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ABSTRACT: Low-cost, nontoxic, and earth-abundant photovoltaic materials are long-sought
targets in the solar cell research community. Perovskite-inspired materials have emerged as
promising candidates for this goal, with researchers employing materials design strategies
including structural, dimensional, and compositional transformations to avoid the use of rare
and toxic elemental constituents, while attempting to maintain high optoelectronic
performance. These strategies have recently been invoked to propose Ti-based vacancy-
ordered halide perovskites (A2TiX6; A = CH3NH3, Cs, Rb, or K; X = I, Br, or Cl) for
photovoltaic operation, following the initial promise of Cs2SnX6 compounds. Theoretical
investigations of these materials, however, consistently overestimate their band gaps, a
fundamental property for photovoltaic applications. Here, we reveal strong excitonic effects as
the origin of this discrepancy between theory and experiment, a consequence of both low
structural dimensionality and band localization. These findings have vital implications for the
optoelectronic application of these compounds while also highlighting the importance of
frontier-orbital character for chemical substitution in materials design strategies.

Perovskite-inspired materials aim to replicate the excep-
tional optoelectronic performance of lead halide perov-

skites (LHPs), while avoiding issues of toxicity and operational
stability.1 For decades, the standard materials design approach
for identifying novel inorganic semiconductors has been
chemical substitution, in which the undesirable elemental
constituents (e.g., toxic Pb2+ in LHPs) are replaced by more
favorable counterparts, while retaining the same structural
motifs. For example, in the diamond-cubic crystal family,
research moved from group IV elements Si and Ge to II−VI
compounds like CdTe, to yield direct rather than indirect
electronic band gaps, and then further splitting into the I−III−
VI2 (e.g., CuInSe2) and I2−II−IV−VI4 families (e.g.,
Cu2ZnSnS4), to give earth-abundant compositions. While
strategies such as dimensional modification2 and disorder
engineering3,4 have recently gained in popularity, elemental
substitution remains the prevailing design approach.
Strategies for replacing the divalent B-site cation in halide

perovskites, while retaining the BX6 octahedral motif, have led
to the exploration of A2BB′X6 double perovskites with a pair of
monovalent and trivalent cations at the B and B′ sites,1,5,6 as
well as the A3B2X9 “vacancy-ordered perovskites”, in which a
trivalent B cation is combined with a 1/3 vacancy of the B site
to satisfy electroneutrality.7−9 Issues of indirect and/or large
band gaps in these materials have led to the emergence of
A2BX6 vacancy-ordered double perovskites (VODPs), in which
now the combination of a tetravalent cation and a 50% vacancy
of the B site is employed, giving a checkerboard arrangement
(Figure 1).10−12 Also known as defective or tetravalent
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Figure 1. Crystal structure of Cs2BX6 vacancy-ordered perovskites, in
the conventional cubic unit cell (space group Fm3̅m). Cs atoms are
colored green, M cations blue, and halide anions (X) purple.
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perovskites, these compounds are actually some of the
decomposition products of conventional ABX3 perovskites,
for example, CsSnI3, which breaks down to form Cs2SnI6.

13

A2BX6 vacancy-ordered perovskites have shown promise for
optoelectronic applications, with good stability under air,
moisture, light, and thermal stresses, as well as being solution-
processable and nontoxic.11,14,15 As with the single and double
perovskites, the frontier orbitals of the B cation and X anion
govern the conduction and valence band-edge properties,
respectively. This combination allows tunability in the energy
gap, absorption profile, and carrier effective masses, for
example. The A-site species, on the contrary, is a large
monovalent cation such as Cs+, which behaves as a spectator,
dictating the spacing between BX6 octahedra but with no direct
contribution to the band edges. A crucial difference from the
ABX3 perovskite template is the lack of corner-sharing BX6
octahedra caused by vacancy introduction. Consequently, the
crystal structure is comprised of isolated octahedra and thus an
effective zero-dimensional (0D) framework, with this dramatic
reduction in connectivity being a key factor in the properties of
this material family.10,11,14 Research efforts in this area initially
focused on the Sn-based compounds (A2SnX6)

16 but have
since expanded so that a range of tetravalent species have
successfully been implemented in A2BX6 materials, including
Te, Pd, Zr, and Pt.17−20 While some of these compounds have
shown promise as potential white light and tunable emitters,
the Sn- and Ti-based materials have shown the most promising
results in the context of solar photovoltaic applications and
thus received a majority of the research attention. Cs2SnI6 was
originally used as a hole-transporting layer in dye-sensitized
solar cells, for instance, achieving efficiencies of 8%,16 while a
Cs2TiBr6 photovoltaic device demonstrated a modest efficiency
of 3%.14 The poor performance of these materials has been
attributed to relatively weak visible light absorption and
indirect band gaps.21

