
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic + probabilistic programming + causal laws

Citation for published version:
Belle, V 2023, 'Logic + probabilistic programming + causal laws', Royal Society Open Science, vol. 10, no.
9, 2307852, pp. 1-12. https://doi.org/10.1098/rsos.230785

Digital Object Identifier (DOI):
10.1098/rsos.230785

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Royal Society Open Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. Oct. 2023

https://doi.org/10.1098/rsos.230785
https://doi.org/10.1098/rsos.230785
https://www.research.ed.ac.uk/en/publications/54f51609-d890-4add-bb19-7148e88cd6d1


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
royalsocietypublishing.org/journal/rsos
Perspective
Cite this article: Belle V. 2023 Logic +
probabilistic programming + causal laws. R. Soc.

Open Sci. 10: 230785.
https://doi.org/10.1098/rsos.230785
Received: 20 June 2023

Accepted: 29 August 2023
Subject Category:
Computer science and artificial intelligence

Subject Areas:
artificial intelligence

Keywords:
statistical relational learning, first-order logic,

probabilistic programming
Author for correspondence:
Vaishak Belle

e-mail: vaishak@ed.ac.uk
© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Contribution to special collection ‘Making the

most of AI’s potential: cross-disciplinary

perspectives on the role of AI in science and

society’.
Logic + probabilistic
programming + causal laws
Vaishak Belle

University of Edinburgh & Alan Turing Institute, Edinburgh, UK

VB, 0000-0001-5573-8465

Probabilistic planning attempts to incorporate stochastic models
directly into the planning process, which is the problem of
synthesizing a sequence of actions that achieves some objective
for a putative agent. Probabilistic programming has rapidly
emerged as a key paradigm to integrate probabilistic concepts
with programming languages, which allows one to specify
complex probabilistic models using programming primitives
like recursion and loops. Probabilistic logic programming aims
to further ease the specification of structured probability
distributions using first-order logical artefacts. In this article,
we briefly discuss the modelling of probabilistic planning
through the lens of probabilistic (logic) programming.
Although many flavours for such an integration are possible,
we focus on two representative examples. The first is an
extension to the popular probabilistic logic programming
language PROBLOG, which permits the decoration of
probabilities on Horn clauses—that is, prolog programs. The
second is an extension to the popular agent programming
language GOLOG, which permits the logical specification of
dynamical systems via actions, effects and observations. The
probabilistic extensions thereof emphasize different strengths
of probabilistic programming that are particularly useful for
non-trivial modelling issues raised in probabilistic planning.
Among other things, one can instantiate planning problems
with growing and shrinking state spaces, discrete and
continuous probability distributions, and non-unique prior
distributions in a first-order setting.
1. Introduction
Automated planning is a major topic of research in artificial
intelligence, and enjoys a long and distinguished history [1].
The classical paradigm assumes a distinguished initial state,
comprising a set of facts, and is defined over a set of actions
which change that state in one way or another. Actions are
further characterized in terms of their applicability conditions,
that is, things that must be true for the agent to be able to
execute it, and effects, which procedurally amounts to adding
new facts to a state while removing others. The scientific agenda

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.230785&domain=pdf&date_stamp=
mailto:vaishak@ed.ac.uk
http://orcid.org/
http://orcid.org/0000-0001-5573-8465
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
is then to design algorithms that synthesize a sequence of actions that takes the agent from an initial state
to a desired goal state.

From the early days, automated planning was motivated by robotics applications. But it was
observed that the real world—or more precisely, the robot’s knowledge about the world—is almost
never simply a set of facts that are true, and actions that the agent intends to execute never operate
the way they are supposed to. One way to make sense of this complication is to separate the ‘high-
level reasoning’, in our case the planner’s search space, from the low-level sensor-motor details. On
the positive side, such a move allows the plan representation to be finite, discrete and simple. On the
negative side, significant expert knowledge has to go into materializing this separation of concerns,
possibly at the loss of clarity on the behaviour of the system as a whole.

Incidentally, by testing the robot’s effectors repeatedly in a controlled environment, one can
approximate the uncertain effects of an action in terms of a probability distribution. Similarly, based
on minimalistic assumptions about the environment, expressed as a probabilistic prior, by repeated
sampling, the robot can update its prior to converge on a reasonable posterior that approximates the
environment [2]. To that end, probabilistic planning attempts to incorporate such models directly into
the planning process. There are, to date, numerous languages and algorithmic frameworks for
probabilistic planning, e.g. [3–6].

In this article, we briefly discuss the modelling of probabilistic planning through the lens of
probabilistic (logic) programming. Probabilistic programming has rapidly emerged as a key paradigm
to integrate probabilistic concepts with programming languages, which allows one to specify complex
probabilistic models using programming primitives like recursion and loops [7]. Probabilistic logic
programming aims to further ease the specification of structured probability distributions using
first-order logical artefacts.

In general, probabilistic programming languages developed so as to enable modularity and reuse in
probabilistic machine learning applications. Their atomic building blocks incorporate stochastic
primitives, and the formal representation also allows for compositionality [7,8].

Although many flavours for such an integration are possible, we focus on two representative
examples. The first is an extension to the popular probabilistic logic programming language
PROBLOG, which permits the decoration of probabilities on Horn clauses—that is, prolog programs.
The second is an extension to the popular agent programming language GOLOG, which permits the
logical specification of dynamical systems via actions, effects and observations. The probabilistic
extensions thereof emphasize different strengths of probabilistic programming that are particularly
useful for non-trivial modelling issues raised in probabilistic planning. Among other things, one can
instantiate planning problems with growing and shrinking state spaces, discrete and continuous
probability distributions, and non-unique prior distributions in a first-order setting. More precisely, we
provide an overview of the features of two systems:

— HYPE [9]: a planning framework based on distributional clauses [10]; and
— ALLEGRO [11]: a high-level control programming framework that extends GOLOG [12].

These two systems emphasize different strengths of probabilistic programming, which we think are
particularly useful for complex modelling issues raised in probabilistic planning. HYPE can easily
describe growing and shrinking state spaces owing to uncertainty about the existence of objects, and
thus is closely related to BLOG models [13,14]. Since HYPE is an extension of PROBLOG [15], it
stands to benefit from a wide range of applications and machine learning models explored with
PROBLOG.1 The dynamical aspects of the domain are instantiated by reifying time as an argument in
the predicates, and so it is perhaps most appropriate for finite horizon planning problems.

ALLEGRO treats actions as first-class citizens and is built on a rich model of dynamics and subjective
probabilities, which allows it to handle context-sensitive effect axioms, and non-unique probability
measures placed on first-order formulae. GOLOG has also been widely used for a range of
applications that apply structured knowledge (e.g. ontologies) in dynamical settings [16], and
ALLEGRO stands to inherit these developments. GOLOG has also been shown as a way to structure
search in large plan spaces [17]. Finally, since there are constructs for iteration and loops, such
programs are most appropriate for modelling non-terminating behaviour [18].

