm 5.3. Hence, taking
B = Ld(1/2), the runtime (except for this step) will be Ld(1/2).

As far as Step 2, under Heuristic 5.10, we can call on [16, Section 3.1] (note that the
L-notation in the reference differs from ours here). According to [16, Section 3.1], the
probability that a random integer between 1 and d is B-powersmooth is 1/Ld(1/2).
Testing values of b between 1 and Ld(1/2), we do indeed have n(b) < d. Thus,
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we expect to find a B-powersmooth integer, by Heuristic 5.10. For each b-value, to
see whether n(b) is B-powersmooth, we use naïve division in time O(B log2 B).
Therefore, in total, one will find Ld(1/2)-powersmooth integers in time Ld(1/2). In
Step 5, n′ = n + O(b2�2) (since |t + 2T | ≤ 1), so the total degree of the output is
O(d). ��

A few important notes for the remainder of the paper: we will assume B =
Ldeg θ (1/2), where θ is the initial input endomorphism, when dealing with isogeny
chains, and that whenever we perform an �-suitable translation on an isogeny
chain, we choose a B-powersmooth prime power �-suitable translate.

Example 5.12 (Computing an �-suitable translation via Algorithm 5.3). We con-
tinue with our running example, computing an �-suitable translate of a degree 47
endomorphism θ on the curve E1728 : y2 = x3 − x for � = 2. Here θ is given as a
rational map:

θ(x, y) =
(

99x47 + 22x46 + · · · + 77

x46 + 40x45 + · · · + 77
,
113i x69 + 157i x68 + · · · + 63i

x69 + 60x68 · · · + 158
y

)

.

The traced endomorphism is (E1728, θ, 0, 47). In Step 1, we compute the minimal
2-suitable translate T using Lemma 4.5. From the traced endomorphism, we compute
�θ = t2−4n = 02−4 ·47 = −188. This implies that the fundamental discriminant is
−47 and the conductor is 2. Therefore, the 2-suitable translates are of the form θ + T
for T in 1+ 2Z, and the minimal 2-suitable translate is obtained for T = 1. In Step 2,
we find b = 0 produces n(b) = 24 ·3, which is B-powersmooth for B = 50. In Step 3,
we factor θ + 1 into an isogeny chain θ ′ = ϕ171 ◦ ϕ1728 where deg(ϕ1728) = 16 and
deg(ϕ171) = 3, which requires a call to Algorithm 5.1. Here,

ϕ1728(x, y)

=
(

x16 + (156i + 63)x15 + · · · + 56i + 36

x15 + (156i + 63)x14 + · · · + 10i + 71
,

x23 + (55i + 95)x22 + · · · + 105i + 82

x23 + (55i + 95)x22 + · · · + 26i + 87
y

)

and

ϕ171(x, y)

=
(

x3 + (102i + 30)x2 + (31i + 74)x + 10i + 158

x2 + (102i + 30)x + 98i + 130
,

x3 + (153i + 45)x2 + (3i + 88)x + 102i + 108

x3 + (153i + 45)x2 + (115i + 32)x + 45i + 174
y

)

.

The quantities in Steps 4 and 5 can be computed immediately from the values of
t, n, T , b, and �, yielding t ′ = 2 and n′ = 48. The algorithm returns (E1728, θ

′, t ′, n′).
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5.4 Poly-Rep Runtime

In the last two sections, we computed the runtimes of the basic operations for rationally
represented and isogeny chain endomorphisms. We summarize here.

Proposition 5.13 Suppose θ is an endomorphism whose trace t, norm n and discrim-
inant � are polynomially bounded in p. If θ is rationally represented, then:

(1) Evaluating at �-torsion takes time O(n poly(log p)) (Lemma 2.4).
(2) Waterhouse transfer by an �-isogeny takes time ˜O(n poly(log p)) (Lemma 2.6).
(3) Dividing by � takes time O(n2 poly(log p)) (Proposition 12.6).
(4) Computing an �-suitable translate takes time ˜O(max{n, t2} poly(log p))

(Lemma 2.7).

If θ of degree d is represented as a B-powersmooth prime power isogeny chain with
B = Ld(1/2) as described in Sect. 5.3.4, then, assuming Heuristic 5.10 (see Propo-
sition 5.11):

(1) Evaluating at �-torsion takes time Ld(1/2) (Lemma 2.4).
(2) Waterhouse transfer takes time Ld(1/2) (Proposition 5.6).
(3) Dividing by � takes time Ld(1/2) (Proposition 5.8).
(4) Computing a B-powersmooth �-suitable translate takes time Ld(1/2) (Proposi-

tion 5.9).

Of course, in individual situations, these runtimesmay bemuch lower (for example,
dividing an isogeny chain by [�] may depend only on the power of � if no refactoring
is necessary).

In the following algorithms, we will need to call all of these operations many times.
It will be convenient to set the following definition.

Definition 5.14 We define the representation runtime of a given representation (ratio-
nally represented or isogeny chain) to be the maximum runtime of implementing the
following operations: evaluating at �-torsion, �-suitable translation, division-by-�, and
Waterhouse transfer by an �-isogeny. We say that an algorithm has poly-rep runtime
if its runtime is bounded above by a constant power of log p times the relevant repre-
sentation runtime.

Note that our definition above means that, throughout the paper poly(log p) ≤
poly-rep.

6 Orientation-Finding for j = 1728

For many cryptographic applications, a supersingular elliptic curve with known endo-
morphism ring is assumed. Most commonly used is the curve with j = 1728, which is
supersingular when p ≡ 3 (mod 4). For simplicity, this is the curve we will consider
here, but our algorithm can be modified to suit other situations (see Sect. 6.3). We will
use the model given by Einit : y2 = x3 − x , which has endomorphism ring with a
Z-basis
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〈

1, i,
i + k
2

,
1 + j
2

〉

, i2 = −1, j2 = −p, k = ij.

In particular, i is given by (x, y) �→ (−x,
√−1 y) and j is the Frobenius endomor-

phism2 (x, y) �→ (x p, y p).
Let O be an imaginary quadratic order of conductor coprime to � such that O

embeds into Bp,∞. In this section we give an algorithm for finding an endomorphism
θ ∈ End(Einit), generating a suborderO′ ⊆ O of discriminant �2r�O for the minimal
possible r . In other words, we wish to find an �-primitive orientation by a suborderO′
of O. Or, rephrased again, we want to find an orientation for Einit placing it as near
to the rim as possible in the oriented supersingular isogeny graph cordillera with rims
at O. Alternatively, the algorithm can be run continuously, to return all �-primitive
orientations by suborders of O in order of increasing r .

The algorithmwe provide (Algorithm 6.1) has similarities to [35, Integer Represen-
tation, Section 3.2], where the difference arises because we seek a given discriminant
instead of a given norm. In fact, this algorithm applies more generally to curves over
Fp satisfying the hypotheses of [35, Section 3.2]; in Sect. 6.3wemake some comments
on adapting this algorithm for other initial curves of known endomorphism ring.

An algorithm for a similar problem appears in [60, Section 4.3]. However, that
algorithm finds the ‘smallest’ quadratic order only: it requires the discriminant be
bounded above by 2

√
p − 1. We wish to find orientations by more general orders.

6.1 In Terms of 1, i, j, k

The goal of Algorithm 6.1 is to find such an endomorphism as a linear combination
of 1, i, j, k.

The idea is to solve a norm equation for Einit under extra conditions that guarantee
that the result is an element of the desired quadratic order. The algorithm depends on
Cornacchia’s algorithm,which is discussed in [14, Section 1.5.2] and [28, Section 3.1].
It solves the equation x2 + y2 = n when a square root of −1 modulo n is known (e.g.,
such a square root can be found if n is factored).

Remark 6.1 Algorithm 6.1 can be adapted to run continuously, finding many K -
orientations of 1728. Simply continue the loops instead of breaking out of them,
returning an endomorphism θ every time one is found.

Remark 6.2 If one wishes to find all possible solutions, remove the requirements that
D be a prime congruent to 1 (mod 4), although this will adversely affect runtime
(Cornacchia’s algorithm will require factoring D). Furthermore, we must make sure
Cornacchia’s algorithm returns all solutions, and we must include solutions obtained
by changing the sign of x on each solution already obtained.Wemust also be aware that
some of the solutions obtained by continuously running Cornacchia’s algorithm may

2 Note that some papers use the model y2 = x3 + x , such as [25, Section 5.1]; this model is a quartic twist
of ours and under the induced isomorphism of the endomorphism rings, the element which is realized as
Frobenius is not preserved. The model we choose for this paper has 2-torsion conveniently defined over
Fp . See [52].

123



La Matematica (2023) 2:523–582 553

Algorithm 6.1: Computing an orientation for the initial curve.
Input: A discriminant �O coprime to p, which is the discriminant of an �-fundamental quadratic order

O that embeds into Bp,∞.
Output: (θ, r) where θ ∈ End(Einit) is represented as a linear combination of 1, i, j, k, with

Z[θ ] = O′ ⊆ O where [O : O′] = �r . Furthermore, θ is �-primitive. (Here Einit and i, j and
k are as in the introduction to this section, namely the specified model of j = 1728.)

1 r ← −1.
2 repeat
3 r ← r + 1.

4 Find the smallest positive x such that x2 ≡ −�O�2r (mod p).

5 While x <
√−�O�2r do

6 D ← (−�O�2r − x2)/p.
7 If D ≡ 1 (mod 4) then
8 If D is prime then
9 Find a square root of −1 modulo D.

10 Use the output of Step 9 and Cornacchia’s algorithm to find y and z such that

y2 + z2 = D.
11 If y is odd then
12 Swap y and z.

13 If x is even then
14 θ ← 1

2 + x
2 i + z

2 j + y
2 k.

15 else
16 θ ← x

2 i + y
2 j + z

2k.

17 break out of the While loop

18 x ← x + p

19 until θ is defined
20 c ← 0
21 While c < r do
22 Translate θ to be minimally �-suitable (Lemma 4.5).
23 If θ/� ∈ End(Einit) then
24 θ ← θ/�.
25 c ← c + 1

26 else
27 break out of the While loop

28 r ← r − c
29 Return (θ as a linear combination, r)

fail to be �-primitive; these can be discarded.With these adjustments, every orientation
of the form specified will eventually be found by the algorithm (not every θ , but every
embedding of O′ into End(Einit) for all O′) – see the proof of Proposition 6.3 for
relevant details.

Because of the primality testing step, the algorithm terminates only heuristically.
We separately prove its correctness (if it returns) and then give a heuristic runtime.

In what follows, write � := �O for convenience.

Proposition 6.3 Any output returned by Algorithm 6.1 is correct.
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Proof We attempt to find an endomorphism θ for each fixed r increasing from r = 0.
If the order O′ of index �r in O has even discriminant (namely ��2r ), then we

seek an element of reduced trace zero and reduced norm −��2r/4. Such an element
must generate O′, and O′ must contain a generator of this form. Write the element as
θ = x

2 i + y
2 j + z

2k. Then, simplifying the equation, the norm condition is

x2 + py2 + pz2 = −��2r .

