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Abstract

Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how

injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed

a systematic review and meta-analysis of studies that assessed thigmotaxis in the open

field test. Systematic searches were conducted of 3 databases in October 2020, March and

August 2022. Study design characteristics and experimental data were extracted and ana-

lysed using a random-effects meta-analysis. We also assessed the correlation between

thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of

165 studies We report thigmotaxis was increased in injury and disease models associated

with persistent pain and this increase was attenuated by analgesic drug treatments in both

rat and mouse experiments. Its usefulness, however, may be limited in certain injury and

disease models because our analysis suggested that thigmotaxis may be associated with

the locomotor function. We also conducted subgroup analyses and meta-regression, but

our findings on sources of heterogeneity are inconclusive because analyses were limited by

insufficient available data. It was difficult to assess internal validity because reporting of

methodological quality measures was poor, therefore, the studies have an unclear risk of

bias. The correlation between time in the centre (type of a thigmotactic metric) and types of

stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and etholo-

gically relevant behavioural paradigms should be viewed as two separate entities as they

are conceptually and methodologically different from each other.
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1. Introduction

Chronic pain is a leading cause of the global disease burden [1]. However, current analgesic

drugs lack efficacy and have unwanted side effects, leaving chronic pain patients with inad-

equate pain relief. Thus, there is a need for analgesics with better efficacy and safety profiles

[1]. Several promising novel drugs with encouraging preclinical results have failed to

exhibit clinical efficacy [2–6]. This translational failure has led researchers to question the

validity of current animal pain associated models, in particular how well they mimic the

disease and whether the outcome measures used are measuring the intended clinical

construct.

Surrogate outcome measures are used to assess pain-like behaviours in animal models. Sev-

eral large systematic reviews and reviews of historical data have demonstrated that stimulus-

evoked limb withdrawal is the most frequently used type of behavioural outcome measure in

preclinical pain research However, stimulus-evoked paradigms have limitations that can

undermine their validity. First, they have limited clinical relevance [4]. They are involuntary

responses triggered by spinal reflexes so they cannot address spontaneous pain and clinical

phenotypes relating to sensory loss of function, and for example, patients with neuropathic

pain experience both phenotypes [7–9]. Second, information regarding the affective and physi-

cal dimensions of pain cannot be addressed, and these factors are usually emphasised in clini-

cal settings [7]. Moreover, rodents can also learn to associate premature withdrawal with less

stimulations and human interaction [10]. Lastly, they cannot distinguish analgesic effects from

sedation, which can further compromise their predictive validity. Therefore, animal pain

research needs to identify and validate alternative outcome measures that can address these

limitations.

Various voluntary and operant behaviours have been reported to be affected by experimen-

tal nociception [11–13]. These complex ethologically relevant behaviours are increasingly

being exploited to assess the impact of persistent and spontaneous pain on an animal’s physical

function and general wellbeing [14–18]. It should be noted that these ethologically relevant

behaviours are not pain specific, so it is crucial to contextualise them to pain research. Pain

contextualisation can be achieved by showing that changes in these behaviours are caused by

injury and disease models associated with pain and that changes can be reversed by adminis-

tering known analgesics.

Thigmotaxis is an innate predator avoidance rodent behaviour that is usually displayed

when they are under stress [19], and it can be objectively measured in an open field test (OFT).

The behaviour is characterised by the preference of a rodent to seek shelter instead of exposing

itself to the aversive open area i.e., an stressed animal is more likely to stay in proximity of the

walls and avoid the relatively exposed centre of the open area and is less likely to explore the

open area/novel environment than a less stressed animal [19]. This behavioural paradigm is

commonly used for animal research of psychiatric disorders, particularly anxiety, but its use in

the pain field is relatively novel. It has been postulated that the behaviour could give insight

into the affective, cognitive, and sensory dysfunction associated with pain. It could also reflect

the clinical observations of exacerbated avoiding behaviours and anxiodepressive disorders

that are associated with patients with chronic pain [20–22]. Existing studies have shown

increased thigmotaxis in several rodent experimental models associated with chronic pain

[23–26]. Furthermore, thigmotaxis has shown sensitivity towards clinically approved analge-

sics where the behaviour was reduced in rodents with experimental chronic pain by gabapen-

tin and morphine [23, 27, 28]. Moreover, the motor function of an animal can also be assessed

during the OFT, therefore thigmotaxis is a measurable construct that can potentially address

aspects of the affective and physical dimensions of pain.
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However, like other ethologically relevant behaviours, thigmotaxis can be perturbed by var-

ious factors. For example, thigmotaxis can be enhanced by increasing light intensity in the

open area [29]. The reliability of thigmotaxis as a pain-related outcome measure across differ-

ent disease models is also unclear. To improve our understanding, we conducted a systematic

review accompanied with a meta-analysis to assess the strengths and limitations of using thig-

motaxis during the OFT in animal pain research. We have appraised the current experimental

designs including the OF apparatus, type of thigmotactic outcome measures and experimental

conditions, and have tried to identify factors that can influence the final thigmotactic outcome.

In addition, we have assessed the correlation between the widely used stimulus-evoked limb

withdrawal and thigmotactic outcomes to aid our assessment of the translational value of these

preclinical models.

1.1. Aims and objectives

This systematic review aimed to 1) assess whether thigmotaxis can be affected by injury and

disease models associated with persistent pain and analgesic drug treatments in rodents; 2)

explore study design characteristics and assess their influence on thigmotactic outcomes; 3)

perform a risk of bias assessment to evaluate and assess their impact on thigmotactic out-

comes; 4) identify the presence of publication bias and determine its direction and magnitude;

5) assess the correlation of thigmotaxis and total distance travelled and stimulus-evoked limb

withdrawal in the same cohorts of animals.

2. Results

2.1. Study selection

A total of 1819 publications were retrieved from three systematic searches; of which, 705 were

included after title and abstract screening. Full-text screening identified 181 studies that met

the inclusion criteria (Fig 1). A total of 16 studies were not included for meta-analysis as they

reported no data for the meta-analysis despite contacting the authors for the missing data.

Thus, data of 165 studies were included in the meta-analysis [30].

2.2. Study characteristics

The 181 studies included a total of 5998 rodents (3943 in animal modelling and 2055 in drug

experiments). Thigmotaxis was reported in 66 different rodent models associated with persis-

tent pain. These models are listed according to the classification (28 model classes) in Table 1;

nerve injury induced neuropathy (40%, k = 147) and inflammation (13%, k = 49) were the

most frequently reported. Eighty drugs are classified by their mechanism of action (53 drug

classes) using the IUPHAR/BPS guide to Pharmacology (https://www.guidetopharmacology.

org/) as listed in Table 2; gabapentinoids (10%, k = 15) were the most frequently investigated.

Rats were used in 52% (k = 193) of the experiments and 48% (k = 178) used mice. Further-

more, 81% (k = 303) used male animals, 16% (k = 59) used female animals, 2% (k = 7) used

mixed sexes, and 1% (k = 2) did not report the sex of the animals used. Information regarding

acclimatisation, animal husbandry and experimental conditions is summarised in S1 File. The

reporting of humidity, noise and vibration level in both housing and testing room were low.

For acclimatisation and animal husbandry, number of light/dark hours was the most fre-

quently reported (85% studies), with a range between 12/12 hr to 14/10 hr and a median of 12/

12hr. For experimental conditions, shape of the open arena was the most frequently reported

(96% studies), and most studies reported using a rectangular or square shaped open arena.
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2.3. Meta-analysis of thigmotactic outcomes

Species accounted for a significant proportion of heterogeneity (animal modelling: Q = 23.27,

df = 1, p< 0.0001). Thus, animal modelling and drug treatment data of rats and mice were

analysed separately. The type of control used in animal modelling experiments (i.e. sham vs

naïve) did not account for a significant proportion of heterogeneity (rats: Q = 0.71, df = 1,

p = 0.4; mice: Q = 3.13, df = 1, p = 0.08). There are fewer comparisons using naïve controls

(rats: sham = 91 vs naïve = 12; mice: sham = 116 vs naïve = 5), and due to the known differ-

ences between the two control types, they have been analysed separately. Thigmotaxis was

increased by injury and disease models associated with persistent pain compared to naïve con-

trols in rats, the full analysis is presented in S2 File. There were too few mouse experiments

using naïve controls to analyse how thigmotaxis can be affected by injury and disease models

associated with persistent pain (S2 File). We have divided the reporting of results by type of

study (i.e., modelling experiments or drug intervention experiments) and by species (i.e., rats

and mice) therefore we have four datasets: (i) dataset 1 –effects of modelling persistent pain on

thigmotaxis outcomes in rats, (ii) dataset 2—effects of analgesic drug interventions on thigmo-

taxis outcomes in rat injury and disease models associated with persistent pain, (iii) dataset 3 –

effects of modelling persistent pain on thigmotaxis outcomes in mice, (iv) dataset 4 –effects of

analgesic drug interventions on thigmotaxis in mouse injury and disease models associated

with persistent pain.