As issues of defect intolerance and operational instability are
becoming apparent for Cs2SnI6,

22 there is growing interest in
Ti-based compounds. The effects on structure, stability, and
electronic properties in going from the group 14 d10s0 Sn4+ to
group 4 d0s0 Ti4+ cations have been probed;10,11,23 however,
the performance limits of these materials remain an open
question. Notably, while theoretical methods are found to
successfully reproduce the experimental electronic structure of
the Te- and Sn-based compounds,11 a major discrepancy exists
for the d0 Ti-based compounds,10,14,21,23−29 with severe
overestimation of the experimental band gap by both hybrid
density functional theory (DFT) and Green’s function (GW)

methods. So extreme is the error that these theoretical
methods actually yield qualitatively incorrect relative band
gap energies for the Sn versus Ti compounds, as we show in
this study.
Through in-depth computations including explicit electron−

hole interactions via the Bethe−Salpeter equation (BSE), we
resolve the Ti perovskite discrepancy and reveal strong
excitonic effects as the origin. Electron−hole interactions
result in significant renormalization of the lowest-energy
electronic excitation, as well as qualitative reshaping of the
optical absorption spectrum, finally reconciling computational
predictions with experimental measurements. We elucidate the
origins of this behavior and highlight the implications of strong
exciton binding for applications of these materials in
optoelectronic devices.
The crystal structure of the Cs2BX6 (B = Sn or Ti; X = Cl,

Br, or I) family of vacancy-ordered perovskites is shown in
Figure 1. The low structural dimensionality of this family is
expected to produce behavior similar to that of the
corresponding [BX6]2− molecular salts.16,24 One consequence
of this “molecular” crystal structure is the possibility for
intermolecular interactions, such as London dispersion,
between the localized octahedra. Table 1 corroborates this
hypothesis, showing contraction of the calculated lattice
parameters upon inclusion of dispersion corrections in the
model, demonstrating the presence of important van der Waals
(vdW) bonding contributions. Indeed, geometry optimization
with hybrid DFT excluding dispersion corrections consistently
overestimates the experimental lattice parameters by ∼3%,
whereas inclusion of vdW effects gives lattice constants with
errors of <1% in all cases. Semilocal DFT including dispersion
corrections (PBE+D3) was also found to accurately reproduce
the experimental lattice constants (Table S1). The change in
the lattice parameter (ΔaD3) is consistent within each halide
subclass, irrespective of the B-site identity (Sn or Ti), reflecting
the expected interoctahedral (BX6−BX6) rather than intra-
octahedral (B−X) origin of these vdW interactions. Moreover,
we demonstrate the importance of dispersion interactions
between the BX6 molecular blocks on the electronic properties,
showing the calculated energy band gap to shift by 0.04−0.31
eV in the optimized crystal structure. There is an increasing
sensitivity of the band gap to the lattice parameter as we move
down the halogen group (Cl → Br → I), as the through-space
B−X and X−X interactions in the conduction and valence
bands strengthen with larger X p orbitals, also explaining the
reduced band gap shifts for B = Ti due to the more localized d
orbitals. We further note a sensitivity of the electronic band

Table 1. Calculated Cubic Lattice Parameters and Electronic Band Gap Shifts (ΔEg, D3) for Cs2BX6 (B = Sn or Ti; X = Cl, Br,
or I) Using Hybrid DFT Including Spin−Orbit Coupling (HSE06+SOC), with and without Explicit Inclusion of vdW
Dispersion Interactions (D3 correction)a