Any solutions must have x2 <
√−��2r , and for a valid x , solutions y and z are found

by Cornacchia’s algorithm applied to

y2 + z2 = (−��2r − x2)/p.

In order to be contained in End(Einit), we require x ≡ z (mod 2) and y is even. The
variable r is incremented if no solution exists, or if Cornacchia’s algorithm is not
applied because D is not a prime congruent to 1 (mod 4) (in which case we may miss
solutions).

If ��2r is odd, we instead seek an element of reduced trace 1 and reduced norm
(−��2r + 1)/4. Such an element will again necessarily generate O′, and O′ must
contain a generator of this form. Writing the element as θ = 1

2 + x
2 i+ y

2 j+ z
2k, after

slightly simplifying the norm equation, we must solve the same equation as before:

x2 + py2 + pz2 = −��2r .

However, in order to lie in End(Einit), such an element must satisfy the conditions
that x ≡ z (mod 2) and y is odd (note the parity difference). The rest of this case is
as above.

If θ is not �-primitive, the algorithm will translate and divide by � until it is. ��
For the runtime analysis, and the assertion that the algorithm returns an output at

all, we need a heuristic similar to that used for torsion-point attacks [24, Heuristic 1]
and the KLPT algorithm [35, Section 3.2].

Heuristic 6.4 Fix integers D > 0, b > 0, and a prime p coprime to Db that splits in
the real quadratic field Q(

√
D). Ranging through pairs

{

(r , x) : 0 < x, x2 < Db2r , 0 ≤ r , Db2r − x2 ≡ 0 (mod p)
}

,

consider the value

N (r , x) = Db2r − x2

p
.

The probability that N (r , x) is a prime congruent to 1 modulo 4 is at least
O(1/(log D log N (r , x))), where the implied constant is independent of p, D, and
b.
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We now give a brief justification for this heuristic by passing to the real quadratic
field Q(

√
D). Write D = f 2d where d > 0 is squarefree. We have N (r , x) = q if

and only if ±pq = N (x + f br
√
d). Hence we need to estimate the probability, given

that N (x + f br
√
d) is divisible by p, that it is of the form ±pq for some other prime

q. We analyse instead the probability, for α ∈ O
Q(

√
d) (having no assumptions on the

form of α), given that N (α) is divisible by p, that it is of the form±pq for some prime
q. Heuristically, we assume that this will be the same probability.

Given that p splits, there is a prime ideal p above p in the maximal order ofQ(
√
d).

Hence N (α) has the form±pq if and only if there is a prime ideal q of normq satisfying
pq = (α) (or pq = (α)). If p | N (α), then replacing p with p if necessary, this occurs
if and only if the integral ideal (α)p−1 ∈ [p]−1 has norm q.

Therefore, we estimate the probability that integral elements in [p]−1 of size X
have prime norm. This is bounded below by the probability that integers of size X
have a norm which is a prime represented by the class [p]−1. This in turn is bounded
below by 1

h log X where h is the class number of Q(
√
d). We apply this estimate with

X = N (r , x).
Finally, following the Cohen-Lenstra heuristics for real quadratic fields, it may be

reasonable to expect the class number h
Q(

√
d) to have an expected value bounded by

O(log d), since the number of prime factors of d is around log log d (see [62] for a
result for prime discriminants and recall that the 2-part of the class group is controlled
by the number of prime factors of d).

Heuristic 6.4 has been confirmed numerically in some small cases; we will consider
this heuristic in more detail in [2]. The corresponding heuristic, in the case of the
KLPT norm equation, has been verified byWesolowski [61]; it would be nice to know
if similar methods apply here.

Proposition 6.5 Suppose Heuristic 6.4 holds and � is coprime to p. If |�| ≤
p2+ε , then Algorithm 6.1 returns a pair (θ, r), where θ has norm bounded by
p2 log2+ε(p) and r = O(log p), in time O(log6+ε(p)). Otherwise, the algorithm
returns a pair (θ, r), where θ has norm bounded by O(|�|) and r = O(1), in time
O(

√|�| log4+ε(�)(log p)p−1).
Running the algorithm continuously, subsequent pairs (θ, r) should be found in the

same runtime, with r expected to increase by 1, and their norms expected to increase
by a constant factor of �2 at each subsequent pair.

Proof Suppose r ≤ u log� p, where u is positive (otherwise r is not positive). Then√−��2r ≤ |�|1/2 pu . Thus, we expect to iterate the While loop at Step 5 at most
X(�, u) := �|�|1/2 pu−1� + 1 times. Each time we enter the loop, we obtain a value
D = (−��2r − x2)/p of size ≤ pX(�, u)2. The probability that D is prime and 1
(mod 4) is heuristically at least 1/(log |�| log(p1/2X(�, u))) (Heuristic 6.4). Hence
we expect to reach Cornacchia’s algorithm once u is large enough such that

X(�, u) ≥ O(log(p1/2X(�, u))) ≥ O(1).

Reaching it will terminate the algorithm. This is a mild condition, satisfied asymptoti-
cally when X(�, u) ≥ (log p)1+ε . In fact, it suffices to take

√|�|pu ≥ p log1+ε(p),
or equivalently,
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u log p ≥ log p − 1

2
log |�| + (1 + ε) log log p. (3)

In particular, u > 1 is always enough, and if |�| > p2+ε , then any positive value for
u will suffice. (An informal explanation of this behaviour: even for a volcano with a
trivial rim, distance (1 + ε) log p down its sides is enough to capture all j-invariants.
At the same time, if � is large enough that the rim likely captures all j-invariants,
then we needn’t descend the volcano at all.) This shows that the algorithm needs to
increase r at most O(log p) times before it reaches Cornacchia’s algorithm.

For |�| ≤ p2+ε , the optimal value of u is given by (3). However, since u cannot
be negative, when |�| > p2+ε , the optimal value of u is 0. (Again, informally: the
class group will be of size ≈ √|�| > p, and we will find all ≈ p

12 supersingular
j-invariants already on the rim of an isogeny volcano.)
We first determine the overall runtime in terms of X(�, u) and p. The primality

test can be run in time O(log4+ε D) for example, using the Miller-Rabin algorithm
[49, Section 2]. This algorithm is probabilistic, so there is a negligible possibility that
Cornacchia’s algorithm may fail on false positives.

Once D is a prime congruent to 1(mod 4), we must find a square root of −1 with
which to run Cornacchia’s algorithm. There is a nice analysis of this exact situation in
[28, Section 3.1], which concludes that it takes probabilistic time ˜O(log2 D), which
is negligible compared to the primality testing.

Thus, for the final runtime, we increment r at most O(log p) times, running a
primality test of cost O(log4+ε D) at most O(X(�, u)) times for each r , before
reaching a point where Cornacchia’s algorithm is invoked. Using D ≤ pX(�, u)2,
this gives runtime O(X(�, u)(log p)(log p + 2 log X(�, u))4+ε).

In the case of large |�| > p2+ε , we put u = 0 and obtain X(�, u) = O(
√|�|/p)

and asymptotically X(�, u) > pε > O(log(p1/2X(�, u))). This yields a runtime of
O(

√|�| log4+ε(�)(log p)p−1). In this case r = O(1) and the norm of the solution
found by Cornacchia’s algorithm is bounded by O(|�|).

In the case of small |�| ≤ p2+ε , we optimize u according to (3) and obtain
X(�, u) = log1+ε(p), and asymptotically X(�, u) > log p + O(log log p) ≥
O(log(p1/2X(�, u))), giving runtime O(log6+ε(p)). At the same time, the norm
of the solution found is bounded by |�|�2r ≤ p2X(�, u)2 ≤ p2 log2+2ε(p).

Once r has reached O(log p), we expect solutions for each r with high probability.
Therefore, running the algorithm continuously, subsequent solutions should be found
in the same runtime as the first, and their sizes should be increasing by an expected
constant factor of �2 at each subsequent solution. ��
Example 6.6 (Computing an orientation for the initial curve via Algorithm 6.1).We
return to our working example p = 179, � = −47, � = 2, and E1728 : y2 = x3 − x .
Note that log�(p) ≈ 7.48, so we expect the algorithm to succeed reliably once r = 7
or 8, if not earlier. Beginning with r = 0, in Step 4 we compute the smallest positive
x such that x2 ≡ 47(mod 179), namely x = 88. As x = 88 exceeds

√
47 ≈ 6.9, we

return to Step 3 and increment r to r = 1. This reflects the fact that the curve E1728 does
not admit aQ(

√−47)-orientation on the rim. Continuing, we find the smallest positive
integer x such that x2 ≡ 188(mod 179), namely x = 3. As x = 3 <

√
47 · 4 ≈ 13.7,

we define D = (47 · 4 − 32)/179 = 1 in Step 6. Cornacchia’s algorithm returns

123



La Matematica (2023) 2:523–582 557

12 + 02 = 1. We obtain the element 3i+k
2 ∈ End(E1728). This indicates (correctly)

that E1728 admits an orientation at r = 1 of theQ(
√−47)-oriented 2-isogeny volcano,

see the nodewith j-invariant 1728 inFig. 1. Ifwe continue to run the algorithm, looking
for pairs (r , θ) for r up to 8, it returns three more pairs:

(

r = 7, θ = 371

2
i + 29j + 13

2
k
)

,

(

r = 8, θ = 153

2
i + 27j + 119

2
k
)

,

(

r = 8, θ = 511

2
i + 41j + 95

2
k
)

.

We now formalize a heuristic about the behaviour of Algorithm 6.1 needed for what
follows. This is a version of Heuristic 3.7 specific to the algorithm we use.

Heuristic 6.7 LetO be a quadratic order. Let SSO be the finite union ofO′-cordilleras
where O′ ⊇ O. Write RSSO for the sum of the number of descending edges from
all rims of SSO. Fix a volcano V having RV edges descending from its rim. Then
Algorithm 6.1 running continuously will (i) eventually produce solutions on every
volcano of SSO, and (ii) produce solutions on the fixed volcano V with probability
approaching RV/RSSO .

If SSO has only one volcano, this heuristic is immediate as long as the algorithm
produces infinitely many solutions (which happens by Proposition 6.5, under heuristic
assumptions from Sect. 3.6). If Algorithm 6.1 returned all orientations of 1728, then
this heuristicwould followdirectly fromHeuristic 3.7. The difficulty is that it finds only
those solutions where the primality testing step succeeds. In other words, we cannot
rule out the unlikely possibility that the primality condition causes all the orientations
of 1728 to bemissed on some individual volcano. Thus, we seem to require a version of
Heuristic 6.4 which asserts that the primality is independent of whether the eventual
solution is on any fixed volcano of the cordillera. We consider Heuristic 6.7 more
closely in the companion paper [2].

6.2 As an Isogeny Chain Endomorphism

Since i and j are known endomorphisms which can be evaluated at points, any combi-
nation of these can also be evaluated at points. Therefore the output of Algorithm 6.1
can be input into Algorithm 5.3, and an �-suitable isogeny chain endomorphism will
result. Thus, in poly-rep time (that is, depending on B, the powersmoothness bound),
we can obtain the output of Algorithm 6.1 as an isogeny chain endomorphism.