Fig 1. PRISMA flow diagram. A flow diagram of publications identified through three separate systematic searches of three electronic databases (EMBASE,

PubMed, and Web of Science). The diagram illustrates the number of records (n) at deduplication, screening, and study eligibility for both qualitative and

quantitative analyses. Reported in accordance with the PRISMA 2020 guideline [27].

https://doi.org/10.1371/journal.pone.0290382.g001
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Table 1. Summary of the model types used in animal modelling and drug treatment experiments during the OFT for assessing thigmotaxis.

Model Type (No. of total studies) Model Name Thigmotaxis

No. of

studies

No. of cohort-level

comparisons

No. of

rats

No. of

mice

Neuropathy–nerve injury (83) Sciatic nerve ligation 31 53 395 363

Spared nerve injury 23 47 365 423

Spinal nerve ligation 10 22 349 79

Partial sciatic nerve ligation 6 6 86 56

Infraorbital nerve constriction 5 8 68 93

Spinal nerve transection 4 6 65 36

Chronic compression of multiple dorsal root ganglia 1 2 38 -

Partial transection of the infraorbital nerve 1 1 - 42

Sciatic nerve resection 1 1 18 -

Ligation of the common peroneal nerve 1 1 - 14

Inflammation (19) Complete Freund’s Adjuvant (non-articular) 17 42 146 447

Lipopolysaccharide (LPS) 1 6 59 -

Bee venom 1 1 20 -

Migraine (12) Nitroglycerine 5 10 114 -

Stress induced migraine 1 4 - 64

Optogenetic spreading depression 1 2 - 123

AAV2-EF1a-DIO-ChR2(E123A)-mCherry (activate CGRP

neurons in the medial nucleus)

1 2 - 39

Calcitonin gene-related peptide 1 2 - 22

Prostaglandin E2, histamine, serotonin and bradykinin

(intracranial)

1 1 19 -

LEI106 1 1 16 -

Acrolein 1 1 15 -

Visceral inflammation (11) 2,4,6-trinitrobenzene sulfonic acid induced colitis 5 8 157 -

Dextran sulfate sodium induced colitis 2 3 - 74

Zymosan induced colitis 1 8 - 72

Turpentine induced bladder inflammation 1 2 45 -

Cerulein induced pancreatitis 1 1 - 20

Deoxycholic acid induced colonic inflammation 1 1 16 -

Spinal cord injury (9) Spinal cord injury 9 26 81 323

Arthropathy (5) Monosodium iodoacetate (intra-articular) 2 3 20 30

Complete Freund’s Adjuvant (intra-articular) 1 5 49 -

Carrageenan (knee joint cavity) 1 2 30 -

Kaolin and carrageenan induced monoarthritis (synovial

cavity)

1 1 12 -

Neuropathy–antiretroviral therapy (5) Dideoxycytidine (ddC) 3 8 135 -

Stavudine (D4T) 1 1 24 -

Indinavir 1 1 16 -

Neuropathy–chemotherapy (5) Paclitaxel 3 6 19 72

Cyclophosphamide 1 2 18 -

A mixture of FOLFOX components (oxaliplatin, 5-FU, LV

calcium salt)

1 1 20 -

Bone fracture (4) Tibial fracture 4 5 - 106

Diabetic neuropathy (4) Streptozotocin 4 9 81 20

(Continued)
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2.3.1. Dataset 1: Effects of modelling persistent pain on thigmotaxis outcomes in rat

experiments using sham controls. A total of 68 studies, containing 91 cohort-level compari-

sons, 1678 rats, and a sample size range from 6 to 60 with a median of 16 animals per group,

assessed the effects of 21 types of disease models associated with persistent pain on thigmo-

taxis. Eighty percent (k = 73) of experiments assessed thigmotaxis by measuring time spent in

the centre, 10% (k = 9) measured distance travelled in the centre, 7% (k = 6) measured entries

to the centre, 2% (k = 2) measured time spent in the periphery and 1% (k = 1) measured num-

ber of central crossings.

Thigmotaxis was increased in injury and disease models associated with persistent pain com-
pared to sham controls in rats. The model significantly increased thigmotaxis in rats compared

to sham controls (SMD = -3.35 [95%CI -4.01 to -2.69]). Heterogeneity was high (Q = 4651.06,

df = 90, p< 0.0001, I2 = 98%) (Fig 2).

Table 1. (Continued)

Model Type (No. of total studies) Model Name Thigmotaxis

No. of

studies

No. of cohort-level

comparisons

No. of

rats

No. of

mice

Post-surgical pain (4) Ovariectomy 2 2 9 11

Paw surgical incision 1 4 44 -

Rib retraction via thoracotomy 1 2 32 -

Cancer (3) B16-F10 murine melanoma cell 1 9 - 128

B6 Hi-Myc 1 1 - 20

MRMT-1/Luc cells 1 1 21 -

Fibromyalgia (3) Reserpine induced fibromyalgia 2 2 - 22

Acid injection 1 3 60 -

Parkinson’s Disease (3) MPTP induced 1 2 - 41

A53T transgenic mice 1 1 - 24

6-OHDA 1 1 - 24

Traumatic brain injury (2) Closed head traumatic injury 2 4 50 11

Combined models (2) Tibial fracture and closed-head traumatic brain injury 1 2 - 22

Sciatic nerve ligation and ovariectomy 1 1 9 -

Acute herpes Zoster (1) Varicella zoster virus inoculation 1 2 34 -

Autoimmune encephalomyelitis (1) MOG35-55; saponin Quil A; PTX 1 2 - 46

Hyperhomocysteinemia (1) Methionine 1 1 30 -

Formalin (1) Formalin 1 2 - 32

mGlu5R overexpression in the caudal part

prelimbic area (1)

mGlu5G-expressed lentivirus 1 1 20 -

Myocardial infarction (1) Myocardial infarction 1 1 15 -

Neuropathy–resiniferatoxin (1) Resiniferatoxin 1 2 48 -

Neuropathy–HIV and antiretroviral therapy

(1)

HIV gp120 + dideoxycytidine (ddC) 1 2 32 -

Neuropathy–HIV (1) HIV gp120 1 1 16 -

Neurotoxicity (1) Diiodohydroxyquinoline 1 4 80 -

P2Y12 deficiency (1) P2Y12 homozygous KO 1 1 - 24

Stroke (1) Central post stroke pain 1 5 79 -

TOTAL 371 3075 2923

https://doi.org/10.1371/journal.pone.0290382.t001
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Table 2. Classification of the drug treatments.