In what follows, we describe the essential formal and algorithmic contributions of these systems
before concluding with open computational issues. Clearly, these two systems are not the only
1dtai.cs.kuleuven.be/problog

dtai.cs.kuleuven.be/problog


royalsocietypublishing.org/journal/rs
3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
languages with elements of logic and probability for planning: relational Markov decision processes
(MDPs) [19], first-order partially observable Markov decision processes (POMDPs) [20], and to a
much lesser extent dynamic Bayesian networks over action models [21] are part of the larger family.
However, these systems are built on powerful and general logical foundations: HYPE is an extension
of PROBLOG, and so allows the specification of probabilistic assertions with logic programming.
ALLEGRO, on the other hand, is an extension of GOLOG, which is a dialect of first-order logic with
some second-order logical features. Thus, they are indicative of what is possible when probabilities
and first-order logic are unified in a dynamic setting. This sets our agenda apart from proposals such
as BLOG and its dynamic version too [13,14], which support some first-order features but do not
permit arbitrary logical connectives and quantification.

To prepare for our discussion, let us briefly reflect on why probabilistic logic programming is a
powerful paradigm.
 os

R.Soc.Open
Sci.10:230785
2. Why probabilistic programming + logic?
Probabilistic programming is a growing field that involves representing probabilistic models as executable
code [8,13,22–25]. This approach has enabled researchers to formalize, automate and scale up many aspects
of modelling and inference, making them more accessible to a broader audience of developers and domain
experts. By integrating modelling and inference approaches from multiple domains, this technology has
also led to the development of new programmable AI systems. Probabilistic programming is widely
used for formulating and solving problems in statistics and data analysis. Stochastic programming
languages, such as STAN and BUGS [26], provide a formal language that gives simple, uniform and re-
usable descriptions of a wide range of models, supporting generic inference techniques. Pyro, a
probabilistic programming language written in Python and supported by PyTorch, enables flexible and
expressive deep probabilistic modelling, unifying deep learning and Bayesian modelling [27].

Much of the mainstream discussion falls into two camps. First, for ‘conventional’ programming
languages such as Python, the effort centres around support for wrapping neural computations in
program code, as in the case of Pyro (and STAN to some extent). On the other extreme, support for
functional programming and higher-order programming languages, and how a denotational semantics
should be assigned to operational constructs in such languages, remains a challenge, especially
constructs such as ‘sampling’ from a, say, normal distribution [28]. The correct sampling strategy for
programmatic code, especially with loops and higher-order functions, and how these samples
converge for robust inference, is also a challenging problem [24].

Amidst this, an interesting entrant is probabilistic logic programming (PLP) [10,29–35]. This concept
involves the integration of probabilities into the rules of a logic program. (Although we largely focus on
PROBLOG here, there is a history of interesting proposals for combining logic programming and
probability, as hinted above; see [36].) Initially, the idea was to generate all possible proofs for each
random choice and determine the probabilities of these ‘worlds’ [15]. However, recent advancements
have led to the development of encoding strategies of programs to the task of model counting [37].
Interestingly, this problem task can be applied to many other representations, including factor graphs,
relational Bayesian networks and Markov logic networks [38]. All this instantiates an incredibly
powerful pipeline that offers exact inference.

In our view, four key features set probabilistic logic programming apart from other probabilistic
programming techniques. Firstly, probabilistic logic programming exhibits elaboration tolerance, which
means that it can easily incorporate new knowledge without having to change the entire program.
Secondly, it allows for the incorporation of relational knowledge, which enables modelling of random
objects and their properties. Thirdly, it can handle constraints, which makes it useful for solving
optimization problems. Lastly, it supports modular non-probabilistic computation, which makes it
easier to develop larger and more complex systems.

We do not mean to suggest that PLPs alleviates the problems or the representational challenges of
classical probabilistic programs (PPs). To a large extent, the foci and applications of classical
probabilistic programming are orthogonal to those of PLP. While it is possible to reconstruct some
simple examples from PPs to PLPs, a deeper study is clearly needed. Additionally, the integration of
functional artefacts and higher-order programming in the context of PLPs requires further study,
despite existing work on integrating logic programming and higher-order programming [39].

Let us make these aforementioned features concrete using a few examples. Recall that declarative
programming is a programming paradigm that expresses the logic of a computation without explicitly



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
defining how the individual steps are to be executed. We describe the ‘what’ of the program rather than
the ‘how to accomplish it’. What might this paradigm mean in a probabilistic context? We take this to
mean that (i) the instructions and logic for decision making are fixed, but (ii) the probabilities, which
are learned from data anyway, can be updated without needing to manipulate the logical instructions.
Additionally, (iii) computing with these probabilities can be done without requiring input from the
user. As we will show, a language like PROBLOG (but also other probabilistic logical languages) can
accomplish this easily.

Suppose there is an infectious disease spreading through a population. If two people are in regular
contact and one is infected, there is a 0.6 probability that the other person will also become infected. The
goal is to predict the spread of the disease given a set of initially infected people and a graph of
connections between individuals in the population. We might use the following program:

person(a).

person(b).

0.1::inf(X) :- person(X).

0.1::contact(X,Y) :- person(X), person(Y).

0.6::inf(X) :- contact(X, Y), inf(Y).

query(inf(_)).

This statement indicates that a person chosen at random has a 0.1 probability of being infected. Two
people chosen at random have a 0.1 probability of being in contact with each other. Finally, given a
randomly chosen infected person and another person in contact with that infected person, there is a
0.6 probability that the second person will become infected.

It is clear that if we need to update the probabilities or make any of them deterministic, the logical
rules are unaffected. We would only need to update the numerical values. For example, to make the
contagion deterministic, we may replace the fifth line above with:

inf(X) :- contact(X, Y), inf(Y).

Indeed, McCarthy’s notion of elaboration tolerance was defined as a property of a formalism that
makes it convenient to modify a set of facts to accommodate new phenomena or changed
circumstances. This means that the formalism can easily incorporate new knowledge without having
to change the entire program. He envisoned that there are different kinds of elaboration, with the
simplest being the addition of new formulae, which he called ‘additive elaborations’. Additionally, a
second type of elaboration is changing the values of parameters. Although he ultimately explored
these notions using a different set of examples, it is easy to see that in a very concrete sense,
elaboration tolerance is seen to be supported in PLPs. Updating the probabilities or even making
probabilistic assertions deterministic is easily accomplished, as seen below (example adapted from
[40,41]):

0.2::inf(X) :- person(X).

0.2::contact(X,Y) :- person(X), person(Y).

inf(X) :- contact(X, Y), inf(Y).

In this case, the priors on infection and contact were increased to 0.2—probably due to new data—
and the spread of infection among people in contact with each other is categorical.

If we are now to incorporate multiple sources of infection (so-called inhibition effects [40]):
0.1::inf(X) :- person(X).

0.1::contact(X,Y) :- person(X), person(Y).

0.1::groundzero(X) :- person(X).

0.6::inf(X) :- contact(X, Y), inf(Y).

0.2::inf(X) :- groundzero(X).