Cs2SnCl6 Cs2SnBr6 Cs2SnI6 Cs2TiCl6 Cs2TiBr6 Cs2TiI6
aHSE06 (Å) 10.65 11.15 11.95 10.51 10.99 11.76
ΔaHSE06 (%) 2.8 3.5 2.7 2.6 2.9 2.3
aHSE06+D3 (Å) 10.32 10.78 11.54 10.18 10.62 11.32
ΔaHSE06+D3 (%) −0.4 0.1 −0.9 −0.6 −0.6 −1.5
aExp (Å) 10.36 10.77 11.64 10.24 10.68 11.5
ΔaD3 (Å) −0.33 −0.37 −0.41 −0.33 −0.37 −0.44
ΔEg, D3 (eV) −0.14 −0.23 −0.31 −0.04 −0.08 −0.15

aLattice parameter errors (Δa) given with respect to experimental values. Experimental values taken from refs 31 and 32 for Cs2SnCl6, refs 32 and
33 for Cs2SnBr6, refs 30, 32, and 34−36 for Cs2SnI6, refs 23 and 37 for Cs2TiCl6, refs 21, 23, and 37 for Cs2TiBr6, and ref 38 for Cs2TiI6, matching
with our measured values (Section S1.6)
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gap on the DFT functional choice for geometry optimization,
with a 0.4 eV lower (−40%) band gap obtained for Cs2SnI6
using semilocal DFT (PBEsol) for structure relaxation.30

Hybrid DFT including dispersion corrections was employed
for all further DFT calculations in this study.
The electronic band structures, densities of states, and

charge densities at the valence band maximum (VBM) and
conduction band minimum (CBM) for Cs2TiI6 and Cs2SnI6
are shown in Figures 2 and 3. While Cs2SnX6 compounds
exhibit direct electronic band gaps at Γ, Cs2TiX6 compounds
have indirect gaps with the CBM at the X high-symmetry k-
point and the VBM remaining at Γ, in agreement with
experimental studies.15,21 The direct/indirect gap energy
difference (Δ) is relatively small, however, with Δ values of
0.06, 0.07, and 0.04 eV for the I, Br, and Cl isomorphs,
respectively, calculated using HSE06+SOC. As previously
noted,10,11 the VBM and CBM electronic levels follow that
predicted by BX62− crystal field splitting molecular-orbital
diagrams, with a t2g*(π) Ti d−X p CBM for Cs2TiX6 (dxy, dxz,
dyz; 3-fold degenerate at Γ) and an eg*(σ) band just above (dz2
and dx2−y2), a single a1g*(σ) Sn s−X p CBM for Cs2SnX6, and
nonbonding X pt2g(π) states at the VBM in all cases (Figures 2
and 3c). The centrosymmetric crystal structure and equal

(gerade) parity with respect to inversion for the VBM and
CBM states (Figures 2 and 3b,c) result in a dipole-forbidden
transition at the direct band gap. Consequently, the symmetry-
allowed direct band gap (Eg, allowed) corresponds to the vertical
transition from the second-highest valence band at Γ [t1u (Γ15)
symmetry; ψVBM−1] to the CBM.
The halide p valence band is similar for both compounds,

though with a slightly wider bandwidth (∼0.5 eV) for the Ti
analogues (Figures 2 and 3 and Figures S3−S8) due to a
significantly reduced anion−anion distance (dI−I = 4.03 Å for
Cs2SnI6 vs dI−I = 3.87 Å for Cs2TiI6) and wider interaction
range between the cation valence orbitals (Ti s and d) with
anion p states in the lower valence band, compared to those of
Sn p. This is a consequence of reduced M−X bond lengths
(2.73 Å vs 2.85 Å) and lattice parameters for B = Ti versus Sn
(Table 1), aided by the reduced ionic radius of Ti4+ versus that
of Sn4+, resulting in a much lower energy difference between
the t1g ψVBM and t1u ψVBM−1 for B = Ti versus Sn, with ΔEt d1g/td1u

=
0.02 eV/0.38 eV, 0.07 eV/0.30 eV, and 0.07 eV/0.07 eV for B
= Ti/Sn and X = I, Br, Cl (using HSE06+SOC). Another
consequence is that, in contrast to the electron masses, the
hole effective masses are actually larger for Cs2SnX6 than for
Cs2TiX6 (Table 2). Unlike conventional perovskites and many

Figure 2. (a) Electronic band structure of Cs2TiI6 calculated with hybrid DFT including spin−orbit coupling (HSE06+SOC), alongside a vertical
plot of the orbital-projected electronic density of states. Faded gray and green arrows indicate the lowest-energy symmetry-forbidden and allowed
electronic transitions, respectively (ΔEt d1g/t d1u

= 0.02 eV). Valence band in blue, conduction band in orange, and valence band maximum (VBM) set
to 0 eV. Ti d conduction bands are labeled with their crystal field orbital symmetries. Charge densities at the (b) conduction band minimum
(CBM) and (c) VBM. Unoccupied states in yellow and occupied states in blue.