Drug Class Drug Name Thigmotaxis

No. of

studies

No. of cohort-level

comparisons

No. of

rats

No. of

mice

Gabapentinoid (10) Gabapentin 6 10 76 36

Pregabalin 3 3 31 14

Mirogabalin besylate 1 2 36 -

Hydrogen sulphide donor (7) Allyl isothiocyanate (A-ITC) 2 2 - 31

Phenyl isothiocyanate (P-ITC) 2 2 - 31

GYY4137 2 2 - 28

DADS (Diallyl disulphide) 1 1 - 12

Unknown mechanism of action (6) Paeonia lactiflora 1 3 33 -

8-O-Acetyl Shanzhiside Methylester 1 3 - 24

Shorea roxburghii polyphenol extract 1 2 18 -

α-lipoic acid (antioxidant) 1 1 - 16

Albiflorin 1 1 12 -

Betanin (red beetroot extract) 1 1 - 12

Serotonin-norepinephrine reuptake inhibitor (5) Duloxetine 2 2 31 -

Fluoxetine 2 2 21 -

Citalopram 1 1 17 -

GABA agonist (4) Muscimol 2 2 30 15

Diazepam 2 2 31 -

Tetracycline antibiotic (4) Minocycline 4 5 80 -

Opioid (4) Morphine 3 7 66 30

DALDA (mu opioid agonist) 1 2 - 23

PPAR (peroxisome proliferator-activator-α) antagonist

(4)

GW6471 1 1 10 -

GSK0660 1 1 10 -

GW9662 1 1 10 -

Resveratrol 1 1 14 -

Tricyclic antidepressant (TCA) (4) Amitriptyline 3 3 32 14

Imipramine 1 1 13 -

Antimalarial (3) Artemether (AR-TN) [artemisinin

derivative]

1 1 - 14

Artesunate (ART) [artemisinin derivative] 1 1 - 14

Dihydroartemisinine (DHA) [artemisinin

derivative]

1 1 - 14

Anti-TNF (TNF blocker) (2) Etanercept 1 1 - 21

Xpro1595 1 1 - 21

Cannabinoid (2) Cannabidiol 2 5 50 -

CGRP receptor antagonist (2) CGRP 8–37 1 2 72 -

Olcegepant (BIBN4096BS) 1 2 - 32

Dopamine receptor agonist (2) Quinpirole 1 1 - 20

SKF38393 1 1 - 19

Palmitoylethanolamide (2) L-29 (Palmitoylallylamide)–

palmitoylethanolamide analogue

1 1 20 -

N-palmitoylethanolamide 1 1 10 -

mTOR inhibitor (2) Rapamycin 2 2 38 -

MEK1 and MEK2 inhibitor (2) U0126 2 3 29 -

(Continued)
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Table 2. (Continued)

Drug Class Drug Name Thigmotaxis

No. of

studies

No. of cohort-level

comparisons

No. of

rats

No. of

mice

Translocator protein agonist (2) ZBD-2 1 2 - 24

AC-5216 1 1 15 -

TRPA1 antagonist (2) HC-030031 1 1 - 16

TRPA1 oligonucleotides antisense 1 1 - 16

Combined therapies (2) Dexmedetomidine + 2’3’-cGAMP 1 1 9 -

Ketamine + 2’3’-cGAMP 1 1 9 -

5-HT receptor agonist (1) Serotonin 1 1 - 20

Acetylcholinesterase inhibitor (1) Scopoletin 1 4 - 66

Angiotensin II type 2 receptor agonist (1) Novokinin 1 1 20 -

Angiotensin II type 2 receptor antagonist (1) EMA300 1 1 20 -

Adenylyl cyclase 1 inhibitor (1) NB001 1 4 - 36

FFA1 and retinoid X receptor-α agonist (1) Docosahexaenoic acid 1 3 62 -

β adrenoceptor antagonist (1) Propranolol 1 2 32 -

Flavone (1) Luteolin 1 1 - 18

Cysteine protease (1) Bromelain 1 4 40

GABAA receptor positive allosteric modulator (1) Etifoxine 1 1 - 20

GRP30 agonist (1) G1 1 3 - 24

HCN (hyperpolarization-activated cyclic nucleotide-

gated) channel blocker (1)

ZD7288 1 1 - 14

Heme oxygenase 1 inducer (1) Protoporphyrin 1 1 - 16

Botulinum toxin (1) Botulinum toxin type A 1 1 - 16

NMDA receptor antagonist (1) Ketamine 1 2 25 -

NG, NG-Dimethylarginine dimethylaminohydrolase

(DDAH) 1 inhibitor (1)

N5-(1-imino-3-butenyl)-L-ornithine

(L-VNIO)

1 2 - 56

NPS receptor agonist (1) Neuropeptide S 1 2 24 -

NSAID (1) Ibuprofen 1 1 8 -

Orexin receptor agonist (1) Orexin-A 1 2 18 -

Fatty acid derived specialised pro-resolving mediator

(SPM) (1)

Resolvin D5 1 3 27 -

PAC1 receptor antagonist (1) PACAP(6–38) 1 1 10 -

Paracetamol (1) Paracetamol 1 1 12 -

Protein kinase Mzeta inhibitor (1) Zeta interacting protein (ZIP) 1 1 12 -

Selective α2-adrenergic receptor agonist (1) Dexmedetomidine 1 1 9 -

Selective BKca channel agonist (1) NS1619 1 1 12 -

Selective MEK1 pathway inhibitor (1) PD98059 1 1 10 -

Selective NLRP3 inhibitor (1) MCC950 1 1 12 -

FZD8 negative allosteric modulator (tricyclic

anticonvulsant) (1)

Carbamazepine 1 1 20 -

Sodium channel blocker Lidocaine 1 1 24 -

Free fatty acid (FFA1) receptor agonist (1) 2-OHOA (2-Hydroxy Oleic Acid) 1 1 12 -

Vasopressin and oxytocin receptor agonist (1) Oxytocin 1 1 - 14

(Continued)
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Sensitivity analysis showed that the removal of the two comparisons from Ren et al., 2021

(b) and Wu et al., 2017 which reported very large effect sizes did not significantly change the

summary effect size (SMD = -3.05 [95%CI -3.57 to -2.53]).

A positive correlation between time spent in the centre and total distance travelled in rat
modelling experiments. A total of 60 cohort-level comparisons assessed both time in the centre

and total distance travelled in rat modelling experiments. Overall, total distance travelled was

significantly reduced by injuries and disease models associated with persistent pain (SMD =

-2.04 [95%CI -2.86 to -1.22]) (Fig 3). Total distance travelled was reduced most in neurotoxic-

ity models (SMD = -6.30, [95%CI -6.37 to -6.23], k = 4) and was reduced least in diabetic neu-

ropathy models (SMD = 0.14, [95%CI -24.35 to 24.63], k = 2).

There is a moderate positive correlation (Coefficient = 0.46, df = 58, p = 0.0002) (Fig 4)

between time spent in the centre and total distance travelled. Where there were enough

cohort-level comparisons, we also assessed the correlation between time in the centre and total

distance travelled within the same model class. In rats modelled with nerve injury induced

neuropathy (k = 24), time in the centre did not correlate with total distance travelled (Coeffi-

cient = 0.22, df = 22, p = 0.31) (Fig 5).

Effects of animal model and animal characteristics on the thigmotactic outcome in rat model-
ling experiments. Visceral inflammation (k = 11) and nerve injury induced neuropathy

(k = 39) were the only model classes with enough comparisons for stratified meta-analysis.

The model class did not account for a significant proportion of heterogeneity (Q = 0.17, df = 1,

p = 0.68) (Fig 6A). Sensitivity analysis showed that the removal of the comparison from Ren

et al., 2021 (b) significantly affected the summary effect size of visceral inflammation (SMD =

-2.44 [95%CI -3.94 to -0.95]).

Male rats were used in 82% (k = 75) of experiments, female rats were used in 17% (k = 15),

and 1% (k = 1) did not report the sex of the rats used. Sex accounted for a significant propor-

tion of heterogeneity (Q = 15.59, df = 1, p< 0.0001) (Fig 6B). Thigmotaxis was more signifi-

cantly increased in male rats.

Four rat strains were reported. Sprague-Dawley was the most reported strain (66%, k = 60).

Wistar and Sprague-Dawley rats were the only two strains with enough comparisons for strati-

fied meta-analysis. Strain did not account for a significant proportion of heterogeneity

(Q = 0.05, df = 1, p = 0.82) (Fig 6C).

Open field tests were conducted from immediately after model induction to 35 days after

nerve injury (for which there were 41 comparisons that reported time since model induction).