We need then a noisy-or structure where the parents independently influence a joint effect. All of this
is accomplished without manipulating the remaining rules, and the computing of the probabilities is
completely hidden from the user.

Finally, we can further contextualize influence, by allowing for, say, a distinguished group of
vulnerable people, while not adjusting the weights or the rules previously constructed.

0.1::inf(X) :- person(X).

0.1::contact(X,Y) :- person(X), person(Y).

0.1::groundzero(X) :- person(X).

0.1::susceptible(X) :- person(X).

0.6::inf(X) :- contact(X, Y), inf(Y), \+ susceptible(X).

0.8::inf(X) :- contact(X, Y), inf(Y), susceptible(X).

0.2::inf(X) :- groundzero(X).



royalsociety
5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
The program now additionally says that a vulnerable person has an increased chance of catching the
infection.

It is worth noting that such languages could serve as an interface for other AI systems, including
natural language interactions as well as deep learning models. For example, in [42], questions of the
following sort can be parsed into PROBLOG programs.
publishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
2.1. You roll a fair six-sided die twice. What is the probability that the first roll shows a five
and the second roll shows a six?

Here, the bold text is clearly a probabilistic model, and the rest a query. Correspondingly, the text is
parsed and tokenized into a PROBLOG program of the following sort (with some additional syntax
for probability and combinatorics constructs, including taking with replacement):

group(die). size(die, 6).

given(exactly(1, die, one)).

…

given(exactly(1, die, six)).

take_wr(die, rolls, 2).

probability(and(nth(1, rolls, five), nth(2, rolls, six))).

property(outcome(0), [one, two, three, four, five, six]).

Running this program then returns the answer to the question.
Conversely, in [30,43], logical reasoning is used to signal deep learning models to learn distributions

that respect constraints. Underlying these models is an extremely simple but ubiquitous computational
task called weighted model counting [44]. An extension to that task for continuous models [45] has enabled
a logic-based solver strategy for a range of ‘non-logical’ (i.e. classical) probabilistic programming
languages in the recent years [46–48].
3. HYPE
PROBLOG aims to unify logic programming and probabilistic specifications, in the sense of providing a
language to specify distributions together with the means to query about the probabilities of events. As a
very simple example, to express that the object c is on the table with a certain probability, and that all
objects on the table are also in the room, we would write (free variables are assumed to be quantified
from the outside):

0.6::onTable(c).

inRoom(x) :- onTable(x).

This then allows us to query the probability of atoms such inRoomðcÞ.
A more recent extension [10] geared for continuous distributions and other infinite event-space

distributions allows the head atom of a logical rule to be drawn from a distribution directly, by means
of the following syntax:

h ~ D :- b1,…, bn.

For example, suppose there is an urn with an unknown number of balls [13]. Suppose we pull a ball at
a time and put it back in the urn, and repeat these steps (say) six times. Suppose further we have no
means of identifying if the balls drawn were distinct from each other. A probabilistic program for this
situation might be as follows:

n ~ poisson(6).

pos(x) ~ uniform(1,10) :- between(1,~(n),x).

For simplicity, we assume here that the physical form of the urn is a straight line of length 10, and the
position of a ball is assumed to be anywhere along this line.

HYPE is based on a dynamic extension that allows us to temporally index the truth of atoms, and so
can be used to reason about actions. For example, the program

numBehind(x,t+1) ~ poisson(1) :- removeObj(x,t).

says that on removing the object x at t, we may assume that there are objects—typically one such
object—behind x. Such programs can be used in object tracking applications to reason about
occluded objects.

A common declaration in many robotics applications [2] is to define actions and sensors with an error
profile, such as a Gaussian noise model. These can be instantiated in HYPE using:



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
pos(x, t+1) ~ gaussian(~(pos(x,t)) + 1, var) :- move(x,t).

obs(x,t+1) ~ gaussian(~(pos(x,t)), var).

The first rule says that the position of x on doing a move action is drawn from a normal distribution
whose mean is x’s current position incremented by one. The second one says that observing the current
position of x is subject to additive Gaussian noise.

As an automated planning system, HYPE instantiates a MDP [49]. Recall that MDPs are defined in
terms of states, actions, stochastic transitions and reward functions, which can be realized in the above
syntax using rules such as:

poss(act, t) ~ conditions(t).

reward(num, t) :- conditions(t).

As an example, imagine writing a program to instantiate an agent whose goal is to find certain types
of objects (say, boxes), and move them to a specific location. (The example is adapted from [9].) Firstly, we
would need to capture the frame problem [50] to say that type of the object does not change on moving it
to another location:

type(X,t+1) ~ val(T) :- ~(type(X,t)) = T, not(removeObj(X)).

We might also say that boxes usually have one or more objects behind them:
numObjBehind(X,t+1) ~ poisson(1) :- ~(type(X,t)) = box,removeObj(X).

Finally, we might give a reward to the agent when it finally has the can at hand:
stop(t) :- ~ (type(X,t)) = can.

reward(20,t) :- stop(t).

reward(-1,t)

:- not(stop(t)).

To compute a policy, which is a mapping from states and time points to actions, HYPE combines
importance sampling and SLD resolution to effectively bridge the high-level symbolic specification
and the probabilistic components of the programming model. HYPE allows states and actions to be
discrete or continuous, yielding a general planning system. Empirical evaluations are reported in [9,51].

In sum, HYPE benefits from all the advantages and modelling capabilities that have demonstrated
through PROBLOG. But as can be seen, it does not quite have a distinct action language or an easy
way to represent actions other than as constants indexed by time variables. This is where the situation
calculus differs slightly, as it directly models a dynamic world. This allows for more flexible language
for describing effects and actions, discussed below.
4. ALLEGRO
The GOLOG language has been successfully used in a wide range of applications involving control and
planning [16], and is based on a simple ontology that all changes are a result of named actions. It is a
high-level agent programming language built on the situation calculus [12], which is a dialect of first-
order logic with (some) second-order logical features. An initial state describes the truth values of
properties, and actions may affect these values in non-trivial context-sensitive ways. In particular,
GOLOG is a programming model where executing actions are the simplest instructions in the
program, upon which more involved constructions for iteration and loops are defined. For example, a
program to clear a table containing an unknown number of blocks would be as follows:
ð½px onTableðxÞ?; removeObjðxÞ�Þ�; :9x onTableðxÞ?

Here, π is the non-deterministic choice of argument, semi-colon denotes sequence, ? allows for test
conditions, and � is unbounded iteration. The program terminates successfully because the sub-
program before the final test condition removes every object from the table.

As argued in [16], the rich syntax of GOLOG allows us, on the one hand, to represent policies and
plans in an obvious fashion; for example: ða1; . . . ; an; P?Þ ensures that the goal P is true on executing
the sequence of actions. However, the syntax also allows open-ended search; for example:
ðwhile :P pa: aÞ tries actions until P is made true. The benefit of GOLOG then is that it allows us to
explore plan formulations between these two extremes, including partially specified programs that are
completed by a meta-language planner.