Figure 3. (a) Electronic band structure of Cs2SnI6 calculated with hybrid DFT including spin−orbit coupling (HSE06+SOC), alongside a vertical
plot of the orbital-projected electronic density of states. Faded gray and green arrows indicate the lowest-energy symmetry-forbidden and allowed
electronic transitions, respectively (ΔEt d1g/t d1u

= 0.38 eV). Valence band in blue, conduction band in orange, and VBM set to 0 eV. Charge densities at
the (b) conduction band minimum (CBM) and (c) valence band maximum (VBM), using the same isosurface levels that were used for Cs2TiI6.
Unoccupied states in yellow and occupied states in blue.
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other “perovskite-inspired” materials that retain the partially
oxidized, filled valence subshell of the B cation (yielding
antibonding character at the VBM1,39,40), the fully oxidized B4+
in A2BX6 means we have a less dispersive, nonbonding VBM,

4

yielding heavier hole masses (particularly for X = Br or Cl) and
aiding carrier localization. In contrast, the conduction band of
the Sn analogues is relatively disperse with low electron
effective masses (Table 2) due to strong mixing and
delocalization of the Sn s and X p states, while extremely flat
bands are found for B = Ti due to weak Ti d−X p mixing and
localized, isolated Ti d states. The band structures of the
bromide and chloride isomorphs are included in Figures S3−
S8, showing similar results, though with larger band gaps and
reduced dispersion as X changes from I to Br to Cl. Further
analysis of the electronic structure is provided in Section S2.
The electronic properties of the Cs2BX6 family are listed in

Table 2. To illustrate the expected trends in exciton binding
based on band structure and dielectric screening, the
Wannier−Mott model binding energies are also included,
calculated using the average carrier effective masses (me/h) and
high-frequency dielectric constants ( ) from hybrid DFT
(HSE06+SOC) according to41

E
m

Ryex
0

2=
(1)

where m m m m( )/( )e h e h= × + is the reduced mass of the
electron−hole pair, Ry is the Rydberg energy (13.6 eV), and
m0 is the electron rest mass.
From Table 2, we witness the typical trend of a larger band

gap with smaller and more electronegative halogen anions

[Eg(Cl) > Eg(Br) > Eg(I)], as observed across the perovskite
(-inspired) family.1,10 Typically, the smaller the B-site atom,
the smaller the band gap in the A2BX6 family.

10,47 This is the
case experimentally here, with all Ti isomorphs having
experimentally measured band gaps that are smaller than
those of their Sn counterparts. The opposite trend is found in
the computed band gaps, for which hybrid DFT incorrectly
predicts larger gaps for the Ti compounds (except for X = Cl).
While the direct-allowed gaps computed by hybrid DFT
mostly coincide with the lower end of experimental ranges for
Cs2SnX6, neglecting Wannier−Mott-predicted exciton binding,
the entirely opposite trend is found for each Cs2TiX6
isomorph, with a consistent severe overestimation of the
experimental band gap. Notably, screened hybrid DFT
(HSE06) tends to slightly underestimate rather than over-
estimate semiconductor band gaps, with this underestimation
typically worsening with larger band gaps.48,49 The error in
predicted band gaps for Cs2TiX6 results in qualitatively
incorrect relative band gap energies for Cs2SnX6 versus
Cs2TiX6 (X = I or Br).
A dielectric-dependent hybrid functional approach was also

tested, which can improve the description of dielectric
screening from hybrid DFT with fixed exchange (e.g.,
HSE06) and give reduced band gap prediction errors,49−51

though this only slightly reduced the hybrid DFT gap for
Cs2TiI6 by 0.04 eV (αSCF = 24%), still giving a significantly
overestimated band gap with a relative error ΔEg of ∼70%.
Even using the computationally intensive GW approximation,
typically a gold standard for predicting band gaps,52,53 the
calculated quasiparticle gaps in fact show far worse over-
estimation [for both Cs2TiX6, as previously noted by Cucco et

Table 2. Calculated Direct (Eg, direct) and Direct-Allowed Band Gaps (Eg, allowed), Effective Masses (mx ),
a High-Frequency

Dielectric Constants (ε∞), and Wannier−Mott Model Exciton Binding Energies (Eex, Wannier) for Cs2BX6 (B = Sn or Ti; X = Cl,
Br, or I), Using Hybrid DFT Including Spin−Orbit Coupling (HSE06+SOC) and Comparison to Experimentally Reported
Band Gap Rangesb