Time accounted for a significant proportion of heterogeneity (Q = 652.50; d.f. = 13; p

<0.0001) (Fig 7A). However, this was not the case when time was analysed in weekly blocks

(Q = 3.31; d.f. = 3; p = 0.35) (Fig 7B).

Table 2. (Continued)

Drug Class Drug Name Thigmotaxis

No. of

studies

No. of cohort-level

comparisons

No. of

rats

No. of

mice

CYP4F2 inhibitor (1) Sesamin 1 1 - 10

COMT (Catechol-O-methyltransferase) and MAO

(monoamine oxidase) inhibitor (1)

Rosmarinic acid 1 1 - 16

TOTAL 147 1232 823

https://doi.org/10.1371/journal.pone.0290382.t002
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Fig 2. Forest plot of effect of modelling in rats. A summary forest plot of the 91 cohort-level comparisons which

assessed the impact of modelling compared to sham control on rat thigmotaxis. For each comparison, an effect size

was calculated using the Hedges’ g SMD method. Effect sizes were pooled using the random effects model. The

restricted maximum-likelihood method was used to estimate heterogeneity. The overall effect size is -3.35 [95% CI

-4.01 to -2.69]; Q = 4651.06, df = 90, p< 0.0001, I2 = 98%. The size of the square represents the weight, which reflects

the contribution of each comparison with the pooled effect estimate. TIC, time spent in the centre; TIP, time spent in

the periphery. CI, confidence interval; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g002
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Fig 3. Forest plot of impact of modelling on total distance travelled in rats. Sixty cohort-level comparisons assessed the impact

of modelling on total distance travelled in rats. The overall effect size is -2.04 [95% CI -2.86 to -1.22]. The size of the square

represents the weight, which reflects the contribution of each comparison with the pooled effect estimate. CI, confidence interval;

k, number of cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g003

Fig 4. A Pearson’s correlation test between time in the centre and total distance travelled in rat modelling experiments. There is

a moderate positive correlation (Coefficient = 0.46, df = 58, p = 0.0002, k = 60). A line of best fit (in red) was drawn. SMD,

standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g004
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Fig 5. A Pearson’s correlation test between time in the centre and total distance travelled in rats modelled with nerve injury.

There is no correlation (Coefficient = 0.22, df = 22, p = 0.31, k = 24). A line of best fit (in red) was drawn. SMD, standardised mean

difference.

https://doi.org/10.1371/journal.pone.0290382.g005

Fig 6. Forest plots of the thigmotactic outcome in rats modelled with models associated with persistent pain: (A)

model class, (B) sex, and (C) rat strain. The size of the square represents the weight. CI, confidence interval; k,

number of cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g006
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We could not perform a stratified meta-analysis to ascertain the effect of using different

thigmotactic outcome metrics because of the predominance of “time spent in the centre” and

little use of other metrics.

2.3.2. Dataset 2: Effects of analgesic drug interventions on thigmotaxis outcomes in rat

injury and disease models associated with persistent pain. A total of 44 studies, containing

90 cohort-level comparisons, 1232 rats, and a sample size range from 8 to 48 with a median of

Fig 7. Forest plots investigating impact of time since model induction on rat thigmotaxis. Forty-one cohort-level

comparisons assessed the impact of nerve injury models at (A) different time points (number of hours from model

induction to the first OFT assessment) to sham control on rat thigmotaxis. (B) Time block analysis. For each

comparison, an effect size was calculated using the Hedge’s g SMD method. Effect sizes were pooled using the random

effects model. The size of the square represents the weight, which reflects the contribution of each comparison with the

pooled effect estimate. CI, confidence interval; k, number of cohort-level comparisons.

https://doi.org/10.1371/journal.pone.0290382.g007
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12 per group, assessed the effects of drug treatments from 35 drug classes on thigmotaxis

within 14 types of models associated with persistent pain. Gabapentinoid was the most

reported drug class (11%, k = 10). Male rats were used in 99% (k = 89) of experiments and

female rats were used in 1% (k = 1). Eighty-eight percent (k = 79) of experiments assessed thig-

motaxis by measuring time spent in the centre, 9% (k = 8) measured entries to the centre and

3% (k = 3) measured distance travelled in the centre. Drug treatments significantly reduced

thigmotaxis in rat injury and disease models associated with persistent pain (SMD = 2.18 [95%

CI 1.70 to 2.67]). Heterogeneity was high (Q = 1810.12, df = 89, p< 0.0001, I2 = 94%) (Fig 8).

A positive correlation between time in the centre and total distance travelled in rat analgesic
drug treatment experiments. A total of 45 cohort-level comparisons assessed both time in the

centre and total distance travelled in analgesic drug treatment experiments. Overall, total dis-

tance travelled was increased in drug experiments (SMD = 0.96 [95%CI 0.40 to 1.52]) (Fig 9).

Total distance travelled was reduced the most in rats modelled with post-surgical pain that

were given NMDA receptor antagonist (SMD = -2.51 [95%CI -3.53 to -1.49], k = 1), and was

increased the most in rats modelled with nerve injury induced neuropathy that were given β-

adrenoceptor antagonist (SMD = 4.28 [95%CI 2.62 to 5.94], k = 2). It should be noted that the

prevalence of reporting for each drug class in each model class is low and may hinder the gen-

eralisability of such findings.

There was a moderate positive correlation between time in the centre and distance travelled

(Coefficient = 0.42, df = 43, p = 0.004) (Fig 10). To assess the effect of modelling, we could only

analyse the correlation in rats modelled with nerve injury induced neuropathy (k = 18), and

there was no correlation (Coefficient = 0.35, df = 16, p = 0.16) (Fig 11). Insufficient cohort-

level comparisons prevented further correlation tests of drug class and time in the centre and

total distance travelled within the same model class.

Unable to assess effects of animal model and animal characteristics on the thigmotactic out-
come in rat analgesic drug treatment experiments. We could not ascertain the effects of using

different model classes, drug classes, sexes, and type of thigmotactic metrics on thigmotactic

outcomes because only one condition from each variable has enough cohort-level compari-

sons. The full dataset can be accessed on Open Science Framework (OSF) (https://osf.io/

xqgsc). However, the effect of strain could be assessed. Of the six strains reported, stratified

meta-analysis of Sprague-Dawley (k = 43) and Wistar (k = 40) rats showed strain that did not

account for a significant proportion of heterogeneity (Q = 0.00, df = 1, p = 0.98) (Fig 12).

2.3.3. Dataset 3: Effects of modelling persistent pain on thigmotaxis outcomes in mouse

experiments using sham controls. A total of 53 studies, containing 116 cohort-level compar-

isons, 2012 mice, and a sample size range from 7 to 63 with a median of 13.5 animals per

group, assessed the effects of 16 types of disease models associated with persistent pain on thig-

motaxis. Seventy-two percent (k = 83) of experiments assessed thigmotaxis by measuring time

spent in the centre, 23% (k = 27) measured time spent in the periphery and 5% (k = 6) mea-

sured distance travelled in the centre. Thigmotaxis was increased by injury and disease models

associated with persistent pain compared to sham controls in mice (SMD = -1.23 [95%CI

-1.80 to -0.67]). Heterogeneity was high (Q = 4316.72, df = 115, p< 0.0001, I2 = 97%) (Fig 13).

No correlation between time in the centre, time in the periphery and total distance travelled in
mouse modelling experiments compared to sham controls. A total of 49 cohort-level compari-

sons assessed both time in the centre and total distance travelled in animal modelling experi-

ments. Overall, total distance travelled was reduced by injury and disease models associated

with persistent pain (SMD = -1.50 [95%CI -2.93 to -0.07]) (Fig 14). Total distance travelled

was reduced the most in mice with P2Y12 deficiency (SMD = -5.95 [95%CI -6.83 to -5.07],

k = 1), and was increased the most in mice modelled with traumatic brain injury (SMD = 2.30

[95%CI 0.68 to 3.92], k = 1).
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Fig 8. Forest plot of drug treatment effects on rat thigmotaxis. A summary forest plot of the 90 cohort-level

comparisons which assessed the drug treatment effects on rat thigmotaxis. For each comparison, an effect size was

calculated using the Hedges’ g SMD method. Effect sizes were pooled using the random effects model. The restricted

maximum-likelihood method was used to estimate heterogeneity. The size of the square represents the weight, which

reflects the contribution of each comparison with the pooled effect estimate. TIC, time spent in the centre. CI,

confidence interval; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g008
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There was no correlation between time in the centre and total distance travelled (Coeffi-

cient = 0.26, df = 47, p = 0.07). (Fig 15). In mice modelled with nerve injury neuropathy

(k = 24) there wasn’t a correlation (Coefficient = -0.02, df = 22, p = 0.94) (Fig 16).