ALLEGRO augments the underlying ontology to reason about probability distributions over state
properties, and allow actions with uncertain (stochastic) effects. In logical terms, the semantical
foundations rest on a rich logic of belief and actions. Consequently, it can handle partial probabilistic
specifications. For example, one can say c is on the table with a certain probability as before:
prðonTableðcÞÞ ¼ 0:6, but it is also possible to express the probability that there is an object on the



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
table without knowing which one: prð9x onTableðxÞÞ ¼ 0:6. We can go further and simply say that
there is a non-zero probability of that statement: prð9x onTableðxÞÞ . 0, which means that any
distribution satisfying the formula is admissible. Such a feature can be very useful: for example, in
[52], it is argued that when planning in highly stochastic environments, it is useful to allow a margin
of error in the probability distributions defined over state properties.

To model the case of Gaussian error models, actions with uncertain effects are given a general
treatment. For one thing, the effects of actions are axiomatized using the notion of successor state
axioms which incorporate Reiter’s solution to the frame problem [12]. So, for example, changing the
position of an object using a move action can be expressed as:

posðx, doða, sÞÞ ¼ u ; ða ¼ moveðx, yÞ ^ posðx, sÞ ¼ uþ yÞ _ ða = moveðx, yÞ ^ posðx, sÞ ¼ uÞ:

This says that if the action of moving xwas executed, its position (along a straight line) is decremented by
y units, and for all other actions, the position is unaffected. To deal with uncertain effects, we will
distinguish between what the agent intends and what actually happens. That is, let move(x, y, z) be a
new action type, where y is what the agent intends, and z is what happens. Then, the successor state
axiom is rewritten as follows:

posðx, doða, sÞÞ ¼ u ; ða ¼ moveðx, y, zÞ ^ posðx, sÞ ¼ uþ zÞ _ ða = moveðx, y, zÞ ^ posðx, sÞ ¼ uÞ:

The story remains essentially the same, except that z determines the actual position in the successor state,
but it is not in control of the agent. A Gaussian error profile can be accorded to this action by means:
lðmoveðx, y, zÞ, sÞ ¼ gaussianðz; y, varÞ. That is, the actual value is drawn from a Gaussian whose
mean is the intended argument y. Analogously, attributing additive Gaussian noise in a sensor for
observing the position is defined using: lðobsðx, zÞ, sÞ ¼ gaussianðz; posðx, sÞ, varÞ: That is, the
observation z is drawn from a Gaussian whose mean is the actual position of the object x.

As hinted above, as an extension to GOLOG, the syntax of ALLEGRO is designed to compactly
represent full or partial plans and policies in a general way. Previously, GOLOG programs have been
shown to control the plan search space [17], and recent work has shown that probabilistic action
programs are a more compact way to represent recursive policies. On termination, ALLEGRO
programs can be tested for, say, the (subjective) probability that the goal is believed to hold.

For example, imagine you wish to get a robot with noisy sensors and effectors close to a wall. The
robot would move some distance, but because the action is noisy, it would need to repeatedly sense to
ensure it did actually get closer. This sense-act loop would repeat until it believes with high
probability that it is actually close to the wall. An ALLEGRO program for such a protocol might look
like this:

WHILE Pr(distance <= 2)

forward(1) | sonar;
ENDWHILE

So we recur on either moving or sensing (declared using the non-deterministic branch operator) until
the robot believes the distance to the wall is less than, say, 2 units. Here, the action forwardð1Þ denotes
an action forward(x,y), where the intended argument is (x = 1), but the actual argument is, as discussed
above, unknown to the agent. Since the well-defined terms in the language will need a distinct value
for y, we will need the value for y, as determined by, say, nature or the environment. However, the
belief of the agent will not be affected by this value, since the value is not observed. So any randomly
chosen value for y would also suffice to understand program correctness.

Somewhat analogously, sonar might denote the action sonar(z), where z is the value read on the
sensor. But unlike the actual argument for actions above, the value read does matter to the beliefs of
the agent, because it adjusts its beliefs based on what was observed. So we need to incorporate these
read values to ascertain if the program terminates.2 The semantical foundations of ALLEGRO
incorporating these ideas was established in [11] with a discussion on its empirical behaviour.

The above program fully specifies the behaviour, but at the same time, it is capturing a very simple
example. A more complex problem setting might involve unspecified sub-programs (which might
involve planning), as discussed in [16]. Alternatively partially specified programs might be used to
define and constrain the search space, as seen in [17].
2It might be possible, of course, to define a notion of program correctness that works for any observed value, in a style similar to the
offline computation of policies [53–55]. We gloss over this issue for now.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
5. A qualitative comparison
Before concluding the article, it is an interesting exercise to briefly compare the features and properties of
the two formalisms. Of course, readers may have the impression that such a comparison would be richer
with an empirical evaluation, perhaps by benchmarking the two formalisms against each other in a set of
domains, to compare their computational performance. Although this is feasible for a particular problem
space (and worth considering for the future), the languages are not fully comparable, as the discussion
below will demonstrate.

5.1. Static modelling
We refer to static modelling here to mean capturing a probability distribution over a finite set of random
variables. Given a number of atoms in a propositional language (for simplicity), assume atoms are
accorded probabilities and these are taken together with non-probabilistic definitive clauses, of the
form h← b1,…, bk. For example, here is a PROBLOG program for the burglary-earthquake-alarm
Bayesian network example by Pearl [56]:

0.1::b.

0.2::e.

a :- b.

a :- e.

query(a).

That is:

— b is a proposition standing for burglary and has a probability of 0.1 of occurrence;
— e is a proposition standing for earthquake and has a probability of 0.2 of occurrence;
— a← b is a non-probabilistic rule that says that burglary can trigger the alarm, captured using

proposition a; and
— a← e is a non-probabilistic rule that says that earthquake can trigger the alarm too.

The reader may now construct a set of possible worlds to work out the marginal probabilities. With three
propositions, we have eight possible worlds in principle. However, there are some caveats to how we
read these atoms and rules in PROBLOG. The atoms for which we have provided probabilities are
called probabilistic facts and should be treated separately from the heads of rules. In fact, the rules
would be used in conjunction with each of the possible worlds (defined purely over the probabilistic
atoms) to determine if the head can be derived. Based on that, the success probability of the head is
calculated.

Putting that together, we have four worlds over the probabilistic facts b and e. The probability of the
worlds is obtained by taking the product of the probabilities of literals built from b and e, with the
understanding that the probability of any proposition p and its negation must sum up to 1. So, for
example, in a world where b is true but e is false, we would obtain the probability of 0.1 × (1− 0.2)
which is 0.08. By extension we have

1. the world b ^ :e with probability 0.08 as just determined;
2. the world b ^ e with probability 0.1 × 0.2 = 0.02;
3. the world :b ^ e with probability (1− 0.1) × 0.2 = 0.18; and
4. finally, the world :b ^ :e with probability (1− 0.1) × (1−−0.2) = 0.72.