6.3 Curves Other Than j = 1728

Algorithm 6.1 can be adapted to work for certain curves Einit other than the curve with
j = 1728. In particular, if the endomorphism ringEnd(E) of a curve E defined overFp
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is of the form O + jO, where j is the Frobenius endomorphism and O is a quadratic
order, then the adaptation of Algorithm 6.1 is clear, where we use the principal norm
form of O in place of x2 + y2. As before, this will reduce to Cornacchia’s algorithm.
Instead of primes that are 1 (mod 4), we seek primes that split in the field and are
coprime to the conductor of O; this requires a Legendre symbol computation. The
runtime is essentially unchanged provided that �O < p (so Cornacchia’s algorithm
applies; see [28, Section 3.1]). This adaptation follows the discussion in [35, Section
3.2], which also discusses good choices for Einit and O.

7 Supporting Algorithms for Walking on Oriented Curves

Given a suitable endomorphism, wewill present algorithms for walking on an oriented
�-isogeny graph.

7.1 Computing an �-Primitive Endomorphism

Recall from Definition 4.3 that an endomorphism θ is �-primitive if the associated
orientation is �-primitive. If θ is chosen to be �-suitable, then equivalently, θ is �-
primitive if and only if it is not divisible by [�] in End(E) (Lemma 4.4). Therefore,
given θ , we can translate it to become �-suitable and then divide by [�] as often as
possible to obtain an �-primitive endomorphism.

Algorithm 7.1: Computing an �-primitive endomorphism given an endomorphism.
Input: A traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1.
Output: A traced endomorphism (E, θ ′, t ′, n′) which is �-primitive, and the �-valuation of the index

[Z[θ ′] : Z[θ ]].
1 If t2 − 4n is �-fundamental then
2 Return (E, θ, t, n) and 0.

3 (E, θ, t, n) ← an �-suitable translate of (E, θ, t, n)

4 c ← 0
5 While [�] | θ do
6 (E, θ, t, n) ← (E, θ/[�], t/�, n/�2)

7 c ← c + 1

8 If t2 − 4n is �-fundamental then
9 Return (E, θ, t, n) and c.

10 (E, θ, t, n) ← an �-suitable translate of (E, θ, t, n)

11 Return (E, θ, t, n) and c.

Proposition 7.1 Algorithm 7.1 is correct, and runs in poly-rep time (see Defini-
tion 5.14).

Proof If t2 −4n is �-fundamental, then the conductor of the quadratic order generated
by θ is not divisible by �; in this case θ is already �-primitive. In order to check if any
order of superindex � containsZ[θ ]within End(E), we first translate θ to be �-suitable,
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and then check whether it is divisible by [�] within End(E). If it is, we divide it by �

and repeat.
For runtime, the algorithm translates to an �-suitable translate, tests for divisibility

by �, and divides by �, at most a polynomial number of times (since we assume that
the discriminant of Z[θ ] is bounded by a power of p; see Sect. 5.1). ��
Example 7.2 (Computing an �-primitive endomorphism via Algorithm 7.1). We
apply Algorithm 7.1 to the output of Example 5.12, namely (E1728, θ

′, t ′, n′) where
θ ′ = ϕ171 ◦ ϕ1728, t ′ = 2, n′ = 48. This is not at the rim, but is already �-suitable. We
find [2] � θ ′ by evaluating on E1728[2]; hence we return the input unchanged.

7.2 RimWalking via the Class Group Action

In the case that an orientation is available, one can walk the rim of the oriented �-
isogeny volcano using the class group action. Using the class group action to walk
an isogeny graph of elliptic curves was first introduced by [17] and [47], followed by
work of Bröker-Charles-Lauter [6]. These papers consider the case of ordinary elliptic
curves, which carry an orientation by Frobenius. This was later used in CSIDH [8], and
it was remarked that it extends to orientations by Q(

√−np) in Chenu-Smith [11]. In
this sectionwe provide a generalization of the same algorithm to arbitrary orientations.
The algorithm walks the rim from a specified start curve in an arbitrary direction until
it encounters a specified end curve. This path is computed using the action of the class
group on the oriented curves in the rim of the oriented volcano. As such, it requires
knowledge of the orientation, so the steps of the algorithm must pull the orientation
(i.e. the endomorphism) along with them.

More precisely, the ideal we wish to apply to (E, θ) is given in terms of θ , so that
one can use the methods of Bröker-Charles-Lauter [6, Section 3] with θ in place of
Frobenius. One can apply the Waterhouse transfer of θ , and divide by � to carry along
θ in the computation.

The algorithm works by applying the action of Cl(O) to a rim of elements primi-
tively oriented by a quadratic order O. In fact, using Cl(O) works just as well if the
rim is primitively oriented by O′ ⊇ O, where � � [O′ : O]. This allows us to walk
on any rim associated to an �-fundamental discriminant �, without knowing for sure
that the orientation is primitive with respect to �. See Proposition 3.3.

CallingAlgorithm 7.2without lines 4 and 5 on identical input curves (i.e. (E1, ι1) =
(E2, ι2)) yields the entire rim of the �-oriented isogeny graph.

Proposition 7.3 Algorithm 7.2 is correct. Each step of the rim walk has poly-rep run-
time. The number of steps is bounded O(hO). Furthermore, if θ is in prime power
isogeny chain form with any powersmoothness bound B, then each step of the rim
walk has runtime polynomial in B.

Proof If � | t2 − 4n, then either we are not at the rim, or the field discriminant is
not coprime to �. If j(E1) = j(E2), we have already completed our task. Assuming
neither of those cases, we compute the quadratic order O generated by θ using its
minimal polynomial, and associate an element αθ to θ . The volcano rim in question is
contained in SSO′ for someO′ ⊇ O, where the relative index f = [O′ : O] is coprime
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Algorithm7.2: Walking along the rim of the oriented supersingular �-isogeny graph
Input: An �-primitive traced endomorphism (E1, θ1, t1, n1) providing the functionality of Section 5.1,

and a target curve E2.
Output: If E1 and E2 are on the same volcano rim in the oriented isogeny graph for the field Q(θ),

with discriminant coprime to �, the algorithm returns a path of oriented horizontal �-isogenies
from (E1, θ1, t1, n1) to a vertex with curve E2. Otherwise returns FAILURE.

1 If � | t2 − 4n then
2 Return FAILURE.

3 H ← [].
4 If j(E1) = j(E2) then
5 Return H .

6 ComputeO ∼= Z[θ1], the quadratic order generated by θ1 (using trace and norm), together with an
explicit isomorphism given in the form of αθ1 ∈ O corresponding to θ1.

7 If � is inert inO then
8 Return FAILURE.

9 Compute τ ∈ O such that l = (�, τ )O is a prime ideal of O above �.
10 Compute a, b ∈ Z so that τ = a + bαθ1 .
11 (E, θ, t, n) ← (E1, θ1, t1, n1).
12 repeat
13 Compute E[�].
14 Compute E[l] ← E[�] ∩ ker(a + bθ) by evaluating a + bθ on E[�].
15 Use Vélu’s algorithm to compute the �-isogeny ν : E → E ′ with kernel E[l].
16 (E, θ, t, n) ← (E ′, ν ◦ θ ◦ ν̂, t�, n�2).

17 (E, θ, t, n) ← (E, θ/[�], t/�, n/�2).
18 Append (ν, (E, θ, t, n)) to H .
19 until ( j(E), θ, t, n) = ( j(E1), θ1, t1, n1) or j(E) = j(E2)
20 If j(E) = j(E2) then
21 Return H

22 else
23 Return FAILURE

to � (by �-primitivity). If � is inert inO, then it is also inert inO′. Hence the rim of the
associated volcano is trivial; since j(E1) �= j(E2), this indicates there is no valid path
to be found. Otherwise, � is split or ramified in O, so we factor it and compute a and
b and τ as in the algorithm. Namely, we have the factorization �O = (�, τ )O(�, τ )O
in O. Then �O′ = (�, τ )O′(�, τ )O′ in O′. Therefore, the isogeny computed is the
action of the ideal l lying above � inO′ on SSO′ as desired, which is thus a horizontal
isogeny. The repeat clause walks the rim step by step.

We stop if we meet E2 or return to our (oriented) starting point. The latter occurs
only if we have walked the entire rim, which means E2 was not on that rim.

For runtime, all individual steps are polynomial, except for calls to evaluate at �-
torsion points, Waterhouse transfer and divide by �. The number of repeats is equal to
the path length from E1 to E2 along the rim. The size of the rim is O(hO) (Sect. 3.4).

For the final statement of the proposition, note that no �-suitable translation is
needed in the algorithm. In fact, the norm of the endomorphism remains constant as
one walks the rim. ��
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Example 7.4 (Walkingalong the rimof the oriented supersingular �-isogenygraph
viaAlgorithm7.2).As before,we have K = Q(

√−47).WeuseAlgorithm7.2 on input
� = 2, (E22, θ22, t22, n22) and target curve E22 to compute the entire rimof the oriented
2-isogeny volcano for purposes of demonstration. The endomorphism θ22 is a primitive
OK -orientation, so the curve E22 lies on the rim of an OK -oriented isogeny volcano.
Step 9 computes the prime ideal l = (2, ω)OK . In Step 13, we compute E22[2] =
{OE22 , (2, 0), (156i +178, 0), (23i +178, 0)}. We obtain E22[l] = 〈(156i +178, 0)〉
in Step 14. Velu’s formulas in Step 15 compute the isogeny ϕ22 : E22 → E99i+107.
The codomain of ϕ22 is E99i+107 : y2 = x3 + (26i +88)x + (141i +104). In Step 16,
we compute the traced endomorphism (E99i+107, θ99i+107, t99i+107, n99i+107) with
θ99i+107 := 1

2 ϕ22 ◦ θ22 ◦ ϕ̂22, an endomorphism of degree 12. Step 18 appends the
isogeny ϕ22 and the traced endomorphism (E99i+107, θ99i+107, t99i+107, n99i+107) to
H .

In the next rim step, starting with (E99i+107, θ99i+107, t99i+107, n99i+107), we com-
pute the isogeny ϕ99i+107 : E99i+107 → E5i+109. The isogeny ϕ99i+107 and traced
endomorphism (E5i+109, θ5i+109, t5i+109, n5i+109) are appended to H in Step 18.

In the next rim step, we find the isogeny ϕ5i+109 : E5i+109 → E174i+109 and
corresponding traced endomorphism (E174i+109, θ174i+109, t174i+109, n174i+109) with
θ174i+109 = 1

2 (ϕ5i+109) ◦ θ5i+109 ◦ ϕ̂5i+109.
A fourth step along the rim produces the isogenyϕ174i+109 : E174i+109 → E80i+107

and traced endomorphism (E80i+107, θ80i+107, t80i+107, n80i+107).
The final step along the rim produces the isogeny ϕ80i+107 : E80i+107 → E ′

22 with
codomain E ′

22 : y2 = (125i + 98)x + (84i + 152) and induced traced endomorphism
(E ′

22, θ
′
22, t

′
22, n

′
22). The codomain E ′

22 is isomorphic to E22 via an isomorphism ρ,
and we use the same isomorphism ρ to confirm that E ′

22 and E22 are in fact isomorphic
as oriented curves by computing θ ′

22 = ρ ◦ θ22 ◦ ρ−1.
Algorithm 7.2 terminates and returns the rim cycle

E22
ϕ22−−−−→ E99i+107

ϕ99i+107−−−−−−→ E5i+109
ϕ5i+109−−−−−−→ E174i+109

ϕ174i+109−−−−−−−→ E80i+107
ϕ80i+107−−−−−−→ E ′

22
∼= E22

of length 5 (see the green rim cycle in Fig. 1). Indeed, K has class number 5, and the
ideal class of l generates the class group of K .