A total of 26 cohort-level comparisons assessed both time in the periphery and total dis-

tance travelled in mouse modelling experiments, and there was no correlation (Coeffi-

cient = 0.30, df = 24, p = 0.14) (Fig 17). We also assessed the correlation between time in the

periphery and total distance travelled in mice modelled with nerve injury induced neuropathy

(k = 13) (Fig 18A) and inflammation (k = 11) (Fig 18B), and there wasn’t a correlation (Coeffi-

cient = 0.13, df = 11, p = 0.66; Coefficient = 0.33, df = 9, p = 0.32, respectively).

Effects of animal model and animal characteristics on the thigmotactic outcome in mouse
modelling experiments. Nerve injury induced neuropathy (k = 50), inflammation (k = 19) and

spinal cord injury (k = 11) were the three model classes with enough comparisons for a

Fig 9. Forest plot of impact of modelling and drug treatment on total distance travelled in rats. Forty-five cohort-level comparisons

assessed the impact of modelling and drug treatment on total distance travelled in rats. The overall effect size is 0.96 [95% CI 0.40 to 1.52]. The

size of the square represents the weight, which reflects the contribution of each comparison with the pooled effect estimate. CI, confidence

interval; k, number of cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g009
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stratified analysis. The model class did not account for a significant proportion of heterogene-

ity (Q = 0.62, df = 2, p = 0.73) (Fig 19A). Only mice modelled with nerve injury induced neu-

ropathy significantly increased thigmotaxis (SMD = 01.27 [95%CI -2.23 to -0.30]).

Male mice were used in 71% (k = 82) of experiments, female mice were used in 25%

(k = 29), 3% (k = 4) used mixed sexes, and 1% (k = 1) did not report the sex of the mice used.

The experiment in which sex was not reported, and the 4 experiments which reported mixed

sexes were not included in the stratified meta-analysis. Sex did not account for a significant

proportion of heterogeneity (Q = 0.04, df = 1, p = 0.84) (Fig 19B). Thigmotaxis was more sig-

nificantly increased in male mice.

Twelve mouse strains were reported. C57BL/6 was the most reported strain (78%, k = 90).

It was not possible to ascertain the effect of strain on the thigmotactic outcome because of too

few cohort-level comparisons for a stratified meta-analysis.

Similarly, we could not perform a stratified analysis to ascertain the effect of using different

thigmotactic because only time spent in the centre and time spent in the periphery have

enough cohort-level comparisons, and they are obverse of each other.

Open field tests were conducted between 24 h and 180 days after nerve injury (for which

there were 46 comparisons that reported time since model induction). All time points

accounted for a significant proportion of heterogeneity (Q = 634.39; d.f. = 19; p<0.0001)

(Fig 20A). The same was observed in the time block analysis (Q = 16.61; d.f. = 3; p = 0.0009)

and the 2–3 week time block resulted in the largest observed effect sizes (Fig 20B). However,

these findings should be interpreted with caution given the low number of comparisons for

each time period.

Fig 10. A Pearson’s Correlation test between time in the centre and total distance travelled in rat drug treatment experiments.

There is a moderate positive correlation (Coefficient = 0.42, df = 43, p = 0.004, k = 45). A line of best fit (in red) was drawn. SMD,

standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g010
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2.3.4. Dataset 4: Effects of analgesic drug interventions on thigmotaxis outcomes in

mouse models of persistent pain. A total of 27 studies, containing 57 cohort-level compari-

sons, 823 rats, and a sample size range from 8 to 30 with a median of 14 per group, assessed

the effects of drug treatments from 25 drug classes on thigmotaxis in 11 types of models associ-

ated with persistent pain. Hydrogen sulfide donor was the most reported drug class (12%,

k = 7). Male mice were used in 81% (k = 46) of experiments, female mice were used in 14%

(k = 8) and 5% (k = 3) of experiments used mixed sexes. There were 4 different mouse strains

reported, and C57BL/6 was the most reported strain (86%, k = 49). Sixty-eight percent (k = 39)

Fig 11. A Pearson’s Correlation test between time in the centre and total distance travelled in drug treatment experiments in

rats modelled with nerve injury. There is no correlation (Coefficient = 0.35, df = 16, p = 0.16, k = 18). A line of best fit (in red) was

drawn. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g011

Fig 12. A forest plot of the drug treatment effect on thigmotactic outcome in Wistar and Sprague-Dawley rats induced

with models associated with persistent pain. The size of the square represents the weight. CI, confidence interval; k,

number of cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g012
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Fig 13. Forest plot of impact of modelling on mouse thigmotaxis. A summary forest plot of the 116 cohort-level

comparisons which assessed the impact of modelling compared to sham control on mouse thigmotaxis. For each

comparison, an effect size was calculated using the Hedges’ g SMD method. Effect sizes were pooled using the random

effects model. The restricted maximum-likelihood method was used to estimate heterogeneity. The overall effect size is

-1.23 [95%CI -1.80 to -0.67]; Q = 4316.72, df = 115, p< 0.0001, I2 = 97%. The size of the square represents the weight,

which reflects the contribution of each comparison with the pooled effect estimate. TIC, time spent in the centre; TIP,

time spent in the periphery. CI, confidence interval; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g013
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Fig 14. Forest plot of impact of modelling on total distance travelled in mice. Forty-nine cohort comparisons assessed the impact of

modelling on total distance travelled in mice. The overall effect size is -1.50 [95% CI -2.93 to -0.07]. The size of the square represents the

weight, which reflects the contribution of each comparison with the pooled effect estimate. CI, confidence interval; k, number of cohort-level

comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g014

Fig 15. A Pearson’s Correlation test between time in the centre and total distance travelled in mouse modelling experiments. No

correlation: Coefficient = 0.26, df = 47, p = 0.07, k = 49). A line of best fit (in red) was drawn. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g015
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of experiments assessed thigmotaxis by measuring time spent in the centre, 23% (k = 13) mea-

sured distance travelled in the centre, 4% (k = 2) measured time spent in the periphery, 4%

(k = 2) measured centre perimeter ratio and 1% (k = 1) measured periphery/centre ratio.

Increased thigmotaxis caused by injury and disease models associated with persistent pain

was reduced by analgesic drug treatments in mice (SMD = 2.18 [95%CI 1.70 to 2.67]). Hetero-

geneity was high (Q = 1810.12, df = 89, p< 0.0001, I2 = 94%) (Fig 21).

No correlation between time in the centre or distance travelled in the centre and total dis-
tance travelled in analgesic drug treatment experiments. Nineteen cohort-level comparisons

assessed time in the centre and total distance travelled, and 13 cohort level comparisons

assessed distance travelled in the centre and total distance travelled in analgesic drug treat-

ment experiments. Overall, total distance travelled was increased in drug experiments

(SMD = 1.33 [95%CI 0.42 to 2.24]) (Fig 22). The total distance travelled was reduced the

most in mice modelled with nerve injury that were given analgesics with unknown mecha-

nism of action (SMD = -2.81 [95%CI -4.08 to -1.54], k = 1), and was increased the most in

mice modelled with inflammation that were given acetylcholinesterase inhibitors

(SMD = 4.13 [95%CI 3.79 to 4.47], k = 3).

There was no correlation between time in the centre and total distance travelled (Coeffi-

cient = 0.26, df = 17, p = 0.29) (Fig 23A) nor between distance travelled in the centre and total

distance travelled (Coefficient = 0.006, df = 11, p = 0.99, k = 13) (Fig 23B). There is an insuffi-

cient number of cohort-level comparisons, so we could not assess the correlation between time

in the centre and total distance travelled within the same model and drug class.