Cs2SnCl6 Cs2SnBr6 Cs2SnI6 Cs2TiCl6 Cs2TiBr6 Cs2TiI6
Eg, direct (eV) 4.10 2.39 0.71 3.68 2.75 1.69
Eg, allowed (eV) 4.38 2.70 1.09 3.79 2.84 1.71
Eg, exp (eV) 4.4−4.9 2.7−3.3 1.25−1.3 2.8−3.4 1.8−2.3 1.0−1.2
me (m0) 0.55 0.38 0.26 3.5 2.7 1.8
mh (m0) 2.2 1.3 0.78 2.2 0.90 0.55
ε∞ 2.86 3.37 4.54 3.26 3.84 5.08
Eex, Wannier (eV) 0.73 0.35 0.13 1.73 0.62 0.22

amx values are computed from the harmonic mean over directions and light/heavy bands for the effective masses. Values of >1 are given to one
decimal place. bExperimental band gap values taken from refs 31, 32, 42, and 43 for Cs2SnCl6, refs 32, 35, 36, and 42−44 for Cs2SnBr6, refs 16, 17,
31, 32, 35, 42, and 45 for Cs2SnI6, refs 23 and 37 for Cs2TiCl6, refs 14, 15, 21, 23, 24, 37, 38, and 46 for Cs2TiBr6, and refs 24 and 37 for Cs2TiI6.

Figure 4. Optical absorption spectra of Cs2TiI6, Cs2TiBr6, and Cs2TiCl6 (from left to right, respectively), calculated with both hybrid DFT (dotted
violet) and the G0W0 + BSE method (solid blue), alongside the experimental data from ultraviolet−visible spectroscopy (dashed green). To directly
compare the spectral shapes, calculated curves have been rigidly shifted to match the experimental absorption onset (unshifted results shown in
Section S3).
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al.,10 and Cs2SnX6 (Section S3)]. These observations suggest

the presence of physical interactions in Cs2TiX6 that are not

captured in these single-particle electronic models.

This major experiment−-theory discrepancy is witnessed in
reported values across the literature10,14,21,23−29 but has not
been addressed until now. In many cases, semilocal DFT
(known to severely underestimate semiconductor band gaps)48

Figure 5. Optical absorption spectra of Cs2SnI6, Cs2SnBr6, and Cs2SnCl6 (from left to right, respectively), calculated with both hybrid DFT (dotted
violet) and the G0W0+BSE method (solid blue), alongside the experimental data from ultraviolet−visible spectroscopy (dashed green). To directly
compare the spectral shapes, calculated curves have been rigidly shifted to match the experimental absorption onset (unshifted results shown in
Section S3). For Cs2SnCl6, the absorption spectrum recorded by Karim et al.32 is also shown for comparison (downshifted by 0.5 eV as discussed in
Section S3.4).

Figure 6. Band contributions to the brightest exciton state at the absorption onset in Cs2SnX6 (top) and Cs2TiX6 (bottom), calculated using the
BSE approach. Band eigenvalues are indicated by the black dots, with filled circles weighted by their contributions to the exciton state and gray
interpolating bands. The average of the three degenerate brightest states at the absorption onset is used, with the sum area of the filled circles
normalized across all compositions. Hole and electron states are colored blue and orange, respectively, and the VBM is set to 0 eV.
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has been employed to yield fortuitous error cancellation and
thus theoretical values closer to experiment. As we show in this
work, however, semilocal DFT predicts qualitatively incorrect
relative band gaps [even finding Cs2SnI6 to be metallic, for
example (Table S3)], alongside incorrect absorption spectra,
thus being unsuitable for modeling the electronic structure of
A2BX6 compounds.
Using the Wannier−Mott effective mass model (Table 2),54

we find large exciton binding energies, particularly for the Ti
compounds (due to flat bands and heavy carrier masses),
suggesting strong electron−hole interactions in these materials.
Moreover, the large Wannier−Mott binding energies, isolated
octahedra, low dielectric screening, and highly localized d
orbitals suggest that strongly bound excitons may be formed
for Cs2TiX6.