To now calculate the probability of triggering the alarm, we look at each possible word together with the
non-probabilistic rules and see if a is entailed. It is easy to see that this only happens with the first three
worlds: here, either burglary or alarm is true and so it immediately follows that a holds. Thus, the
probability of triggering the alarm is 0.28. See [37] for the full semantic treatment.

Thus, the semantics of logic programs seem particularly conducive to modelling Bayesian networks
[44]. By contrast, the semantics of ALLEGRO is based on probabilities on first-order structures. So it is not
quite the exact same set of formulae needed to replicate that network. We need to slightly adapt it. For
one thing, there is nothing in semantics that suggests that certain atoms should not have probabilities, as
it is implicitly assumed in the semantics of PROBLOG programs. So, for instance, we could use the
following formulae in ALLEGRO for the network:

— PrðbÞ ¼ 0:1;



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
— PrðeÞ ¼ 0:2;
— a ; b _ e and PrðaÞ ¼ 1.

In ALLEGRO, then, because there are three propositions we indeed have eight possible worlds in
principle. The last formula, however, ensures that worlds where b and e are false but a is true are
impossible.

If we now contrast this with the four possible worlds we had for PROBLOG, we can indeed see that it
is the same set of truth-settings for b and e (the first three) that would be considered for the probability of
a. The fourth world :b ^ :e cannot be one where a is true, as established. However, the calculation of the
probabilities of worlds is obtained in a different manner, but amounting to the same specification. The
formulae, for example, state that all the worlds where b is true need to be assigned a total probability
of 0.1. This essentially means the first and second worlds, (1) and (2) above, need to have their
probabilities sum to 0.1. Likewise, the set of all worlds where e is true needs to be assigned a total
probability of 0.2. So the second and third worlds, (2) and (3) above, need to have their probabilities
sum to 0.2. By working through these, it can be shown that the probability of the alarm being
triggered is still 0.28.

The fact that the formulae need to be mapped this way between the formalisms may seem strange at
first glance, but it is not surprising. A translation of PROBLOG programs to probabilistic propositional
theories [37] relies on these kinds of steps to assign probabilities to propositional worlds, which as we
just established, needs to take all the propositions in the language into account.

Of course, it is entirely reasonable to expect modelling languages to be as suitable as needed for the
problem at hand. Clearly, when capturing Bayesian networks and other related types of graphical
models, PROLOG and HYPE are much more straightforward than, say, specifying probabilities over
first-order formulae. For the latter, we need to implicitly determine how these probabilities correspond
to a Bayesian network or some other factored representation [57].

However, given that PROBLOG programs are then translated into probabilistic propositional theories,
one could imagine that there is a more natural modelling language for users who prefer graphical
models. Then an intermediate step would translate it into an ALLEGRO model so that the initial
knowledge can be used with a rich theory of actions. Moreover, there is one case where the static
knowledge base between these formalisms may not require much reworking. Consider probabilistic
databases [58]: the simplest setting is that of tuple-independent probabilistic databases, where each
proposition is assigned a distinct probability, and assumed to be probabilistically independent from
others. In such a setting, the representation in both formalisms would be virtually identical because
the probability of each world is essentially specified explicitly: it is obtained from the product of the
probability of the propositions true at the world.

There is one aspect in which the formalisms differ deeply. Logic programs allow the use of inductive
definitions [59]. For example, we might use the following two formulae to capture an inductive definition
for paths in a graph:

— 8x, yðEðx, yÞ . Pðx, yÞÞ; and
— 8x, y, zðEðx, yÞ ^ Pðy, zÞ . Pðx, zÞÞ.

This says that every edge is a path, and if there is an edge between nodes x and y and a path from y to z,
then there is also a path from x to z.

ALLEGRO is based on the situation calculus, which allows for some second-order features, including
an inductive definition for the set of situations [12]. However, it is rarely the case that inductive
definitions are provided as part of the initial knowledge base. (Nonetheless, there is some work
regarding this in the literature [60].) Here too, PROLOG and HYPE may seem like more attractive
formalisms if one is mostly concerned with reasoning about static knowledge.
5.2. Observations and actions
We already discussed how these languages do allow the modelling of dynamics, but mainly as captured
by dynamic Bayesian networks, hidden Markov models, MDPs, POMDPs and other related frameworks
[29,36]. This is achieved by introducing a time argument for the predicates, and reasoning about a certain
number of time steps.

Nonetheless, such an approach makes these languages more limited compared with dynamic
languages like the situation calculus. In the situation calculus, not only is it possible to have durative



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
actions where time is an additional argument [61], but the dynamics of states can be captured directly
using named actions. As a result, it becomes natural to capture numerous planning languages [12].

The situation calculus has also been extended to reason about decision-theoretic models [62] and
relational extensions to POMDPs [20]. Its first-order nature also makes it a candidate for reasoning
about unbounded numbers of objects and unbounded time sequences. For example, it is possible to
ask projection queries of the following sort:

— Is ϕ true after doing actions a1 to ak?
— Was ϕ true at every step of the sequence, or conversely was ϕ made false at any point between the

start and the end of the sequence?
— Will ϕ be true for every sequence executed from here on?

Thus, not only can one write programs in the language, but one can also verify the properties of these
programs directly within the language [63].

It is also worth noting that the action types themselves are probably more powerful than what can be
provided in a formalism such as a dynamic Bayesian network [64]. For example, in the context of the
Bayesian network used previously on the alarm getting triggered, one can write actions that can
potentially change the edges between nodes in an arbitrary fashion and add new nodes. We can also
reason about the ramifications and indirect effects of actions [65].

5.3. Synthesis versus policy execution
As was made clear from the presentation of HYPE, that language is primarily for synthesizing a policy.
That is, it specifies actions and effects and the noise models, and the purpose of the formalism is to
compute a policy from that specification. We can contrast that to ALLEGRO in two ways. Firstly,
belief-based programs are policies in themselves. So, executing the program is tantamount to
executing a policy for a POMDP under the appropriate representational considerations [66]. But of
course, such a policy could also be synthesized. There is considerable work on the induction of
recursive program-like structures [67]. Thus, the situation calculus provides a comprehensive
framework to reason about different sorts of policies and verify their properties.

5.4. Incomplete and partial specifications
Perhaps all of these different dimensions are essentially a statement about the differences in
expressiveness. While PROBLOG and HYPE mainly provide a framework for specifying probabilistic
models, the situation calculus provides a language for reasoning about probabilistic knowledge and
its dynamics more generally. For instance, it is possible to express multiple belief distributions, specify
programs either completely or partially, and combine probabilistic knowledge with non-probabilistic,
incomplete knowledge (which then necessitates the need for multiple distributions) [68].

All of this means that the situation calculus language is far more expressive because it cannot be
reduced to a propositional model. Recall that PROBLOG reduces its inference to a weighted
propositional formula, whereas the situation calculus corresponds to a modal first-order logic [69].

Consequently, due to this expressiveness, it can be shown that verifying properties in the full
language is highly undecidable [63]. In the case of ALLEGRO, verifying properties would correspond
to checking the properties of possibly infinitely many POMDPs.