7.3 Ascending to the Rim Using an Orientation

The other major component of navigating the supersingular �-isogeny graph using an
orientation is to walk to the rim.We can use Proposition 4.8 to determine the ascending
direction and walk up. This is described in Algorithm 7.3. The number of steps to the
rim is expected to be log(p) in general; see Sect. 3.6.

Proposition 7.5 Algorithm 7.3 is correct and has poly-rep runtime times the distance
to the rim.

Proof The number of steps to the rim is given by the number of times �2 divides the
discriminant of θ (we assume θ is �-primitive); this is k in Step 2. We translate θ to be
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Algorithm 7.3: Walking to the rim of the oriented �-isogeny graph.
Input: An �-primitive traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1.
Output: The shortest path from (E, θ, t, n) to the rim of the oriented �-isogeny volcano upon which

(E, θ, t, n) lies.
1 H ← [].
2 k ←

⌊

ν�(t
2−4n)
2

⌋

.

3 If � = 2 and (t2 − 4n)/22k �≡ 1 (mod 4) then
4 k ← k − 1

5 For j = 1, . . . , k do
6 Compute E[�].
7 (E, θ, t, n) ← an �-suitable translate of (E, θ, t, n).
8 Compute a generator P for E[�] ∩ ker(θ).
9 Use Vélu’s algorithm to compute the �-isogeny ν : E → E ′ with kernel 〈P〉.

10 (E, θ, t, n) ← (E ′, ν ◦ θ ◦ ν̂, t�, n�2)

11 (E, θ, t, n) ← (E, θ/[�2], t/�2, n/�4)

12 Append (ν, (E, θ, t, n)) to H .

13 Return H

�-suitable, which implies that ν ◦θ ◦ ν̂ can be divided by [�] twice when ν is ascending.
Since there is no horizontal direction (by the choice of k in Step 2), there exists a non-
trivial P ∈ E[�] ∩ ker(θ). This gives the ascending isogeny by Proposition 4.8. Once
we have found the ascending isogeny, we divide the Waterhouse transfer of θ by [�]2
(Step 11), and the result is �-primitive, in preparation for the next loop iteration. For
each iteration of the For loop, the work is clearly poly-rep. ��
Example 7.6 (Walking to the rim of the oriented �-isogeny graph for rationally
represented endomorphisms via Algorithm 7.3). We apply Algorithm 7.3 to the
output of Step 4 of Example 8.3, namely E120 and θ120 having t120 = 0, n120 = 188.
We find that we expect to take two steps to the rim. Since θ120 is already 2-suitable, we
evaluate it on E120[2] and obtain the kernel 〈(121i + 4, 0)〉 for the ascending isogeny.
The codomain is E171. Computing the Waterhouse transfer and dividing by [2] twice,
we obtain an endomorphism θ ′ which is not 2-suitable, but Lemma 4.5 shows that
θ171 := θ ′ + [1] is 2-suitable. The second ascending step is similar; this has kernel
〈(121i+131, 0)〉 and codomain E5i+109. The two ascending steps are in blue in Fig. 1.

Example 7.7 (Walking to the rim of the oriented �-isogeny graph for isogeny chain
endomorphisms via Algorithm 7.3). We begin with input (E1728, ϕ171 ◦ϕ1728, 2, 48),
from Step 8 of Example 8.3. This will require one step to the rim and is already [2]-
suitable. Evaluating on E1728[2], we obtain a kernel of 〈(178, 0)〉 for the ascending
isogeny; the codomain is E22.Waterhouse transfer yields an isogeny-chainwhich is not
prime-power refactored, namely ϕ′

1728◦ϕ171◦ϕ1728◦̂ϕ′
1728 having component degrees

2, 3, 16, 2, respectively. We could apply Algorithm 5.1, but we proceed in a slightly
more expedient manner. We rewrite ϕ′

1728 ◦ϕ171, having degrees 2 and 3, respectively,
in a form having degrees 3 and 2, respectively. Thus, we evaluate ϕ′

1728 ◦ϕ171 on the 2-
torsion to obtain the kernel 〈(29i+50, 0)〉determiningϕ′

171 : E171 → E174i+109. Then
we applyϕ′

171 to the generator of ker(ϕ
′
1728◦ϕ171)∩E171[3] = 〈(128i+164, 28i+90)〉
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to obtain a kernel for which Vélu gives ϕ174i+109 : E174i+109 → E22. We obtain
the refactored isogeny chain ϕ174i+109 ◦ ϕ′

171 ◦ ϕ1728 ◦ ̂ϕ′
1728. We can then divide

the 2-power degree component ϕ′
171 ◦ ϕ1728 ◦ ̂ϕ′

1728 by [2] twice and let ϕ′
22 :=

ϕ′
171 ◦ ϕ1728 ◦ ̂ϕ′

1728/[4]. Replacing this in our isogeny chain above, we now have an
isogeny that gives the one step up to the rim (see the red step in Fig. 1):

(E1728, ϕ171 ◦ ϕ1728, 2, 48)
ϕ′
1728−−−−−→ (E22, ϕ174i+109 ◦ ϕ′

22, 1, 12).

7.4 Ascending andWalking the Rim Using the Endomorphism Ring

When we find an orientation of j = 1728, we have more information than just the
specified orientation: we also know the endomorphism ring. This extra information
allows us to navigate the oriented graph in polynomial time using known algorithms.

Specifically,withAlgorithm7.4 given here,we canwalk up the volcano and traverse
the rim (being careful not to back-track by comparing to our previous steps), where
each step is polynomial in log p and the length of the representation of θ . To get
started, we use Einit as the curve defining Bp,∞ as in [61], and take the path P to be
the trivial path.

Algorithm 7.4: Extending a path from Einit by an ascending or horizontal step.
Input: A fixed endomorphism θ ∈ End(Einit). An elliptic curve E and path P from Einit to E , with no

descending steps, and s equal to the number of ascending steps in the path P .
Output: For each of the available horizontal or ascending steps E → E ′ (with regards to the

orientation induced by θ ), returns the data (E ′, P ′, s′), where P ′ is the path obtained from P
by extending it by the extra step, and s′ is the number of ascending steps in the path P ′.

1 H ← []
2 For each �-isogeny ν : E → E ′ departing E do
3 P ′ ← the path formed by appending ν to P .
4 (ϕ : Einit → E ′) ← the isogeny associated to the path P ′.
5 Compute a Z-basis of the maximal quaternion order O of E ′ and connecting ideal I between Einit

and E ′ using [61, Algorithm 3] from the path P ′.
6 Compute End(E ′) together with an isomorphism � : End(E ′) → O, using [61, Algorithm 6].
7 β ← �(ϕ ◦ θ ◦ ϕ̂) (The ability to evaluate �(ϕ ◦ θ ◦ ϕ̂) for θ ∈ End(Einit) is also obtained when

[61, Algorithm 6] is performed in the last step.)
8 β ← β + T where T ∈ Z is chosen so that β + T is the minimal �s -suitable translate of ϕ ◦ θ ◦ ϕ̂

using Lemma 4.5.
9 If β/�s+1 ∈ O then

10 s′ ← s

11 If β/�s+2 ∈ O then
12 s′ ← s′ + 1

13 Append (E ′, P ′, s′) to H .

14 Return H.
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Proposition 7.8 UnderGRH,Algorithm 7.4 is correct and runs in expected polynomial
time in the following quantities: log p, the size of the representation of θ , and the length
of the path P.

Proof Each of the cited algorithms runs in the time specified underGRH.Wedetermine
which steps are ascending or horizontal by testing whether β/�s+1, β/�s+2 ∈ O, by
Proposition 4.7. Since β is represented as a linear combination of a basis of End(E ′),
this involves dividing the coefficients, which is polynomial time. ��

8 Classical Path-Finding to j = 1728

Wenowpresent an algorithmwhich, given a suitable endomorphismon a curve E in the
supersingular �-isogeny graph,will find a path to the initial curve E1728, under heuristic
assumptions. An illustration of the method is given in Fig. 1: using the endomorphism
on E , we first walk from the oriented curve E to the rim of its associated volcano, then
find an orientation of E1728 and use it to walk from E1728 to the rim of its associated
volcano, and finally hope to collide on the same rim.

If one wishes to adapt this algorithm to find a path to a more general initial curve,
one would need a replacement to Algorithm 6.1 that works for that initial curve (see
Sect. 6.3 for a discussion of how thismaybedone). For this reason,we restrict ourselves
to considering the j = 1728 curve.

Proposition 8.1 Assume GRH, Heuristic 6.4, and the assumptions of Sect. 5.1. Con-
sider an endomorphism θ ∈ End(E) in rationally-represented or prime-power
isogeny-chain form as described in Sect. 5.4, whose discriminant is coprime to p
and has �-fundamental part � satisfying |�| ≤ p2+ε . Write O� for the order of dis-
criminant �. Algorithm 8.1 produces a path of length O(log p+ hO�

) to E1728 in the
supersingular �-isogeny graph, under Heuristic 6.7 part (i). The runtime is expected
poly-rep times O(hO�

), underHeuristic 6.7 part (ii). Furthermore, the following hold:

(1) If � is inert in K , then the runtime improves to hO�
poly(log p)+poly-rep, and the

path length improves to O(log p).
(2) If � is inert in K and the discriminant of θ is already �-fundamental, then the

runtime improves to hO�
poly(log p) and the path length improves to O(log p).

(3) If � is a fundamental discriminant, � is split in K and a prime above � generates
the class group Cl(O�), then the dependence on Heuristic 6.7 is removed.

Proof Let θ be the input to the algorithm. The pair (E, ιθ ), where ιθ : K → End(E) is
the orientation given by θ , lies somewhere on the oriented �-isogeny graph associated
to K . More specifically, it lies on a volcano of the O-cordillera for some order O
whose discriminant divides the �-fundamental discriminant � computed in Step 3. In
other words, if we write O� for the order of discriminant �, then O ⊇ O�. Since
all endomorphisms throughout the paper are taken to have norm and discriminant at
worst polynomial in p, the distance of (E, ιθ ) to the rim is at worst polynomial in
log p, and so walking to the rim (Step 4) is poly-rep by Proposition 7.5. Next, we walk
around the rim; the runtime depends on the size of the rim and we defer that question
to later in the proof.
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Algorithm 8.1: Finding a path to E1728.
Input: A traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1, where the

discriminant of θ is coprime to p.
Output: A path in the �-isogeny graph between E and E1728.

1 (E, θ, t, n) ← (E, θ/[�k ], t/�k , n/�2k ) which is �-primitive, using Algorithm 7.1.