41 To explore this hypothesis, we extend our
model using GW to calculate quasiparticle eigenvalues and
include electron−hole interactions via the Bethe−Salpeter
equation (BSE). The optical absorption spectrum calculated
with this approach, alongside that obtained from hybrid DFT
and the experimental data, is shown in Figure 4.
Electron−hole interactions are found to dramatically red-

shift (Tables S2 and S3 and Figure S10) and qualitatively alter
the absorption spectra for Cs2TiX6, now yielding excellent
agreement with the peaked experimental spectra. Analysis of
the electronic states reveals the lowest-energy bright exciton
peak to originate from the t1u(π + σ) → t2g(d) electronic
transition as expected, i.e., from the second-highest valence
band (ψVBM−1) at Γ (Figure 2) to the CBM. The lowest-energy
dark excitonic state, indicated by the arrows in Figure 4 and
located 0.3−0.4 eV below the first bright peak, corresponds to
the symmetry-forbidden t1g(π) ψVBM → t2g(d) ψCBM transition
mentioned previously. While improved agreement with the
experimental spectra is found for all Cs2TiX6 isomorphs,
smaller changes in the spectral shapes are noticed when X = Br
and Cl. This results from the low band dispersion in these
compounds (demonstrated by the large effective masses in
Table 2), resulting in similar strong excitonic downshifting of
the low-energy excitations; t1u(π + σ) → t2g(d) and t2u(π) →
t2g(d) corresponding to ⟨ψVBM−1|H′|ψCBM⟩ and ⟨ψVBM−2|
H′|ψCBM⟩ transitions. Indeed, in their recent paper, Grandhi
et al.37 refer to the absorption onset of Cs2TiBr6 as an exciton
peak, with our calculations revealing in fact both low-energy
peaks to be excitonic in nature. This strong renormalization of
the low-energy excitations and the lack of a band-like
absorption onset rule out standard spectrum fitting techniques
(such as the Tauc and Elliott models) for extracting band gap
and exciton binding energies.55,56 Notably, the experimental
spectra for TiBr62− and TiCl62− salts reported by Brisdon et
al.57 closely resemble the results for Cs2TiBr6 and Cs2TiCl6
reported here and in the literature,37,38 evidencing the
conclusion of molecular crystal behavior, the orbital assign-
ments of the absorption peaks, and the presence of strong
electron−hole interactions. Improved agreement between the
calculated and experimental spectra is also found for the Sn
compounds upon inclusion of electron−hole interactions, as
weaker exciton interactions modify transition intensities and
shift spectral weights to give more peak-like absorption onsets.
The small residual mismatch in some cases between the GW
+BSE and experimental spectra could be a result of
temperature effects (vibrations can lower the symmetry
restriction of dark excitonic transitions in this range),
quasiparticle lifetime broadening, or the neglect of higher-
order terms in GW.56,58,59

We highlight that the low-energy absorption peaks for
Cs2TiX6 correspond to charge-transfer Frenkel excitons, with
the electron wave function localized on the Ti t2gd orbitals (dxy,
dxz, dyz) and the hole localized on the surrounding X p orbitals
of the BX6 octahedron. This form of exciton is commonly
witnessed in organic and molecular crystals60 and has been
well-established in other 3d0 (Ti4+, Sc3+, and Ca2+) halides,61

arising here as a consequence of the 0D polyhedral
connectivity. The strongly bound nature of these excitons is
further demonstrated by the band contributions (“fatband
plot”) shown in Figure 6, where the delocalization of the
exciton wave functions in reciprocal space for the Ti
compounds corresponds to real-space localization of the
exciton wavepacket.41 The large Stokes shifts (∼0.5 eV) and
broad PL emission observed for this family of materials in both
this study and other studies15,21,23 are other characteristic
results of localized bound excitons, as well as strong exciton−
phonon coupling and low-energy dark excitons, with the
photogenerated electron−hole pair readily localizing within the
lattice to yield emissive self-trapped exciton (STE) states.
In contrast, the reduced effective masses of Cs2SnX6 yield a