Fig 16. A Pearson’s Correlation test between time in the centre and total distance travelled in mice modelled with nerve injury

induced neuropathy. There is no correlation (Coefficient = -0.02, df = 22, p = 0.94, k = 24). A line of best fit (in red) was drawn.

SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g016
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Effects of animal model and animal characteristics on the thigmotactic outcome in mouse
analgesic drug treatment experiment. Nerve injury induced neuropathy (k = 13), inflammation

(k = 12) and spinal cord injury (k = 11) were the model classes with enough comparisons for

stratified analyses. The model type did not account for a significant proportion of heterogene-

ity (Q = 4.19, df = 2, p = 0.12) (Fig 22A). Drug treatments significantly reduced thigmotaxis in

mice modelled with inflammation and nerve injury induced neuropathy. We could not ascer-

tain the effects of sex, strain, and drug classes because there were not enough cohort-level com-

parisons (k<10). The type of thigmotactic metric; time in the centre (k = 39) and distance

travelled in the centre (k = 13) did not account for a significant proportion of heterogeneity

(Q = 0.60, df = 1, p = 0.44) (Fig 24B).

2.3.5. Effects of the experimental conditions and apparatus on thigmotactic outcome.

We also assessed the effects of experimental design variables related to the experimental condi-

tions and the OF apparatus however, the analysis was limited by the low levels of reporting.

Where it was possible to make comparisons, the difference for most variables was not statisti-

cally significant and the observed variability could not be explained (Table S3.1 in S3 File).

2.3.6. Correlation of thigmotaxis and stimulus-evoked limb withdrawal. To discern the

value of thigmotaxis in pain research, we assessed the correlation between type of thigmotactic

metric and type of stimulus-evoked limb withdrawal. The number of studies that investigated

both thigmotaxis and stimulus-evoked limb withdrawal for each dataset are summarised in

(Table S3.2 in S3 File).. To summarise our findings, there was not a correlation between time

in the centre and mechanical included behavioural outcomes for rat modelling experiments

but there was a positive correlation in rat analgesic drug treatment experiments and mouse

modelling experiments. There is an insufficient number of comparisons to assess the

Fig 17. A Pearson’s correlation test between time in the periphery and total distance travelled in mouse modelling experiments.

No correlation: Coefficient = 0.30, df = 24, p = 0.14, k = 26). A line of best fit (in red) was drawn. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g017
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correlation between the type of thigmotactic metric and the type of stimulus-evoked limb

withdrawal in mouse analgesic drug treatment experiments.

When possible, we also assessed the correlation between thigmotaxis and the type of the

stimulus-evoked limb withdrawal in rodent species that received the same treatments

Fig 18. A Pearson’s correlation test between time in the periphery and total distance travelled. (A) in mice

modelled with nerve injury induced neuropathy (no correlation; Coefficient = 0.13, df = 11, p = 0.66, k = 13); and (B)

in mice modelled with inflammation (no correlation; Coefficient = 0.33, df = 9, p = 0.32, k = 11). A line of best fit (in

red) was drawn. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g018
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(Table S3.3 in S3 File). We identified strong positive correlations between time in the centre

and mechanical induced behavioural outcomes in rats modelled with nerve injury induced

and analgesic drug treatment. No correlation was found between time in the centre and

mechanical induced behavioural outcomes in mice modelled with nerve injury and we are

unable to ascertain the effect of drug class on this correlation due to having insufficient num-

ber of comparisons (S3 File).

2.3.7. Risk of bias. The overall risk of bias of the 181 studies is unclear. The reporting of

random group allocation (49%, 88 studies) and blinding of outcome assessment (47%, 85 stud-

ies) were low. The reporting of other methodological quality criteria was very low: 8% (16 stud-

ies) reported allocation concealment, 12% (21 studies) reported sample size calculation, 19%

(35 studies) reported pre-defined animal inclusion criteria, and 15% (27 studies) reported ani-

mal inclusion (Fig 25A). This contrasts with the high reporting of conflict of interest (85%, 153

studies) and compliance with animal welfare regulations (99%, 179 studies). The methods

used to mitigate bias were rarely reported hence an unclear risk of bias (Fig 25B). A traffic light

plot presenting the risk of bias score for each report is available in S4 File.

2.3.8. Impact of methodological quality criteria on thigmotactic effect sizes. Thigmo-

tactic effect sizes of rats and mice were combined to assess the impact of each criterion. In ani-

mal modelling experiments, only the reporting of pre-defined animal inclusion criteria

accounted for a significant proportion of the observed heterogeneity (Fig 26). Larger effect

sizes were observed in experiments that reported inclusion criteria (SMD = -3.34 vs -1.92,

Q = 4.15, df = 1, p = 0.04). It is noteworthy that the prevalence of reporting inclusion criteria

was relatively low (k = 35 reported vs k = 172 not reported) so may limit our ability to accu-

rately determine its influence on thigmotaxis.

In drug treatment experiments, reporting of the six methodological quality criteria did not

account for a significant proportion of the observed heterogeneity (Fig 27).

2.3.9. Reporting quality. Out of 181 included studies, 13 studies were published before

the introduction of the ARRIVE guidelines in 2010. Twenty-five studies (14%) stated reporting

in accordance with the ARRIVE guidelines, but only 3 studies provided a checklist. Of these, 2

studies reported sufficient details on the methods used to mitigate bias and were scored a low

risk of bias, however one of the studies did not report allocation concealment, sample size

Fig 19. Forest plots of the thigmotactic outcome in mice modelled with models associated with persistent pain:

(A) model class and (B) sex. The size of the square represents the weight. CI, confidence interval; k, number of

cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g019
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calculation, pre-defined animal inclusion criteria and animal exclusions despite providing the

checklist. Furthermore, this study did not sufficiently report the method details for randomisa-

tion and blinding, hence it was scored an unclear risk of bias. For the 22 studies that stated

reporting in accordance with the ARRIVE guidelines but did not provide a checklist, the

Fig 20. Forest plot of impact of nerve injury models and time since induction on mouse thigmotaxis. A summary

forest plot of the 46 cohort-level comparisons which assessed the impact of nerve injury models compared at different

time points (number of hours from model induction to the first OFT assessment) to sham control on mouse

thigmotaxis. For each comparison, an effect size was calculated using the Hedge’s g SMD method. Effect sizes were

pooled using the random effects model. The size of the square represents the weight, which reflects the contribution of

each comparison with the pooled effect estimate. CI, confidence interval; k, number of cohort-level comparisons.

https://doi.org/10.1371/journal.pone.0290382.g020
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reporting of methodological quality criteria was low to moderate, and the details of methods

were mostly insufficiently reported (Table 3).

2.3.10. Other sources of biases. We conducted analyses to assess other sources of biases.

The overall effect size when combining animal modelling thigmotactic data of rats and mice

(k = 207) is -2.16 [95%CI -2.61 to -1.71]. Egger’s regression test was significant (p< 0.0001),

suggesting the presence of funnel plot asymmetry (Fig 28A). The overall effect size of com-

bined rats and mice drug treatment thigmotactic data (k = 147) is 2.12 [95%CI 1.75 to 2.49].

Egger’s regression test was significant (p< 0.0001), suggesting the presence of funnel plot

Fig 21. Forest plot of drug treatment effects on mouse thigmotaxis. A summary forest plot of the 57 cohort-level comparisons which

assessed the drug treatment effects on mouse thigmotaxis. For each comparison, an effect size was calculated using the Hedges’ g SMD

method. Effect sizes were pooled using the random effects model. The restricted maximum-likelihood method was used to estimate

heterogeneity. The size of the square represents the weight, which reflects the contribution of each comparison with the pooled effect estimate.

CI, confidence interval; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g021
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asymmetry (Fig 28B). Trim-and-fill analysis, however, did not impute theoretically missing

experiments.

3. Discussion

We have presented a systematic and unbiased assessment of the published literature regarding

the sensitivity of thigmotactic behaviour in laboratory rodents to a range of injury and disease

models associated with persistent pain and the effects of analgesic drug interventions.