2 �θ ← t2 − 4n.
3 � ← the �-fundamental part of �θ .
4 Call Algorithm 7.3 on input (E, θ, t, n) to produce an ascending path H2 from (E, θ, t, n) to

(E1, θ1, t1, n1) on the rim, i.e. where Z[θ1] ⊆ End(E1) is �-fundamental.
5 Call Algorithm 7.2 on input (E1, θ1, t1, n1) to walk the rim until we encounter E1 again, storing the
j-invariants encountered as a list L .

6 repeat
7 Call Algorithm 6.1 on input �, to obtain a new solution θ1728 = a + bi + cj + dk. (Algorithm 6.1

can be suspended and then resumed to find subsequent solutions; see Remark 6.1)
8 Using the methods of Section 7.4, produce an ascending path H1 from E1728 with endomorphism

θ1728 up to the rim, i.e. to a traced endomorphism (E0, θ0, t0, n0) having �-fundamental order
Z[θ0] contained in End(E0).

9 until E0 ∈ L or E(p)
0 ∈ L

10 Compute Hrim , the path from E1 to E0 or E(p)
0 , using L .

11 If Hrim joins E1 to E0 then
12 H ← H2H

−1
rim H−1

1 , a path from E1728 to E .

13 else

14 From H1, compute the conjugate path H (p)
1 from E1728 to E(p)

0 .

15 H ← H2H
−1
rim (H (p)

1 )−1, a path from E1728 to E .

When � is passed on to Algorithm 6.1 in Step 7, the result (which is returned
in polynomial time by Proposition 6.5 under Heuristic 6.4) is an endomorphism of
End(E1728)which gives an oriented elliptic curve lying somewhere on a volcano in an
O′-cordillera, where againO′ ⊇ O�. (We do not necessarily haveO = O′.) This has
norm polynomial in p by Proposition 6.5. By Proposition 6.5 again, the distance to the
rim is O(log p), so walking to the rim is expected polynomial time by Proposition 7.8.
Hence each repeat iteration has expected polynomial time.

Walking to the rim in Step 8, E0 lies on the rim of a volcano. This volcano is
somewhere in the set of volcanoes SSO defined as the finite union of theO-cordilleras
for allO ⊇ O� in Heuristic 3.7. Note that its conjugate E (p)

0 also lies on a rim in SSO.

Now E1 also lies on a rim of SSO. If E0 (or E (p)
0 ) and E1 lie on the same rim, the

algorithm will discover this. If not, then one continues the calls to Algorithm 6.1, and
another endomorphism will be found. Under Heuristic 6.7 part (i), eventually one of
these will produce E0 or E

(p)
0 on the same rim as E1. The algorithmwill then succeed.

Let R denote the number of descending edges from the rim containing E0, referred
to in this paragraph as the adjusted rim size (which is bounded above and below
by a constant multiple of the rim size). The sum of the adjusted rim sizes of all
rims of SSO�

is O(HO�
), with HO�

given by (2) (Equation (1) and Proposi-
tion 3.5). By Lemma 3.8, this is O(hO�

(log log |�|)2)) = O(hO�
)(log log p)2 (using

|�| ≤ p2+ε). By Heuristic 6.7 part (ii), the number of times we must repeat is there-
fore O(hO�

/R)(log log p)2. Each iteration performs Steps 7 and 8 and then checks
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membership in L . By Proposition 6.5, under GRH, Step 7 runs in polynomial time
in log p and provides a solution θinit of norm at most p2 log2+ε p. Then θinit can be
written as a linear combination of the Z-basis of End(E1728) with integer coefficients
of size O(log p). Hence Step 8 requires a runtime polynomial in log p by Proposi-
tion 7.8; we store the j-invariant of the output for comparison to L . Thus, each iteration
takes expected polynomial time times O(R) (to check membership in L). The walk
to produce L in Step 5 takes at most O(R) steps, each of which is poly-rep. Hence
the runtime is poly-rep (for Step 4) plus O(hO�

) · poly(log p) + O(R) · (poly-rep).
This runtime is overall bounded by O(hO�

) times poly-rep. But if � is inert, then
E0 lies on a rim of size 1, so we don’t need Step 5, and we have poly-rep plus
hO�

poly(log p). If θ is already at the rim, then we don’t need Step 4. Combined with
inertness, this gives runtime hO�

poly(log p).
Finally, if � is a fundamental discriminant, � is split and a prime above � generates

Cl(O�), then there is only one volcano, obviating the need for Heuristic 6.7. ��

The restriction that |�| ≤ p2+ε is required to ensure that Algorithm 6.1 is heuris-
tically polynomial time. If |�| is larger, and � is inert, this failure of polynomial time
could become the bottleneck. On the other hand, suppose � is split in K . Under the
Cohen-Lenstra heuristics, class groups are usually cyclic, andmost elements of a cyclic
group are generators, so with high probability, Heuristic 6.7 will not be necessary.

In the case that � is coprime to the conductor ofO�, then we will not need to ascend
in Step 4. This improves our runtime by eliminating the call to Algorithm 7.3. If we
do need Algorithm 7.3 in Step 4, then we can remove the dependence on GRH by
replacing Algorithm 7.4 by another call to Algorithm 7.3 without impact on runtime.

Remark 8.2 One might hope to modify Algorithm 8.1 to produce a shorter path along
with a square-root runtime improvement, by removing Step 5, and in each repeat,
attempting to solve a vectorization problem (see Sect. 9.1) between E0 and E1728.
Unfortunately, we cannot: the problem is that we do not know the correct quadratic
orderO with respect to which these oriented curves are primitively oriented. To over-
come this, one might try to factor � and ascend with respect to any square factors, to
guarantee that� is fundamental. Ascending would be polynomial in the largest square
prime factor of �, which could be very costly. An alternative that would usually work
may be to try guessing �, working backward from the largest (and hence most likely)
divisors. Just assuming � is fundamental would work much of the time.

Example 8.3 (Finding a path to E1728 via Algorithm 8.1). We again let p = 179,
� = −47, � = 2, and Einit = E1728 : y2 = x3 − x . As input, we consider the
curve E120 : y2 = x3 + (7i + 86)x + (45i + 174) with j(E120) = 120, and a trace
endomorphism given as (E120, θ120, t120, n120) with t120 = 20, n120 = 25 · 32 and

θ120(x, y) =
(

(122i + 167)x288 + (17i + 68)x287 + · · · + 174i + 157

x287 + (78i + 156)x286 + · · · + 16i + 54
,

(69i + 109)x431 + (60i + 178)x430 + · · · + 98i + 124

x431 + (146i + 53)x430 + · · · + 44i + 89
y

)

.
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We apply Algorithm 8.1 to find a path from E120 to E1728 (see Fig. 1). Step 1 on input
(E120, θ120, t120, n120) produces the �-suitable and �-primitive traced endomorphism
θ120 ← θ120 + [−10] with t120 ← 0 and n120 ← 188. Here �′ = t2120 − 4n120 =
−752 and its �-fundamental part is � = −47. Step 4 calls Algorithm 7.3 on input
(E120, θ120, t120, n120) to produce the following ascending path H2 to the rim, see
Example 7.6:

H2 :(E120, θ120,0,188)
ϕ120−−−−→ (E171,θ171,0, 47)

ϕ171−−−−→ (E5i+109,θ5i+109, 1, 12).

Now we apply Algorithm 7.2 on input (E5i+109, θ5i+109, t5i+109, n5i+109) to walk the
rim in Step 5 as in Example 7.4. The list of all the j-invariants is L = {5i+109, 174i+
109, 80i + 107, 22, 99i + 107}. In Step 7, calling Algorithm 6.1 on input �, we
obtain θ1728 = (3i + k)/2 as in Example 6.6. For simplicity in this example, we use
Algorithm 7.3 in Step 8, instead of the methods of Sect. 7.4. We apply Algorithms 5.3
and 7.1 (see Sect. 6.2) to (E1728, θ1728, 0, 47) to obtain an �-primitive isogeny chain
endomorphism θ ′

1728 = ϕ171 ◦ ϕ1728 where deg(ϕ1728) = 16, deg(ϕ171) = 3 and
with t1728 = 2, n1728 = 48 as in Example 5.12. We call Algorithm 7.3 on input
(E1728, ϕ171◦ϕ1728, 2, 48) to produce the following ascending path (seeExample 7.7):

H1 : (E1728, ϕ171 ◦ ϕ1728, 2, 48)
ϕ′
1728−−−−−→ (E22, ϕ174i+109 ◦ ϕ′

22, 1, 12).

Finally, since j(E22) = 22 ∈ L , joining the previous paths, we obtain a path from
E1728 to E120 (see the whole path in Fig. 1) as

H : E1728
ϕ′
1728−−−−−→ E22

ϕ22−−−−→ E99i+107
ϕ99i+107−−−−−−→ E5i+109

ϕ̂171−−−−→ E171

ϕ̂120−−−−→ E120.

9 QuantumAlgorithms for VECTORIZATION and
PRIMITIVEORIENTATION Problems

We will introduce two hard problems: the oriented vectorization and the primitive
orientation problems and then provide quantum algorithms to solve them.

9.1 Vectorization

Since the class group acts on the rim, a problem closely related to walking along the
rim is the following, where we use the terminology vectorization in analogy with [17]
and [11, Section 6.1]. This problem was also recently introduced in [60, Section 3.1].

Problem 9.1 (OrientedVectorization(�)). LetO be the quadratic order of discrim-
inant �. Suppose (E1, ι1), (E2, ι2) ∈ SSpr

O . Find an ideal class [b] ∈ Cl(O) such that
[b] · (E1, ι1) = (E2, ι2).
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Remark 9.2 This problem is somewhat related to the uber isogeny assumption, which
asks for [b] without knowledge of ι2; the difficulty of this problem is shown to be
crucial for a variety of supersingular isogeny-based schemes [22].

The following result was implied without details in a more restricted case in [11,
Section 6.1]. A variation also appears in [60, Proposition 4].

Heuristic 9.3 The values of a definite binary quadratic form f (x, y), as x, y → ∞,
are powersmooth and coprime to the first N primes with the same probability as
randomly chosen integers of the same size.

Proposition 9.4 Assume Heuristic 9.3. Suppose (E1, ι1) and (E2, ι2) are given by
ιi := ιθi for some endomorphisms θi ∈ End(Ei )which can be evaluated on Ei (Fpk ) in
time Tθi (k, p) ≥ poly(k log p). Define Tθ1,θ2(k, p) := max{Tθ1(k, p), Tθ2(k, p)} and
d := max{deg θ1, deg θ2}. Then OrientedVectorization(|�|) can be reduced to a
hidden shift problem and solved in quantum time Tθ1,θ2(O(log2 d), p)L |�|(1/2) under
GRH, where, furthermore, the ideal class is L |�|(1/2)-smooth and of size O(

√|�|).
Proof The approach is based on that in Childs-Jao-Soukharev [13], who developed a
subexponential means of evaluating the action of the class group (by finding a smooth
representative of the needed ideal class), and then applying Kuperberg’s algorithm,
which requires subexponentially many evaluations. The difference is that we need to
apply the class group action, in the form of isogenies, to oriented curves, i.e. carry
along the orientation.