weakly bound exciton as expected, demonstrated by dominant
band contributions at the Γ point to the first bright exciton
state. Figure 6 also illustrates the differing trends in band
structure when B = Sn and Ti, as X changes from I to Br to Cl,
with a greater band gap increase and a reduction in conduction
band dispersion for Cs2SnX6 than Cs2TiX6 [such that the
relative band gap energies of B = Sn and Ti change from X = I
(Eg, Sn < Eg, Ti) to X = Cl (Eg, Ti < Eg, Sn)], due to the greater
localization of the Ti d states. As discussed in Section S3,
quasiparticle band gaps and thus exciton binding energies from
GW(+BSE) remain overestimated for these vacancy-ordered
compounds, consistent with recent studies that attribute this
behavior to underscreening errors within the random phase
approximation (RPA) employed within GW.10,62−64 As such,
to avoid this issue and obtain a reasonable estimate of the
exciton binding energies in these systems, we also employed a
constrained-supercell approach in which an exciton state is
generated by controlling spin initialization and band
occupation. Here we calculate the exciton binding energy
using hybrid DFT for multiple supercell sizes of ≤972 atoms
and then extrapolate to the dilute limit using the relevant
scaling relationship to avoid supercell-size effects.65,66 With this
approach, we obtain localized Frenkel exciton states as
expected for each Cs2TiX6 (Figure S13, TOC), with
extrapolated binding energies of 0.44, 0.52, and 0.72 eV for
X = I, Br, and Cl, respectively (Figure S14), which when
subtracted from the HSE06+SOC direct-allowed transition
energies in Table 2 brings the hybrid DFT optical transition
energy into agreement with the experimental values in each
case. For Cs2SnX6, the electron and hole remain delocalized
across the supercell with this approach [under a maximum cell
length of 23.1 Å (Figure S13)], yielding extrapolated binding
energies close to zero (Figure S15). Further details are
provided in Figure S3.3.
Crucially, these results demonstrate the presence of

qualitatively different electronic behavior in the Cs2SnX6 and
Cs2TiX6 families, where despite retaining the same cation
valence, the change in frontier-orbital character upon
substitution of Sn4+ with Ti4+ dramatically alters the electronic
structure and optical absorption. From the band structures in
Figure 6 and values in Table 2, it is clear that the electron
effective masses (me) dictate the exciton behavior in this
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family, with the weak dispersion and strong real-space
localization of the flat d-orbital conduction bands in
Cs2TiX6, aided by the 0D crystal structure, yielding strong
electron−hole interactions. This strong excitonic renormaliza-
tion of the optical absorption in Cs2TiX6 explains the origin of
long-standing discrepancies between experiment and theoreti-
cal models of their electronic structure. Moreover, these
findings serve as a warning of the changes that can occur when
employing ionic substitution as a materials design approach,
when such strategies involve changes in valence orbital
character.
The presence of strong excitonic interactions in this material

family is unsurprising, given the low structural and electronic
dimensionality (Figures 1 and 2), weak band dispersion, and
large carrier effective masses (Table 2) discussed above. We
find the exciton binding strength to be governed by the
conduction band character in these compounds, giving the
expectation for similar strongly bound Frenkel excitons in
A2BX6 compounds with isoelectronic (d0) B4+ cations, such as
Zr and Hf. Indeed, strong excitonic interactions have been
recently been reported in Cs2ZrX6, promising white light
emitters,20 and a distinct excitonic feature is seen at the
absorption onset in Cs2HfCl6,

67,68 which has emission and
radiation detection applications. Moreover, the bound
excitonic behavior in this material class is very similar to that
witnessed in the double perovskites,55,69,70 which despite a
greater structural connectivity, exhibit a low effective electronic
dimensionality due to orbital mismatch between the B-site
cations.5,71 Likewise, extension of theoretical models to include
explicit electron−hole interactions was required to reproduce
the experimental spectrum,55,70,72 explaining the excitonic
origin of the direct absorption onset.
In conclusion, by revealing strongly bound excitonic

behavior in the cesium titanium halide vacancy-ordered
perovskites (Cs2TiX6), we reconcile long-standing discrep-
ancies between theoretical predictions and experimental
measurements for this material class. While previous
theoretical studies have found semilocal DFT to yield band
gaps matching those from experiment, we show this to be the
result of fortuitous error cancellation with qualitatively
incorrect absorption spectra and relative band gaps for
Cs2SnX6 versus Cs2TiX6 (X = I or Br). Our results show
that electron−hole interactions are crucial to obtaining the
correct polarizability and dielectric screening between
octahedra within many-body perturbation theory (MBPT) in
these low-electronic-dimensionality systems. A range of optical,
photoelectron, and polarization spectroscopies could be
employed to further study the behavior of excitons in this
material class, including Stark spectroscopy, temperature-
dependent optical measurements, and excitation-dependent
terahertz and electromodulation spectroscopies.58,61,69,73

Moreover, a majority of previous theoretical studies have not
included vdW dispersion interactions when modeling these
systems, yet here we demonstrate their importance in
obtaining accurate crystal and electronic structure predictions,
calling for their inclusion in future computational studies of
these and related low-dimensional and “molecular” crystals
such as the A4BX6 family.
These findings have important implications for optoelec-

tronic applications. Strong exciton binding can significantly
reduce charge separation and open-circuit voltages (Voc) in
solar cells, likely one of the key origins of the poor photovoltaic
performance achieved thus far in this material class. Our results

show the key role of structural dimensionality and octahedral
connectivity, alongside orbital chemistry, in determining the
effective electronic dimensionality and optoelectronic proper-
ties of inorganic perovskite-inspired materials. More generally,
these findings illustrate the importance of considering frontier-
orbital character when employing atomic substitution in
materials engineering and design strategies, here resulting in
qualitatively different electronic behavior despite equal cation
valence and similar band gaps.