This systematic review identified 181 studies. Of which 165 studies were included in the

meta-analysis, comprising the effects of 66 persistent pain associated injury or disease models

and 80 potential analgesic interventions on thigmotactic behaviour in 5998 rodents. We report

that, overall, thigmotaxis was increased in animal models associated with persistent pain and

this increase was attenuated by analgesic drug treatments in both rat and mouse experiments.

Stratified subgroup analyses and assessment of the impact of experimental design characteris-

tics was limited due to the paucity of data and low levels of reporting on experimental design

characteristics. In addition, there is overall a high level of unexplained heterogeneity and

unclear risk of bias.

3.1. Limited ability to assess and identify sources of heterogeneity that

influence thigmotaxis

There is a significant amount of observed heterogeneity that could not be explained by sub-

group analyses or meta-regressions., The predominance of nerve injury and inflammation

models, male animals, single strains, and breadth of novel compounds has limited our ability

to identify variables that influence thigmotaxis to guide future research. Given the broad range

Fig 22. Forest plot of impact of modelling and drug treatments on total distance travelled in mice. Thirty-two cohort-level

comparisons assessed the impact. The overall effect size is 1.33 [95%CI 0.42 to 2.24]. The size of the square represents the weight, which

reflects the contribution of each comparison with the pooled effect estimate. CI, confidence interval; k, number of cohort-level

comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g022
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Fig 23. A Pearson’s Correlation test between (A) time in the centre and total distance travelled and (B) distance travelled in the

centre and total distance travelled in mouse drug treatment experiments. There is no correlation; Coefficient = 0.26, df = 17,

p = 0.29, k = 19 and Coefficient = 0.006, df = 11, p = 0.99, k = 13 respectively. A line of best fit (in red) was drawn. SMD, standardised

mean difference.

https://doi.org/10.1371/journal.pone.0290382.g023
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Fig 24. Forest plots of the drug treatment effect on thigmotactic outcome in mice modelled with models

associated with persistent pain: (A) model class and (B) type of thigmotactic metric. The size of the square

represents the weight. CI, confidence interval; k, number of cohort-level comparisons; N, number of animals.

https://doi.org/10.1371/journal.pone.0290382.g024

Fig 25. Risk of bias. Summary plots showing the percentage of the 181 studies that (A) reported the methodological quality criteria and (B) the

corresponding risk of bias score given for each methodological quality criterion. Numbers shown within the bar plots indicate the number of studies.

Reporting of a statement regarding potential conflict of interests and compliance with animal welfare regulations were extracted, but they were not part

of the overall risk of bias.

https://doi.org/10.1371/journal.pone.0290382.g025
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of timings that the OFTs were conducted and limited comparisons within each period, we

were also unable to discern how long after model induction it takes for thigmotactic behaviour

to develop. Our findings are similar to those reported in a recent systematic review of mouse

behavioural tests of anxiety, where the authors found a high-level heterogeneity in the data, as

well as a high level of between-study variation in studies which used OFTs [31]. Future experi-

mentation with increased biological variability and improved reporting will allow for sources

of heterogeneity to be re-assessed.

We were unable to ascertain the effect of drug class on thigmotactic outcomes because

there are many novel compounds that were only assessed within a single study. Gabapentinoid

was the most investigated drug class in rat experiments and was mostly assessed in neuropathy

models. This is expected as gabapentinoids are clinically used to treat neuropathic pain,

although they have mixed efficacies depending on the type of neuropathy [32–34]. In mouse

experiments, a hydrogen sulphide donor was the most investigated drug class and was mostly

assessed in sciatic nerve ligation models. Preclinical studies have demonstrated the antinoci-

ceptive effects of hydrogen sulphide donors in arthropathy, inflammatory and neuropathy

models [35–37]. Similarly, a naproxen-based hydrogen sulphide donor, has demonstrated

analgesic efficacy in osteoarthritis patients [38, 39]. The broad range of drugs and drug classes

has therefore not provided insight into which drugs could be used as comparators in studies

investigating the efficacy of novel drugs in reducing thigmotaxis caused by injury and disease

models relating to persistent pain.

Fig 26. Thigmotactic effect sizes associated with the reporting of the six methodological quality criteria in animal modelling

experiments of rats and mice. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g026

PLOS ONE Systematic review and meta-analysis of Thigmotaxis

PLOS ONE | https://doi.org/10.1371/journal.pone.0290382 September 8, 2023 30 / 44

https://doi.org/10.1371/journal.pone.0290382.g026
https://doi.org/10.1371/journal.pone.0290382


We were also unable to ascertain differences in thigmotactic outcomes between strains

because of the predominant use of Sprague-Dawley and Wistar rats and C57BL/6 mice. This

issue of homogeneity in the rodent strain used for preclinical pain research has been observed

in other systematic reviews [40–42]. Studies have shown that modification of behavioural out-

comes caused by disease models associated with persistent pain is strain dependent [43–45].

Furthermore, the efficacy of an analgesic drug at the same dosage can vary between strains [46,

47]. We therefore advocate that future experiments have animals with diverse genetic profiles

Fig 27. Thigmotactic effect sizes associated with the reporting of the six methodological quality criteria in drug treatment experiments of

rats and mice. SMD, standardised mean difference.

https://doi.org/10.1371/journal.pone.0290382.g027

Table 3. Reporting of methodological quality criteria of the 22 studies which stated reporting in accordance with the ARRIVE guidelines but did not provide a

checklist.

Methodological quality

criteria

No. of studies

reported

No. of studies that

reported the method

No. of studies that scored

low risk of bias

No. of studies that scored

unclear risk of bias

No. of studies that scored

high risk of bias

Random group allocation 13 5 5 17 0

Allocation concealment 6 1 1 21 0

Blinding of outcome

assessment

14 6 6 16 0

Sample size calculation 8 4 4 18 0

Pre-defined animal

inclusion criteria

6 6 6 16 0

https://doi.org/10.1371/journal.pone.0290382.t003
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to improve the translatability and generalisability of the results to the heterogeneous clinical

populations [3].

We could not discern the influence of sex on thigmotactic outcomes because male animals

were predominantly used. In other preclinical systematic reviews of pain, sex accounted for a

significant proportion of the heterogeneity [40–42, 48]. Women are clinically prone to be

affected by chronic pain and tend to experience greater pain intensity than men [8]. Similarly,

female rodents have shown to exhibit more hypersensitivity and nociceptive behaviours after

injury [49–54]. In addition to differences in sensitivity, studies have shown sex dependent

Fig 28. Assessment of other biases in (A) animal modelling and (B) drug treatment experiments of rats and mice.

The vertical dashed line represents the overall effect size. Filled circles represent experiments from the published

studies. The coloured backgrounds indicate the statistical significance of effect sizes of cohort-level comparisons.

https://doi.org/10.1371/journal.pone.0290382.g028
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analgesic efficacy [55–57]. To improve research translatability and generalisability, researchers

need to maintain a sex balance in preclinical pain research, which is in line with funding bod-

ies such as the National Institutes of Health policy [58], Canadian Institute of Health Research

[59] and UK Research and Innovation [60].

3.1.1. Thigmotactic outcome metrics. Thigmotaxis can be reported by different outcome

metrics within a study, and we employed our own hierarchy to extract the highest-ranking

thigmotactic outcome metric when multiple metrics were reported (Table 3). The relationship

between types of thigmotactic metrics and effect sizes remains uncertain due to insufficient

data. Time spent in the centre is the most frequently reported thigmotactic metric and has

shown sensitivity to disease models and drug treatments.

Injury or disease models can affect locomotor function, but it is unclear how different thig-

motactic metrics are impacted by motor deficits. Total distance travelled by an animal can

serve as a confounding outcome for detecting motor disturbance caused by an intervention.