The reduction to the hidden shift problem is formalized in [37, Theorem 3.3]; the
malleability oracle in the sense of [37, Definition 3.2], with respect to their notation,
is given in terms of I = G = Cl(O), O = SSpr

O , and f : I → O defined by
f ([a]) = [a] · (E1, ι1). Then to find [b] ∈ Cl(O) such that [b] · (E1, ι1) = (E2, ι2),
we observe that f is malleable, because we can compute [a] �→ f ([ab]) = [ab] ·
(E1, ι1) = [a] · (E2, ι2) (this is the malleability oracle at (E2, ι2)).

To evaluate the action of [a] on Ei takes time poly(log p)L |�|(1/2) using the
methods of [13] or [5] and involves finding an L |�|(1/2)-smooth integral representa-
tive a which can be evaluated as a composition chain of isogenies. Unfortunately, to
evaluate the action of [a] on θi , we require a powersmooth representative instead.
Calling on Heuristic 9.3 and [16, Section 3.1] (similarly to the proof of Propo-
sition 5.11), we can find a representative with norm L |�|(1/2)-powersmooth and
coprime to the first log deg θi primes, by random search. The time taken is L |�|(1/2),
because byMertens’ Theorem, the probability of satisfying the coprimality hypothesis
is

∏

p<O(log deg θ)
p prime

(1− 1/p) ∼ O(1/ log log deg θi ). Having done this, write the result

as a := ∏

ak , where the N (ak) are coprime prime powers.
We also need to evaluate the action of a on θi in some way that is distinguishable

(since isogeny chains are not unique for a given endomorphism). For each j-invariant
we choose a fixed model. We replace the data of θ with the data of its linear action
on the O(log deg θi ) smallest prime-torsion subgroups E[q], as well as all the prime-
power N (ak)-torsion subgroups. By Chinese Remainder Theorem, this is enough
to distinguish different results, since if θ − θ ′ vanishes on all of the prime-power
subgroups, then it vanishes on a subgroup (generated by all of the subgroups together),
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whose size exceeds a fixed multiple of d, which implies that θ = θ ′ (this method is
inspired by the Schoof algorithm, as adapted for example in [36, Theorem 81], [25,
Lemma 4]).

To compute the action on θi , we first need to compute ϕak . This is done as in
Algorithm 7.2, where we consider the linear action of a+ bθi on the N (ak)-torsion to
find the kernel of ϕak . In order to compute the linear action of ϕak ◦ θi ◦ ϕ̂ak/[N (ak)]
on the prime or prime-power torsion subgroups E[q] described in the last paragraph,
we proceed as follows. If q is coprime to N (ak), then to find this action, we evaluate
ϕak ◦θi ◦ ϕ̂ak on E[q] and then apply the action of [n′]where n′ ≡ N (ak)

−1 (mod q).
Otherwise we store null for that value of q (by assumption, this occurs only for q
larger than log deg θi ).

This gives a way to evaluate the function f suitable for quantum computation.
Taken together, the time taken for evaluating [ak] is poly(log deg θi ) times the time
taken to evaluate θi and ϕak , namely Tθ1,θ2(O(log2 d), p) + poly(log p)L |�|(1/2).

There is a small caveat that the action of Frobenius may take us out of the orbit of
Cl(O), so this will only work when the oriented curves E1 and E2 are in the same
Cl(O)-orbit. Of course, there are at most two orbits, so in the case of failure, we can
apply Frobenius to one of the curves and try again.

The evaluation algorithm of [13] runs in time L |�|(1/2) under GRH and results in
an L |�|(1/2)-smooth isogeny of size O(

√|�|) [13, Proposition 3.2]. Ourmodification
above results in the stated runtime. ��
Remark 9.5 Ifwewish to avoid the coprimality aspect ofHeuristic 9.3, thenwe can take
subexponentially many prime power torsion subgroups, at an increased cost in runtime
and memory (thanks to Benjamin Wesolowski for this and other helpful observations
and corrections to this proof).

Remark 9.6 If we wish to avoid Heuristic 9.3 in Proposition 9.4, we could first trans-
form θi into a powersmooth isogeny chain (using Algorithm 5.3 at a runtime cost
of Tθ1,θ2(Ldeg θi (1/2), p)) and then use the method for horizontal stepping of Algo-
rithm 7.2 to evaluate [a] prime-by-prime. This depends on Heuristic 5.10 instead. This
allows for the representative a to be chosen as smooth, not necessarily powersmooth,
but incurs an additional runtime cost to the algorithm as a whole.

9.2 Primitive Orientation Computation

The vectorization problem 9.1 requires knowledge of the order with respect to which
(E, ι) is a primitive orientation. This requirement naturally leads to the following
problem:

Problem 9.7 (PrimitiveOrientation). Given an supersingular elliptic curve E , and
an endomorphism θ ∈ End(E), determine the quadratic order O such that ιθ is O-
primitive.

We briefly describe two classical algorithms here for solving Problem 9.7. Let
f be the conductor of Z[θ ], we compute a B-powersmooth f -suitable translation
and factorize f = � fi ri . For any prime power factor fi ri of f , one needs to check
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whether the translated endomorphism is divisible by fi ri , which amounts to checking
whether θ vanishes on the fi ri -torsion of E . We take B to be Ld(1/2) with d =
deg θ , as discussed in the proof of Theorem 11.1, using Algorithm 5.3, computing the
translation takes time Tθ (Ld(1/2), p) assuming Heuristic 5.10 with � replaced by f
in Heuristic 5.10. Furthermore, evaluating the translated endomorphism on f̃ r̃ -torsion
takes time poly(log p)Ld(1/2)M(plcm(12, f̃ 2r̃ )) where f̃ r̃ = max{ fi ri }. Alternatively,
one can compute an integer T with smallest absolute value such that θ+T is f -suitable
translation instead of a B powersmooth translation. Checking whether θ vanishes on
the fi ri -torsion of E takes time poly(log p)Tθ ( f̃ 2r̃ , p) where f̃ r̃ = max{ fi ri }. Both
methods have runtimes polynomial in f̃ ri .

Quantumly we give the following algorithm that runs in subexponential time. Our
method for solving Problem 9.7 has similarities to that of Proposition 9.4, with a
hidden subgroup problem in place of the hidden shift problem. The subexponential
runtime in � still arises from the need to evaluate the action of the class group.

Proposition 9.8 Assume Heuristic 9.3. Suppose θ can be evaluated on E(Fpk ) in time
Tθ (k, p). Then there is a quantum algorithm to solve PrimitiveOrientation in time
Tθ (O(log2 deg θ), p) + poly(log p)L |�|(1/2).

Proof Let Oθ := Z[θ ]. Compute Cl(Oθ ) as a product of cyclic groups with given
generators, using the quantum algorithm [12, Algorithm 10], as described in [13,
Proof of Theorem 4.5 ]. It is possible to solve the PrimitiveOrientation problem by
computing the kernel of the map Cl(Oθ ) → Cl(O) (where we do not a priori know
O). This can be done by solving a hidden subgroup problem. Namely, we consider
the action of Cl(Oθ ) on SS

pr
O , defining f ([b]) = [b] · (E, ιθ ). We evaluate the action

of b on θ as described in the proof of Proposition 9.4.
Once the kernel G has been computed in the form of generators g1, . . . , gn , one

writes each gi as principal in the maximal order via a generator gi = (gi ). Then O
is by definition the order generated from Oθ by adjoining the gi ’s. One computes the
conductor of this order by taking the gcd of the conductors of the Z[gi ] and Z[θ ],
and hence computing the discriminant �O. These last computations are polynomial
in log |�θ |. ��

An improvement is available: to evaluate the action of [b] on E takes time
poly(log p) exp(˜O(log1/3 |�θ |)) using themethods of Biasse-Iezzi-Jacobson [5]; they
also improve on the computation of Cl(O).

10 QuantumAlgorithm for Finding a Smooth Isogeny to j = 1728

The problems of computing the endomorphism ring of an elliptic curve E , comput-
ing an �-power isogeny to an initial curve (such as j = 1728), and computing a
smooth isogeny to an initial curve, are all equivalent [61]. In this section, we modify
Algorithm 8.1 to find a smooth isogeny, using the quantum algorithms of the previous
section (Propositions 9.4 and 9.8 ). The resulting quantumalgorithm isAlgorithm10.1.

Proposition 10.1 Assume GRH, Heuristic 6.4, 6.7, and 9.3, and the assumptions of
Sect. 5.1. Suppose θ can be evaluated on E(Fpk ) in time Tθ (k, p) ≥ poly(k log p).
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Algorithm 10.1: Finding a smooth isogeny to Einit (quantum)
Input: A traced endomorphism (E, θ, t, n) which can be evaluated on arbitrary points, where the

discriminant of θ is coprime to p.
Output: A smooth isogeny E → Einit .

1 � ← t2 − 4n

2 Choose the smallest prime � so that �2 does not divide � or n.
3 �∗ ← the discriminant of the solution to PrimitiveOrientation for (E, θ) via Proposition 9.8.
4 repeat
5 Call Algorithm 6.1 on input �∗, to obtain a new traced endomorphism (Einit, θinit, tinit, ninit).

(Algorithm 6.1 can be suspended and then resumed to find subsequent solutions; see Remark 6.1.)
6 Walk from (Einit, θinit, tinit, ninit) to produce an ascending path H1 from (Einit, θinit, tinit, ninit) to

(E0, θ0, t0, n0) on the rim, i.e. where Z[θ0] ⊆ End(E0) is �-fundamental (methods of Section 7.4).
7 �∗∗ ← the discriminant of the solution to PrimitiveOrientation for (E0, θ0) via Proposition 9.8.
8 until �∗ = �∗∗
9 Use a quantum computer to solve OrientedVectorization(�′) as described in Proposition 9.4, to

find an ideal class [a] ∈ Cl(O�′ ) such that [a](E1, ιθ1 ) is (E0, ιθ0 ) or (E(p)
0 , ι

(p)
θ0

) (try both).

Let d = max{deg θ, |�|}. Suppose |�| ≤ p2+ε and� is coprime to p. Algorithm 10.1
is correct and succeeds in heuristic expected time Tθ (O(log2 d), p)L |�|(1/2). The
resulting L |�|(1/2)-smooth isogeny has norm O(

√|�|).
Proof The algorithm determines �∗ so that ιθ is O�∗ -primitive. In the repeat loop,
it finds an orientation of j = 1728 and a path from that oriented curve to an oriented
curve (E0, ιθ0) which is primitive with respect to the same order. Thus vectorization
applies, and finds a smooth isogeny between (E, ιθ ) and (E0, ιθ0). Combining the path
and isogeny, we find a smooth isogeny between E and the initial curve.

The first two steps take time O(log |�|). The third step takes time Tθ (log deg θ, p)+
poly(log p)L |�|(1/2) by Proposition 9.8. Steps 5 and 6 take polynomial time in
log p and log |�| by Proposition 6.3 and Proposition 7.8. Step 7 again takes time
Tθ (log deg θ, p) + poly(log p)L |�|(1/2). To determine how often we must repeat,
we compute that the probability that �∗ = � is equal to hO/HO, with HO given by
(2) (by consideration of the sizes of SSpr

O (Equation (1) and Proposition 3.5) and using
Heuristic 6.7). Thus, by Lemma 3.8, the expected number of iterations is poly(log p).