Of course, the full expressiveness need not be embraced. Depending on the application, we might
choose a fragment to work with, perhaps a fragment that closely resembles PROBLOG and HYPE.
This is the argument the knowledge representation community have been making all along [12,16]:
sometimes it is useful to have a more expressive language to study the properties of the desired
problems and then we would choose a restricted fragment to build the domain application at hand.
6. Conclusion
Automated planning is often deployed in an application context, and in highly stochastic and uncertain
domains, the planning model may be derived from a complex learning and reasoning pipeline, or
otherwise defined over non-trivial state spaces with unknowns. In this article, we reported on two
probabilistic programming systems to realize such pipelines. Indeed, combining automated planning



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
and probabilistic programming is receiving considerable attention recently, e.g. [14]. These languages are
general purpose, and their first-order expressiveness can not only enable a compact codification of the
domain but also achieve computational leverage.

One of the key concerns with the use of probabilistic programming and stochastic specifications
generally is that most systems perform inference by Monte Carlo sampling. As is well known, one is
able to only obtain asymptotic guarantees with such methods, and moreover, handling low-
probability observations can be challenging. In that regard, there have been recent logical approaches
for inferring in mixed discrete-continuous probability spaces with tight bounds on the computed
answers [45,46,70]. Since HYPE, ALLEGRO and many such systems use probabilistic inference as a
fundamental computational backbone, the question then is whether the aforementioned approaches
can enable robust planning and programming frameworks in stochastic domains.

There may also be added value in finding deeper connections with conventional probabilistic
programming languages. For example, quite a bit of work has been done on trying to learn in such
conventional languages [71]. Additionally, deep learning techniques can be integrated as computational
primitives in such languages, as seen in Pyro. It would be interesting to explore whether such ideas can
be incorporated into HYPE and ALLEGRO to unify first-order probabilistic reasoning and learning.

Data accessibility. This article has no additional data.
Declaration of AI use. I have not used AI-assisted technologies in creating this article.
Author’s contributions. V.B.: conceptualization, formal analysis, investigation, writing—original draft, writing—review
and editing.
Conflict of interest declaration. I declare I have no competing interests.
Funding. No funding has been received for this article.
References

1. Fikes R, Nilsson NJ. 1971 STRIPS: a new

approach to the application of theorem proving
to problem solving. Artif. Intell. 2, 189–208.
(doi:10.1016/0004-3702(71)90010-5)

2. Thrun S, Burgard W, Fox D. 2005 Probabilistic
robotics. New York, NY: MIT Press.

3. Boutilier C, Dean T, Hanks S. 1999 Decision-
theoretic planning: structural assumptions and
computational leverage. J. Artif. Intell. Res. 11,
94. (doi:10.1613/jair.575)

4. Domshlak C, Hoffmann J. 2007 Probabilistic
planning via heuristic forward search and
weighted model counting. J. Artif. Intell. Res.
30, 565–620. (doi:10.1613/jair.2289)

5. Kaelbling LP, Littman ML, Cassandra AR. 1998
Planning and acting in partially observable
stochastic domains. Artif. Intell. 101, 99–134.
(doi:10.1016/S0004-3702(98)00023-X)

6. Ong SCW, Png SW, Hsu D, Lee WS. 2010
Planning under uncertainty for robotic tasks
with mixed observability. Int. J. Rob. Res. 29,
1053–1068. (doi:10.1177/0278364910369861)

7. Goodman ND, Mansinghka VK, Roy DM, Bonawitz
K, Tenenbaum JB. 2008 Church: a language for
generative models. In Proc. of the 24th Conf. on
Uncertainty in Artificial Intelligence, Helsinki,
Finland, 9–12 July, pp. 220–229.

8. Gordon AD, Henzinger TA, Nori AV, Rajamani SK.
2014 Probabilistic programming. In Proc. Int.
Conf. on Software Engineering, pp. 167–181.
New York, NY: ACM.

9. Nitti D, Belle V, Raedt LD. 2015 Planning in
discrete and continuous Markov decision
processes by probabilistic programming. In
European Conf. on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases, Porto, Portugal, 7–11 September,
pp. 327–342. Springer International Publishing.
(doi:10.1007/978-3-319-23525-7_20)

10. Gutmann B, Thon I, Kimmig A, Bruynooghe M, De
Raedt L. 2011 The magic of logical inference in
probabilistic programming. Theory Pract. Log. 11,
663–680. (doi:10.1017/S1471068411000238)

11. Belle V, Levesque HJ. 2015 ALLEGRO: belief-
based programming in stochastic dynamical
domains. In IJCAI’15: Proc. of the 24th Int. Conf.
on Artificial Intelligence, July, pp. 2762–2769.

12. Reiter R. 2001 Knowledge in action: logical
foundations for specifying and implementing
dynamical systems. New York, NY: MIT Press.

13. Milch B, Marthi B, Russell S, Sontag D, Ong D,
Kolobov A. 2007 BLOG: probabilistic models with
unknown objects. In Introduction to statistical
relational learning (eds L Getoor, B Taskar),
pp. 373–298. Cambridge, MA: MIT Press.

14. Srivastava S, Russell SJ, Ruan P, Cheng X. 2014
First-order open-universe POMDPs. In UAI’14:
Proc. of the 30th Conf. on Uncertainty in
Artificial Intelligence, Quebec, Canada, July,
pp. 742–751. Arlington, VA: AUAI Press.

15. Raedt LD, Kimmig A, Toivonen H. 2007 ProbLog:
a probabilistic prolog and its application in link
discovery. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence, Hyderabad, India, 6–12
January, pp. 2462–2467.

16. Lakemeyer G, Levesque HJ. 2007 Cognitive robotics.
In Handbook of knowledge representation (eds F van
Harmelen, V Lifschitz, B Porter), pp. 869–869.
Amsterdam, The Netherlands: Elsevier.

17. Baier JA, Fritz C, McIlraith SA. 2007 Exploiting
procedural domain control knowledge in state-of-
the-art planners. In Proc. of the 17th Int. Conf. on
Automated Planning and Scheduling, ICAPS 2007,
Providence, RI, 22–26 September, pp. 26–33.
18. Claßen J, Lakemeyer G. 2008 A logic for non-
terminating golog programs. In Principles of
Knowledge Representation and Reasoning: Proc.
of the 11th Int. Conf., KR 2008, Sydney,
Australia, 16–19 September, pp. 589–599.

19. Sanner S, Delgado KV, de Barros LN. 2011 Symbolic
dynamic programming for discrete and continuous
state MDPs. In UAI 2011, Proc. of the 27th Conf. on
Uncertainty in Artificial Intelligence, Barcelona,
Spain, 14–17 July, pp. 643–652.

20. Sanner S, Kersting K. 2010 Symbolic dynamic
programming for first-order POMDPs. In Proc. of
the 24th AAAI Conf. on Artificial Intelligence,
AAAI 2010, Atlanta, GA, 11–15 July,
pp. 1140–1146.

21. Sanner S. 2011 Relational dynamic influence
diagram language (rddl): language description.
Technical report, Australian National University.