■ COMPUTATIONAL METHODS
Calculations were performed using both DFT and quasiparticle
Green’s function (GW) approaches within periodic boundary
conditions, through the Vienna Ab Initio Simulation Package
(VASP).74 Scalar-relativistic pseudopotentials were employed
to describe the interaction between core and valence electrons,
via the projector-augmented wave (PAW) method.75 Specif-
ically, the Cs_sv, Sn_d, Ti_pv, I, Br, and Cl VASP PAW
potentials were used. The effect of pseudopotential choice and
DFT starting point (semilocal vs hybrid) on the GW results
was tested and found to give qualitatively similar results, with
the same large overestimation of band gaps relative to those
from experiment (details in Section S3).
Initial guesses for the crystal structures were obtained from

the Materials Project, before relaxing the geometry using the
HSE06 screened hybrid DFT functional with dispersion
corrections.76 The plane-wave energy cutoff and Γ-centered
k-point mesh were sequentially increased using vasp-
up2.077 until the total energies from static calculations
were converged to 0.1 meV/atom, giving values of 300 eV and
3 × 3 × 3, respectively (for the nine-atom primitive unit cell,
equivalent to a k-point density of 0.33 Å−1 in reciprocal space).
During structural optimization, a convergence criterion of 0.01
eV/Å was imposed on the forces on each atom and the plane-
wave energy cutoff was increased to 500 eV, and the final
geometries were re-relaxed, to avoid Pulay stress effects. As
discussed at the beginning of the results section, the effect of
dispersion corrections (Grimmes D3)78 on the structural
relaxation was tested and shown to be important; therefore, the
HSE06+D3 (using the recommended PBE0+BJ parametriza-
tions)79 relaxed unit cells were used for all further calculations
in this work.
Electronic band structures and independent-particle optical

absorption spectra were initially calculated with the HSE06
hybrid DFT functional, including spin−orbit coupling effects
(HSE06+SOC) due to the presence of heavy-atom elements
(see results and Section S4). For density of states (DOS) and
optical calculations, the k-point mesh for the primitive unit cell
was increased to 8 × 8 × 8 (reciprocal-space density of 0.12
Å−1), and the tetrahedron smearing method was used. The
number of virtual states in the optical calculations was
increased using vaspup2.077 until the high-frequency
dielectric constant ε∞ was converged to a precision of 0.01.
Electronic band structure diagrams were generated using
sumo.80 Carrier effective masses were determined using
nonparabolic fitting of the band edges through the
effmass81 package.
Wave functions calculated using HSE06+SOC were used as

input orbitals for the G0W0(+BSE) calculations. While only
having a modest effect on the band gap energies, SOC was
found to have a relatively significant effect on the spectral
shape above the absorption onset, as shown in Section S4.
Convergence with respect to the number of virtual states/
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empty bands, imaginary frequency and time grid points, and
electron−hole excitation pairs was confirmed in each case.
Given the lack of symmetry reduction, the requirement for
large numbers of virtual states/empty bands (particularly when
including spin−orbit coupling effects) and rapid scaling of the
computational cost (memory) with k-point density in the
G0W0+BSE calculations, a 3 × 3 × 3 mesh (for the nine-atom
primitive unit cell, equivalent to a k-point density of 0.33 Å−1

in reciprocal space) was the maximum tractable k-point mesh
for Cs2BX6 with our computational resources. While converged
for the Br and Cl compounds, the greater band dispersion of
the iodides (Cs2BI6) means the spectra are not well converged
for this k-point density; thus, the “model BSE” approach82,83

was employed to reach converged k-point meshes of 4 × 4 × 4
and 8 × 8 × 8 for Cs2TiI6 and Cs2SnI6, respectively. Further
details about the G0W0+BSE calculations are given in Section
S3.
Details of the experimental synthesis and absorption

measurements are provided in Section S1.
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