Note that the endomorphism found by Algorithm 6.1 is of norm O(|�|). Therefore
the rim endomorphism θ0 is also of norm O(|�|). Thus, OrientedVectorization
in Step 9 takes time Tθ (O(log2 d), p)L |�|(1/2) (Proposition 9.4). Note that the eval-
uation time for θ0 on small torsion is O(log p) since we have expressed θ0 as a linear
combination of basis elements, each of which can be evaluated via the chain down to
j = 1728. ��

11 Proofs of Main Theorems and Special Cases

11.1 Proof of Main Theorems

Theorem 11.1 Choose a small prime � and assume the heuristic assumptions of
Proposition 8.1. Let θ ∈ End(E) be an endomorphism of degree d, such that
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Ld(1/2) ≥ poly(log p). Suppose θ can be evaluated on points P ∈ E(Fpk ) in time
Tθ (k, p). Let�′ be the �-fundamental part of the discriminant� of θ , and assume that
|�′| ≤ p2+ε . There is a classical algorithm that, given any such θ , finds an �-isogeny
path of length O(log p + h�′) from E to the curve Einit of j-invariant j = 1728 in
runtime Tθ (Ld(1/2), p) + h�′Ld(1/2) poly(log p).

The runtime comes as a sum of two terms because the algorithm has two steps:
first, evaluate the endomorphism on points in order to create a presentation of the
endomorphism that meets the needs of the main algorithm; and then use the result to
walk in the oriented graph.

Proof of Theorem 11.1 Suppose θ is such an endomorphism. Then set B = Ld(1/2).
We can apply Algorithm 5.3 (having Algorithm 5.1 as a subroutine) to θ , whose run-
time depends on the evaluation of θ on inputs in a field F

pO(B2) . The runtime for this
conversion is therefore Tθ (Ld(1/2), p). The result is a prime-power isogeny-chain rep-
resentation of θ . We can then use Algorithm 8.1, with the representation runtime being
Ld(1/2), by Proposition 5.13. The classical runtime follows from Proposition 8.1. ��

Theorem 11.2 Assume GRH, Heuristic 6.4, 6.7, and 9.3, and the assumptions of
Sect. 5.1. Let θ ∈ End(E) be an endomorphism which can be evaluated on points
P ∈ E(Fpk ) in time Tθ (k, p), where Tθ (k, p) ≥ poly(k log p). Suppose θ has dis-
criminant � coprime to p with |�| ≤ p2+ε . Let d = max{deg θ, |�|}. There is a
quantum algorithm that, given any such θ , finds an L |�|(1/2)-smooth isogeny of norm
O(

√|�|) from E to j = 1728 in runtime Tθ (O(log2 d), p)L |�|(1/2).

Proof of Theorem 11.2 WeuseAlgorithm 10.1, with no need to pre-process θ . Runtime
follows from Proposition 10.1. ��

11.2 Special Cases

In this section, we refer to an endomorphism as insecure if access to such an endomor-
phism allows for a polynomial time path-finding algorithm. Endomorphisms of small
size are known to be insecure [39]. We obtain a version of this from our methods also.

Theorem 11.3 Assume the situation of Theorem 11.1. In the following special cases,
the runtime and path length of Algorithm 8.1 are polynomial in log p:

(1) The input endomorphism is rationally represented in polynomial space.
(2) hO�

= poly(log p) and � is coprime to � and inert in K . In this case, the
endomorphism is not even needed as input; only its existence, trace and norm
are needed.

Proof The second case is a consequence of Algorithm 8.1 and Proposition 8.1, in
which the hypotheses imply Steps 4 and 5 are unnecessary. The first is a consequence
of the observation that such endomorphisms have polynomially sized discriminants
and class numbers. ��
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The following result demonstrates for all curves the existence of non-small degree
endomorphisms which are insecure under our algorithm. (Recall that most curves do
not have small degree endomorphisms. It is known that there are curves having no
endomorphisms of norm smaller than p2/3−ε (see [38, Proposition B.5], [26, Sec-
tion 4], [63, Proposition 1.4]).)

Theorem 11.4 Suppose � = f 2�∗ where �∗ is a discriminant of poly(log p) size, f
is poly(log p)-smooth, and θ is f -suitable with poly(log p)-powersmooth norm, and
represented in some fashion so that it can be evaluated in poly(log p) time on points of
poly(log p) size. Then there is a classical algorithm to find an O(log p)-powersmooth
isogeny to Einit in time poly(log p).

Proof The dependence on � throughout the paper has been suppressed by assuming
� = O(1), but it is at worst polynomial throughout. We refactor θ in poly(log p)
time (this is possible by Proposition 5.6 and the evaluation runtime assumption), to
obtain an isogeny chain. Taking each prime � dividing f in turn, we ascend as for as
possible on the oriented �-isogeny volcano. By f -suitability, we can ascend without
any further translation or refactoring. Having ascended, we obtain an endomorphism
of discriminant�∗ of poly(log p) size and trace zero, and hence call on Theorem 11.3
with respect to some suitable �. ��

In fact, every elliptic curve has insecure endomorphisms: one can provide an endo-
morphism in the form of a closed walk in the �-isogeny graph that passes through
1728. Such a path is guaranteed to exist by the diameter of the graph. In that case, one
hardly needs the algorithms of this paper, as the path to 1728 is already explicit. A
variation on this theme is to provide a poly(log p)-powersmooth isogeny chain whose
endomorphism has minimal polynomial x2 + L2 (i.e., L is powersmooth). Such a
chain will be insecure because it explicitly passes through 1728 and also under the
algorithms provided in this paper (by Theorem 11.4).

More interestingly, examples of such endomorphisms exist whose minimal polyno-
mial places them in any fieldQ(ω)with poly(log p) discriminant (not just theGaussian
field as above); indeed one can take any element of the form L(ω + k) for k ∈ Z and a
poly(log p)-powersmooth L such that the norm N (ω+k) is poly(log p)-powersmooth.

Finally, we remark on one more special case. When the norm of θ is well-behaved,
and we are already at the rim with respect to � (perhaps by choosing � judiciously),
then we have improved dependence on p. Note that in the following theorem, there is
no requirement on the factorization of �.

Theorem 11.5 Suppose the norm of θ has powersmoothness bound B(p), and suppose
that � is coprime to �. Then there is a classical algorithm to find an �-isogeny path
of length O(log p + hO) to Einit in time hO poly(B(p) log p).

Proof Use Algorithm 8.1. By the assumption on �, we need not ascend with θ (that
is, we skip Step 4). We only walk horizontally, and those steps are polynomial in B(p)
by Proposition 7.3. ��

123



574 La Matematica (2023) 2:523–582

12 Division by [�]
We conclude with a detailed description and analysis of McMurdy’s algorithm (Algo-
rithm 12.2) which can be used to divide any isogeny (not just an endomorphism) by
[�] if it is a multiple of [�]. Given a rationally represented traced endomorphism, we
apply Algorithm 12.2 and then adjust the trace and norm accordingly.

We follow the notation of McMurdy [42]. Let E1 and E2 be two supersingular
elliptic curves given by respective short Weierstrass equations

E1 : y2 = W1(x), E2 : y2 = W2(x).

with W1(x),W2(x) ∈ Fp2 [x]. Denote by ψE1,� the �-division polynomial of E1,
made monic, and let Xi (x) and Yi (x) be the rational functions representing the
multiplication-by-� map on Ei , i.e. [�]Ei (x, y) = (Xi (x),Yi (x)y) for i = 1, 2. For a
polynomial P(x) = (x −r1) · · · (x −rn)with coefficients in some field F whose roots
ri lie in some field extension F′ of F, and a rational function T (x) over FF ′, define

P(x)
∣

∣T := (x − T (r1)) · · · (x − T (rn)) .

Given [�]ϕ : E1 → E2 as a pair of rational maps, where ϕ : E1 → E2 is an isogeny,
the rational maps of ϕ are obtained as follows.

Proposition 12.1 ([42, Proposition 2.6]). Suppose that ϕ : E1 → E2 is a separable
isogeny such that ([�]ϕ)(x, y) = (F(x),G(x)y) for rational functions F(x),G(x).
Write F(x) in lowest terms, i.e. as either cF ·P(x)

W1(x)Q(x) when � = 2 or cF ·P(x)
(ψE1,�(x))2Q(x)

when

� �= 2, with monic polynomials P(x), Q(x). Set

p(x) = P(x)
∣

∣X1, q(x) = Q(x)
∣

∣X1.

Then p(x) = p0(x)�
2
and q(x) = q0(x)�

2
for monic polynomials p0(x), q0(x).

Moreover, we have ϕ(x, y) = ( f (x), g(x)y), where f (x) = cF�2 · p0(x)
q0(x)

and g(x) =
G(x)

Y2( f (x))
.

Algorithm 12.1 computes the polynomials p(x) and q(x) as given in Proposi-
tion 12.1. Themain division-by-[�] process (Algorithm12.2) then callsAlgorithm12.1
twice.

Division by � = 2 has been implemented byMcMurdy [42] (code available at [41]).
Division by odd primes � > 2 is complicated by the non-vanishing of the y-coordinates
of the �-torsion points. Fix an odd prime � > 2. In order to compute p(x) = P(x)

∣

∣X1
and q(x) = Q(x)

∣

∣X1 in Steps 3 and 4 of Algorithm 12.2, we compute the rational
map NP = ∏

i P(xi ) as a function of the variable x only. In contrast to the case of
2-torsion points, the �-torsion points on E1 have non-zero y-coordinates, so some xi
depend not only on x (as in the case � = 2) but also on y and yi for i ≤ (�2 − 1)/2.
As a consequence, NP also depends on these variables. To overcome this obstruction,
we employ a new technique presented in Steps 5–11 of Algorithm 12.1. In these steps,
we compute the products xi · x̄i , and hence the products P(xi ) · P(x̄i ). Each product
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Algorithm 12.1: Computing the polynomial P(x)
∣

∣X1

Input: An elliptic curve E1, a monic polynomial P(x) defined over Fpm , and the rational map X1(x)
associated to E1.

Output: P(x)
∣

∣X1.
1 Compute a root ζ (in some field extension of Fp2 ) of X1.

2 Compute the x-coordinates xi (in some field extension of Fp2 ) of the points Si = (xi , yi ) ∈ E1[�],
indexed by i = 1, . . . , �2 − 1 so that x

i+ �2−1
2

= xi , using the �-th division polynomial (note that we

do not compute the yi here). Let S0 = OE1 .

3 Compute the x-coordinates xi (x, y, yi ) for 1 ≤ i ≤ �2−1
2 of the maps representing point addition

(x, y) + Si on E1, using the values of xi computed in step 2 but leaving yi ’s as indeterminates. Set
x̄i (x, y, yi ) = xi (x, y,−yi ) which is the x-coordinate of the point addition (x, y) + (−Si ).