22. McCallum A, Schultz K, Singh S. 2009 FACTORIE:
probabilistic programming via imperatively defined
factor graphs. In Advances in Neural Information
Processing Systems 22: 23rd Annual Conf. on Neural
Information Processing Systems 2009, Vancouver,
Canada, 7–10 December, pp. 1249–1257.

23. Jones C, Plotkin G. 1989 A probabilistic
powerdomain of evaluations. In Proc. of the 4th
Annual Symp. on Logic in Computer Science,
Pacific Grove, CA, June, pp. 186–195. IEEE.

24. Mansinghka V. 2009 Natively probabilistic
computation. PhD thesis, Massachusetts
Institute of Technology. MIT/EECS George M.
Sprowls Doctoral Dissertation Award.

25. Pfeffer A. 2001 IBAL: a probabilistic rational
programming language. In Proc. of the 17th
Int.Joint Conf. on Artificial Intelligence - Volume
1 IJCAI’01, pp. 733–740. San Francisco, CA:
Morgan Kaufmann Publishers Inc.

https://doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1613/jair.575
https://doi.org/10.1613/jair.2289
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1177/0278364910369861
http://dx.doi.org/10.1007/978-3-319-23525-7_20
https://doi.org/10.1017/S1471068411000238


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230785
12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
3 
26. Korner-Nievergelt F, Roth T, Von Felten S, Guélat J,
Almasi B, Korner-Nievergelt P. 2015 Bayesian data
analysis in ecology using linear models with R,
BUGS, and Stan. New York, NY: Academic Press.

27. Bingham E et al. 2019 Pyro: deep universal
probabilistic programming. J. Mach. Learn. Res.
20, 973–978.

28. Staton S, Yang H, Wood F, Heunen C, Kammar
O. 2016 Semantics for probabilistic
programming: higher-order functions,
continuous distributions, and soft constraints. In
Proc. of the 31st Annual ACM/IEEE Symp. on
Logic in Computer Science, pp. 525–534.

29. Nitti D. 2016 Hybrid probabilistic logic
programming. PhD thesis, KU Leuven, Leuven,
Belgium.

30. Manhaeve R, Dumancic S, Kimmig A, Demeester
T, De Raedt L. 2018 Deepproblog: neural
probabilistic logic programming. In Advances in
neural information processing systems 31.

31. Sanghai S, Domingos P, Weld D. 2005 Relational
dynamic Bayesian networks. J. Artif. Intell. Res.
24, 759–797. (doi:10.1613/jair.1625)

32. Ng R, Subrahmanian V. 1992 Probabilistic logic
programming. Inf. Comput. 101, 150–201.
(doi:10.1016/0890-5401(92)90061-J)

33. Ngo L, Haddawy P. 1995 Probabilistic logic
programming and Bayesian networks. In
Algorithms, Concurrency and Knowledge, ACSC
1995 (eds K Kanchanasut, JJ Lévy),
pp. 286–300. Lecture Notes in Computer
Science, vol 1023. Berlin, Germany: Springer.
(doi:10.1007/3-540-60688-2_51)

34. Poole D. 2011 Logic, probability and computation:
foundations and issues of statistical relational AI. In
Logic Programming and Nonmonotonic Reasoning:
11th Int. Conf., LPNMR 2011, Vancouver, Canada,
16–19 May, vol. 6645, pp. 1–9. Berlin, Germany:
Springer.

35. Raedt LD, Kersting K. 2008 Probabilistic inductive
logic programming. In Probabilistic inductive logic
programming (eds L De Raedt, P Frasconi, K
Kersting, S Muggleton). Lecture Notes in Computer
Science, vol 4911. Berlin, Germany: Springer.
(doi:10.1007/978-3-540-78652-8_1)

36. De Raedt L, Kimmig A. 2015 Probabilistic (logic)
programming concepts. Mach. Learn. 100,
5–47. (doi:10.1007/s10994-015-5494-z)

37. Fierens D, den Broeck GV, Thon I, Gutmann B, Raedt
LD. 2011 Inference in probabilistic logic programs
using weighted CNF’s. In Conf. on Uncertainty in
Artificial Intelligence, pp. 211–220.

38. Van den Broeck G, Meert W, Darwiche A. 2014
Skolemization for weighted first-order model
counting. In KR’14: Proc. of the 14th Int. Conf.
on Principles of Knowledge Representation and
Reasoning, July, pp. 111–120.

39. Nadathur G, Mitchell DJ. 1999 System
description: teyjus-a compiler and abstract
machine based implementation of lambda-
prolog. In Automated Deduction — CADE-16.
Lecture Notes in Computer Science, vol. 1632,
pp. 287–291. Berlin, Germany: Springer.
(doi:10.1007/3-540-48660-7_25)

40. Meert W, Struyf J, Blockeel H. 2008 Learning
ground CP-Logic theories by leveraging Bayesian
network learning techniques. Fundamenta
Informaticae 89, 131–160.
41. Meert W, Vennekens J. 2014 Inhibited effects in
CP-logic. In Probabilistic Graphical Models: 7th
European Workshop, PGM 2014, Utrecht, The
Netherlands, 17–19 September. Proceedings 7,
pp. 350–365. Berlin, Germany: Springer.

42. Dries A, Kimmig A, Davis J, Belle V, De Raedt L.
2017 Solving probability problems in natural
language. In Proc. of the 26th Int. Joint Conf. on
Artificial Intelligence, Melbourne, Australia,
pp. 3981–3987. (doi:10.24963/ijcai.2017/556)

43. Hoernle N, Karampatsis RM, Belle V, Gal K. 2022
Multiplexnet: towards fully satisfied logical
constraints in neural networks. In Proc. of the
36th AAAI Conf. on Artificial Intelligence,
pp. 5700–5709. (doi:10.1609/aaai.v36i5.20512)

44. Chavira M, Darwiche A. 2008 On probabilistic
inference by weighted model counting. Artif.
Intell. 172, 772–799. (doi:10.1016/j.artint.2007.
11.002)

45. Belle V, Passerini A, Van den Broeck G. 2015
Probabilistic inference in hybrid domains by
weighted model integration. In Proc. of the 24th
Int. Joint Conf. on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25–31 July,
pp. 2770–2776. IJCAI Inc.

46. Chistikov D, Dimitrova R, Majumdar R. 2017
Approximate counting in SMT and value
estimation for probabilistic programs. Acta
Informatica 54, 729–764 . (doi:10.1007/s00236-
017-0297-2)

47. Albarghouthi A, D’Antoni L, Drews S, Nori AV.
2017 Fairsquare: probabilistic verification of
program fairness. Proc. ACM Program. Lang. 1,
1–30. (doi:10.1145/3133904)

48. Holtzen S, Van den Broeck G, Millstein T. 2020
Scaling exact inference for discrete probabilistic
programs. Proc. ACM Program. Lang. 4, 1–31.
(doi:10.1145/3428208)

49. Puterman ML. 1994 Markov decision processes:
discrete stochastic dynamic programming, 1st
edn. New York, NY: John Wiley & Sons Inc.