4 N (x) ← P(x) and D(x) ← 1.

5 For i = 1, . . . , �2−1
2 do

6 Compute P(xi (x, y, yi )) and P(x̄i (x, y, yi )) (as rational functions in x, y and yi ) using Horner’s
algorithm.

7 Compute the numerator Ni and denominator Di of P(xi )P(x̄i ) as polynomials in x, y and yi .

8 Replace y2 with W1(x) and y2i with W1(xi ) in Ni . Denote the result by Ni (x), as no y’s or yi ’s
should remain.

9 Replace y2i with W1(xi ) in Di . Denote the result by Di (x), as no y’s or yi ’s should remain.
10 N (x) ← N (x) · Ni (x), and D(x) ← D(x) · Di (x).

11 NP (x) ← N (x)
D(x) , i ← 0, p(x) ← 0.

12 For i = 0, . . . , deg(P(x)) do
13 ai ← NP (ζ ).

14 p(x) ← p(x) + ai x
i .

15 NP (x) ← NP (x) − ai x
i .

16 NP (x) ← NP (x)/X1(x).

17 Return p(x).

Algorithm 12.2: Division by [�].
Input: Elliptic curves E1, E2, rational maps F(x) and G(x) where ([�]ϕ)(x, y) = (F(x),G(x)y) for

some isogeny ϕ : E1 → E2.
Output: Rational maps f (x) and g(x) such that ϕ(x, y) = ( f (x), g(x)y).

1 Determine cF , and the monic polynomials P(x) and Q(x) such that F(x) = cF ·P(x)
W1(x)·Q(x) (� = 2) or

F(x) = cF ·P(x)
(ψE1,�(x))2·Q(x)

(� �= 2).

2 Compute X1(x) and Y2(x).
3 Compute p(x) ← P(x)

∣

∣X1 using Algorithm 12.1 on input E1, P(x), X1(x).
4 Compute q(x) ← Q(x)

∣

∣X1 using Algorithm 12.1 on input E1, Q(x), X1(x). In this step we can skip
Steps 1–4 in Algorithm 12.1 since they were already performed in Step 3 of this algorithm.

5 Compute p0(x) ← p(x)1/�
2
and q0(x) ← q(x)1/�

2
using a truncated variant of Newton’s method.

6 f (x) ← cF�2 · p0(x)
q0(x)

, g(x) ← G(x)
Y2( f (x))

.

7 Return f (x), g(x).
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P(xi ) · P(x̄i ) is a rational map in x, y2, and y2i (i ≤ (�2 − 1)/2) by Lemma 12.4. We
replace y2 (respectively y2i ) withW1(x) (respectivelyW1(xi )) to obtain rational maps
in the variable x only.

Example 12.2 (Computing the polynomial P(x)
∣

∣X1 via Algorithm 12.1). Let � = 3,
p = 179, and E1728 : y2 = x3 − x the supersingular elliptic curve over Fp with
j = 1728. Let X1(x), Y1(x) be associated to multiplication-by-3, i.e.

[3]E1728(x, y) = (X1(x),Y1(x)y) where

X1(x) = 20x9 + 61x7 + 63x5 + 175x3 + x

x8 + 175x6 + 63x4 + 61x2 + 20
.

Let P(x) = x18 + 122x16 + 136x14 + 65x12 + 29x10 + 150x8 + 114x6 + 43x4 +
57x2 + 178. We compute p(x) = P(x)

∣

∣X1 using Algorithm 12.1 as follows.
In Steps 1 and 2, we may choose ζ = 0. Let Fp4 be generated by a having minimal

polynomial x4 + x2 + 109x + 2. We obtain S0 = OE1728 , S1 = (103, y1), S2 =
(76, y2), S3 = (24a3 + 39a2 + 119a + 102, y3), S4 = (155a3 + 140a2 + 60a +
77, y4), S5 = −S1, S6 = −S2, S7 = −S3, S8 = −S4. In Steps 3, we compute
xi (x, y, yi ) and x̄i (x, y, yi ) as x0 = x, x̄i (x, y, yi ) = xi (x, y,−yi ),∀i, 1 ≤ i ≤ 4
where

x1(x, y, y1) = −x3 + y2 − 2yy1 + y21 − 76x2 + 48x + 68

x2 − 27x + 48
,

x2(x, y, y2) = (−x3 + y2 − 2yy2 + y22 + 76x2 + 48x − 68)/(x2 + 27x + 48),

x3(x, y, y3)

= −x3 + y2 − 2yy3 + y23 + (24a3 + 39a2 − 60a − 77)x2 − 46x + (30a3 + 4a2 − 75a + 38)

(x2 + (−48a3 − 78a2 − 59a − 25)x − 46)
,

x4(x, y, y4)

= −x3 + y2 − 2yy4 + y24 + (−24a3 − 39a2 + 60a + 77)x2 − 46x + (−30a3 − 4a2 + 75a − 38

x2 + (48a3 + 78a2 + 59a + 25)x − 46
.

In Steps 4–11: We compute the norm NP (x) of P(x) by first computing P(xi ) ·
P(x̄i ) = Ni

Di
, 1 ≤ i ≤ 4. We then have N (x) = P(x)

∏

i Ni = 14x162 + 157x160 +
· · · + 22x2 + 165 and D(x) = ∏

i Di = x144 + 107x142 + · · · + 90x2 + 75. Hence
NP (x) = N (x)

D(x) . Finally, we compute all the coefficients of p(x) by repeating Steps 13–
16. The result is

p(x) = x18 + 170x16 + 36x14 + 95x12 + 126x10 + 53x8 + 84x6 + 143x4

+9x2 + 178.

Example 12.3 (Division by � = 3 via Algorithm 12.2). As before, let p = 179
and E1728 : y2 = x3 − x the supersingular elliptic curve over Fp of j-invariant
j(E1728) = 1728 as in Example 12.2. Then the endomorphism ring of E1728 contains
the endomorphism [i] defined as [i](x, y) := (−x, iy) with i ∈ Fp2 and i

2 = −1.
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The map θ = 1 + [i] is a separable endomorphism and we have ([3]θ)(x, y) =
(

F1(x)
F2(x)

,
G1(x)
G2(x)

y
)

, defined over Fp2 , with

F1(x) = 169i x18 + 33i x16 + 72i x14 + 66i x12 + 68i x10 + 111i x8 + 113i x6

+ 107i x4 + 146i x2 + 10i,

F2(x) = x17 + 8x15 + 45x13 + 124x11 + 110x9 + 124x7 + 45x5 + 8x3 + x,

G1(x) = (58i + 58)x26 + (170i + 170)x24 + · · · + (170i + 170)x2 + 58i + 58,

G2(x) = x26 + 12x24 + 2x22 + 66x20 + 128x18 + 44x16 + 171x14 + 44x12

+ 128x10 + 66x8 + 2x6 + 12x4 + x2.

We apply Algorithm 12.2 to divide [3]θ by 3 to obtain θ = [ f (x), g(x)y] as follows.
In Step 1, we write F(x) = cF ·P(x)

(ψE1728,3(x))2·Q(x)
where cF = 169i , ψE1728,3(x) =

x4 + 177x2 + 119 and

P(x) = x18 + 122x16 + · · · 57x2 + 178,

Q(x) = x9 + 12x7 + 30x5 + 143x3 + 9x .

In Step 2, we compute X1 and Y2 using the formula for multiplication by 3 map on
E1728. Here, X1 is as given in Example 12.2 and

Y2 = 126x12 + 92x10 + 153x8 + 136x6 + 139x4 + 63x2 + 159

x12 + 173x10 + 11x8 + 175x6 + 56x4 + 59x2 + 53
.

Then we compute p(x) = P(x)
∣

∣X1 and q(x) = Q(x)
∣

∣X1 in Steps 3 and 4 using
Algorithm 12.1 to obtain p(x) = x18 + 170x16 +· · ·+ 9x2 + 178, and q(x) = x9. In
Step 5, computing 9-th roots of p(x) and q(x) yields p0(x) = x2+178 and q0(x) = x .
The final output is

f (x) = cF�2 · p0(x)

q0(x)
= 89i x2 + 90i

x
,

g(x) = G(x)

Y2( f (x))
= (134i + 134)x2 + 134i + 134

x2
.

To determine the complexity of Algorithm 12.1, we first prove the following lemma
which is needed in the proof of Proposition 12.5.

Lemma 12.4 Fix 0 ≤ i ≤ �2−1
2 , the products xi x̄i and P(xi )P(x̄i ) are rational func-

tions in x, y2, and y2i .

Proof By direct computation, both xi + x̄i and xi x̄i are rational functions in x, y2, and
y2i . As a symmetric polynomial in xi and xi , the quantity P(xi )P(xi ) is a polynomial
in xi + x̄i and xi x̄i , hence also a rational function in x, y2 and y2i . ��
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Proposition 12.5 Algorithm 12.1 is correct and has runtime O(deg2(P)M(pm)).

Proof Algorithm 12.1 is correct by [42, Pages 8–9] and Lemma 12.4. Steps 1-3 are
negligible because they require a fixed number of operations in an extension of Fp2 of
degree O(�2). Since P(x) ∈ Fpm [x] and E1[�] is defined over an extension of Fp2 of
degree at most �2 by Lemma 2.3, all the arithmetic in the remaining steps takes place
in a field extension of Fp2 of degree lcm(�2,m) = O(m).

In the first loop (Steps 5-10), the most costly steps are 7 and 10 which both require
O(deg2(P)) operations; the remaining steps are linear in deg P when Horner’s algo-
rithm is used. In the second loop (Steps 12-11), p(x) is computed as described in [42,
Page 9]. Step 13 requires O(deg P) field operations using Horner’s algorithm again.
Since X1 has degree O(�2), Step 11 also takes O(deg P) operations. Hence the second
loop takes O(deg2(P)) field operations. ��
Proposition 12.6 Algorithm 12.2 is correct and has runtime O(deg2(ϕ)M(p)).

Proof The correctness of Algorithm 12.2 follows from [42, Proposition 2.6]. By
Lemma 2.2, ϕ is defined over Fp12 , so all the rational functions appearing in the
algorithm belong to Fp12(x). We also note that P(x) and Q(x) have degree O(degϕ),
hence so do p(x), q(x), p0(x) and q0(x).

Since ψE1,�(x) andW1(x) have fixed degree, Step 1 requires O(degϕ) field opera-
tions. Steps 5 and 6 take ˜O(degϕ) operations using fast polynomial arithmetic; see [30,
Theorem 1.2]. Here, to extract an �2-th root of p(x), we apply a truncated variant of
Newton’smethod (see [57, Sections 9.4 and 9.6]) to the polynomial H(y) = y�2−p(x)
and compute the sequence of polynomials

f0(x) = xdeg p , fi+1(x) = fi (x) −
⌊

H( fi (x))

H ′( fi (x)

⌋

(i ≥ 0)

to obtain p0(x) after at most �log2(deg p)� iterations; similarly for q0(x).
The runtime of Algorithm 12.2 is thus dominated by Steps 3 and 4, which have

runtime O(deg2(ϕ)M(p12)) = O(deg2(ϕ)M(p)). ��
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