50. Reiter R. 1991 The frame problem in the
situation calculus: a simple solution
(sometimes) and a completeness result for goal
regression. In Artificial intelligence and
mathematical theory of computation: papers in
honor of John McCarthy, pp. 359–380.
New York, NY: Academic Press.

51. Nitti D, Belle V, De Laet T, De Raedt L. 2017
Planning in hybrid relational MDPs. Mach.
Learn. 106, 1–28. (doi:10.1007/s10994-017-
5669-x)

52. Kaelbling LP, Lozano-Pérez T. 2013 Integrated
task and motion planning in belief space. I.
J. Rob. Res. 32, 1194–1227. (doi:10.1177/
0278364913484072)

53. Chatterjee K, Chmelík M. 2015 POMDPs under
probabilistic semantics. Artif. Intell. 221, 46–72.
(doi:10.1016/j.artint.2014.12.009)

54. Corona G, Charpillet F. 2010 Distribution over
beliefs for memory bounded Dec-POMDP
planning. In Proc. of the Conf. on Uncertainty in
Artificial Intelligence, pp. 135–142.

55. Pajarinen JK, Peltonen J. 2011 Periodic finite
state controllers for efficient POMDP and DEC-
POMDP planning. In Advances in Neural
Information Processing Systems 24 (NIPS 2011),
pp. 2636–2644.
56. Pearl J. 1988 Probabilistic reasoning in
intelligent systems: networks of plausible
inference. Cambridge, MA: Morgan Kaufmann.

57. Richardson M, Domingos P. 2006 Markov logic
networks. Mach. Learn. 62, 107–136. (doi:10.
1007/s10994-006-5833-1)

58. Suciu D, Olteanu D, Ré C, Koch C. 2011
Probabilistic databases. Synthesis Lect. Data
Manage. 3, 1–180. (doi:10.2200/
S00362ED1V01Y201105DTM016)

59. Denecker M, Bruynooghe M, Marek V. 2001
Logic programming revisited: logic programs as
inductive definitions. ACM Trans. Comput. Logic
2, 623–654. (doi:10.1145/383779.383789)

60. Denecker M, Ternovska E. 2007 Inductive
situation calculus. Artif. Intell. 171, 332–360.
(doi:10.1016/j.artint.2007.02.002)

61. Pinto J, Reiter R. 1995 Reasoning about time in
the situation calculus. Ann. Math. Artif. Intell.
14, 251–268. (doi:10.1007/BF01530822)

62. Boutilier C, Reiter R, Soutchanski M, Thrun S.
2000 Decision-theoretic, high-level agent
programming in the situation calculus. In Proc.
of the 17th National Conference on Artificial
Intelligence and 12th Conf. on Innovative
Applications of Artificial Intelligence, July,
pp. 355–362. AAAI Press.

63. Liu D. 2023 Projection in a probabilistic
epistemic logic and its application to belief-
based program verification. PhD thesis, RWTH
Aachen University, Aachen, Germany.

64. Vassos S, Sardina S, Levesque H. 2009 Progressing
basic action theories with non-local effect actions.
In Proc. Commonsense – Proceedings of the 9th Int.
Symp. on Logical Formalizations of Commonsense
Reasoning, pp. 135–140.

65. McIlraith SA. 2000 Integrating actions and state
constraints: a closed-form solution to the
ramification problem (sometimes). Artif. Intell.
116, 87–121. (doi:10.1016/S0004-3702(99)
00087-9)

66. Lang J, Zanuttini B. 2012 Knowledge-based
programs as plans - the complexity of plan
verification. In ECAI’12: Proc. of the 20th
European Conf. on Artificial Intelligence, August,
pp. 504–509.

67. Treszkai L, Belle V. 2020 A correctness result for
synthesizing plans with loops in stochastic
domains. Int. J. Approx. Reason. 119, 92–107.
(doi:10.1016/j.ijar.2019.12.005)

68. Belle V, Levesque HJ. 2018 Reasoning
about discrete and continuous noisy sensors
and effectors in dynamical systems. Artif. Intell.
262, 189–221. (doi:10.1016/j.artint.2018.06.003)

69. Belle V, Lakemeyer G. 2017 Reasoning about
probabilities in unbounded first-order dynamical
domains. In Proc. of the 26th Int. Joint Conf. on
Artificial Intelligence (IJCAI-17), Melbourne,
pp. 828–836. (doi:10.24963/ijcai.2017/115)

70. Belle V, Van den Broeck G, Passerini A. 2015
Hashing-based approximate probabilistic inference
in hybrid domains. In Proc. of the 25th Int. Joint
Conf. on Artificial Intelligence, IJCAI 2016, New York,
NY, 9–15 July, pp. 4115–4119..

71. Lake BM, Salakhutdinov R, Tenenbaum JB. 2015
Human-level concept learning through
probabilistic program induction. Science 350,
1332–1338. (doi:10.1126/science.aab3050)

https://doi.org/10.1613/jair.1625
http://dx.doi.org/10.1016/0890-5401(92)90061-J
http://dx.doi.org/10.1007/3-540-60688-2_51
http://dx.doi.org/10.1007/978-3-540-78652-8_1
http://dx.doi.org/10.1007/s10994-015-5494-z
http://dx.doi.org/10.1007/3-540-48660-7_25
http://dx.doi.org/10.24963/ijcai.2017/556
http://dx.doi.org/10.1609/aaai.v36i5.20512
http://dx.doi.org/10.1016/j.artint.2007.11.002
http://dx.doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1007/s00236-017-0297-2
https://doi.org/10.1007/s00236-017-0297-2
http://dx.doi.org/10.1145/3133904
http://dx.doi.org/10.1145/3428208
http://dx.doi.org/10.1007/s10994-017-5669-x
http://dx.doi.org/10.1007/s10994-017-5669-x
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1016/j.artint.2014.12.009
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.2200/S00362ED1V01Y201105DTM016
http://dx.doi.org/10.2200/S00362ED1V01Y201105DTM016
http://dx.doi.org/10.1145/383779.383789
http://dx.doi.org/10.1016/j.artint.2007.02.002
http://dx.doi.org/10.1007/BF01530822
http://dx.doi.org/10.1016/S0004-3702(99)00087-9
http://dx.doi.org/10.1016/S0004-3702(99)00087-9
http://dx.doi.org/10.1016/j.ijar.2019.12.005
http://dx.doi.org/10.1016/j.artint.2018.06.003
http://dx.doi.org/10.24963/ijcai.2017/115
http://dx.doi.org/10.1126/science.aab3050

	Logic + probabilistic programming + causal laws
	Introduction
	Why probabilistic programming + logic?
	You roll a fair six-sided die twice. What is the probability that the first roll shows a five and the second roll shows a six?

	HYPE
	ALLEGRO
	A qualitative comparison
	Static modelling
	Observations and actions
	Synthesis versus policy execution
	Incomplete and partial specifications

	Conclusion
	Data accessibility
	Declaration of AI use
	Author's contributions
	Conflict of interest declaration
	Funding
	References