We assessed the correlation between each type of thigmotactic metric and the total distance

travelled. We found a positive correlation between time spent in the centre and total distance

travelled in rat experiments, indicating that thigmotaxis is associated with the locomotor abil-

ity and may be limited as an outcome measure in rats. We recommend that researchers use the

“time spent in the centre/periphery” metric when assessing thigmotaxis because theoretically

this metric has the lowest reliance on the locomotor function, as opposed to metrics like

entries to the centre, number of central crossings and distance travelled in the centre. We also

suggest researchers also assess total distance travelled and consider it when interpreting the

results. There are other parameters that can be measured during the OFT which do not rely on

locomotor function. Self-grooming behaviour is also an ethologically relevant behaviour and

that has been increasingly employed in neuroscience research [61] but is still relatively novel

in rodent pain research [62, 63].

3.1.2. Experimental conditions and OF apparatus. We looked at variables relating to

experimental conditions and OF apparatus, however, due to the poor reporting, we could not

draw meaningful conclusions on the associations between experimental design, OF apparatus

and thigmotactic outcomes. There is a limited amount of research exploring the effect OF

apparatus and experimental conditions on thigmotactic outcomes. A study by Eilam [64]

reported that total distance and locomotion time were not dependent on the arena dimen-

sions, while the spatial distribution of activity varied with arena size. Animals moved across

the entire arena relatively evenly in smaller arenas, whereas they preferred to move near the

walls in larger arenas. Another study found that centre horizontal activity was significantly

greater in a circular-shaped arena as opposed to a square-shaped arena [65]. Experimental

lighting is a crucial variable to control during the OFT because thigmotactic behaviour is

enhanced in rodents that are exposed to high light intensity [66]. Current evidence for the

effect of circadian phase on thigmotaxis during the OFT is conflicting [67, 68]. The length of

the habituation to the OF and repeated OF testings using the same animals may also influence

thigmotactic outcomes. Grabovskaya and Salvha [65] observed reduced thigmotaxis in animals

that participated in repeated testing. Improved reporting of experimental conditions including

apparatus used will improve our understanding of what experimental variables can influence

thigmotactic outcomes and the reproducibility of results.

3.2. Correlation of thigmotaxis and stimulus-evoked limb withdrawal

Our findings are inconsistent: we identified a positive correlation between time in the centre

and mechanical-induced behavioural outcomes in nerve-injured rats, rat analgesic drug exper-

iments and mouse modelling It is likely that correlation will depend on the type of model
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induced. However, it may not be appropriate to look for correlations between thigmotaxis and

stimulus-evoked limb withdrawal because they capture different aspects of the pain experience.

We suggest that researchers conduct a battery of tests comprised of both stimulus-evoked and

ethologically relevant behavioural outcomes to improve validity and maximise the information

gained from preclinical pain research.

3.3. Risk of bias

3.3.1. Internal validity. We could not accurately assess the internal validity of the

included studies because the reporting of methodological quality measures to reduce the risk

of bias was low. Most studies therefore have an unclear risk of bias. The infrequent reporting

of blinding, including allocation concealment, could be a result of an inability to perform

blinding due to obvious phenotypic or behavioural differences, or the belief that it is not neces-

sary given the fact that thigmotaxis is an objective measure. Our analysis consistently identified

that the reporting of pre-defined animal inclusion criteria was associated with larger effect

sizes in both animal modelling and drug treatment experiments. Larger effect sizes were also

associated with the reporting of animal exclusion in animal modelling experiments and the

reporting of blinding in drug treatment experiments. In contrast, smaller effect sizes were asso-

ciated with the reporting of allocation concealment in animal modelling experiments. It was

not possible to accurately assess the risk of bias because the methods used to mitigate bias were

also rarely reported, therefore the validity of these studies remains unclear. Similar observa-

tions were also found in other preclinical systematic reviews of pain [40–42, 48], suggesting

that this is a general problem. The ARRIVE guidelines [69] were developed to improve the

reporting of animal research and despite their introduction in 2010, and yet most of the post-

2010 studies did not report in accordance with them. For studies which stated reporting in

accordance with the ARRIVE guidelines, checklists were rarely provided. This lack of conven-

tion in the preclinical field limits our ability to assess reliability of the research findings.

Researchers should use tools such as the EQIPD quality system [70] to design methodologi-

cally robust experiments and report in accordance with an established guideline such as

ARRIVE.

3.3.2. Other biases. Our funnel plot asymmetry analysis suggests that other biases, includ-

ing publication bias, may be present in both animal modelling and analgesic drug experiments.

However, it should be noted that funnel plot asymmetry can be also caused by other factors

such as study quality and selective reporting bias, where studies are published but outcomes

with results that were not statistically significant [71]. Moreover, trim-and-fill analysis is per-

tained to generate unreliable results when the between-study heterogeneity is large [72–74],

which may explain why trim-and-fill did not impute any missing experiments despite a signifi-

cant Egger’s regression

3.4. Limitations

To retrieve studies reporting OFTs and thigmotaxis, we conducted searches on multiple data-

bases using a search strategy that had a good balance between sensitivity and specificity. How-

ever, there is always a possibility that not all relevant studies have been identified by the search

which may affect the quality of the systematic review. But since the searches were all conducted

systematically, the included studies represent an unbiased sample.

We can only rely on what has been reported in studies. It is difficult to evaluate risk of bias

because potentially methods used to mitigate bias were implemented but not reported; con-

versely, methodological quality measures may have been reported but not performed. Similar

observations have also been found in other preclinical systematic reviews of pain [40–42, 48].

PLOS ONE Systematic review and meta-analysis of Thigmotaxis

PLOS ONE | https://doi.org/10.1371/journal.pone.0290382 September 8, 2023 34 / 44

https://doi.org/10.1371/journal.pone.0290382


In our search, there were 16 studies that met the inclusion criteria but could not be included in

the meta-analysis due to not reporting key information, i.e., variance, sample size and thigmo-

tactic data. Given the small sample sizes of the studies that were excluded from the meta-analy-

sis, we think it is unlikely that the overall conclusion would change if that missing information

is later provided.

We could not compare different animal characteristics (i.e., strain, sex, and drug class)

within the same study type because of limited data. It was also not possible to draw meaningful

conclusions on the associations between thigmotactic outcomes, study design characteristics,

experimental conditions and OF apparatus because they are not reported frequently or in suffi-

cient detail. There are other variables and factors that may influence thigmotaxis, such as seda-

tive effects of a drug which were outside of the scope of this review but similarly are likely to

suffer from poor reporting. Findings of this review should therefore be interpreted with cau-

tion and the impact of these variables on thigmotaxis need to be confirmed when more data

become available and through prospective experiments. Until then, researchers should still

carefully control these variables and transparently report their experimental designs.

In this review, we included any studies that assessed the treatment effect of a drug interven-

tion on thigmotaxis by administering it to animals with injury and disease models relating to

persistent pain. Most of the investigated drugs were novel compounds from a single study and

many of them may never be developed for clinical trials. Additionally, we did not determine

the rationale for the study, but future reviews should consider whether a study’s use is mecha-

nistic or designed to assess efficacy.

We only extracted data from the highest-ranking thigmotactic metric according to our hier-

archical system when multiple metrics were reported within a study. As a result of this crite-

rion, thigmotactic data included in the meta-analysis were mostly measured by time spent in

the centre. Due to the insufficient number of data measured by metrics except the highest-

ranking “time spent in the centre” metric, we were unable to conduct analyses to determine

whether type of metrics used can be a source of heterogeneity and the correlation of these met-

rics with total distance travelled and stimulus-evoked limb withdrawal.

We decided to extract behavioural data at the time point at which there was the largest dif-

ference between control and treatment animals. This allowed us to calculate treatment effects

independent of their treatment duration. Although we extracted the following information

relating to the timing of the treatment: the time between model induction and the first or last

OFT, how long before or after the model was induced was the first dose administered, and

how long after the treatment started was the first OFT. Due to the large between-study varia-

tion and a low number of cohort-level comparisons, we could not investigate the impact of dif-

ferent treatment timings.

Lastly in our meta-analysis, we grouped together injury and disease models by type, how-

ever they may share different underlying aetiologies. Likewise, drugs were grouped according

to their shared mechanism of action regardless of their other properties.

4. Conclusion

Given the translational challenges and unmet medical need to understand the underlying

mechanisms and identify treatments for persistent pain, it is important to use animal models

and outcome measures that have clinical relevance and ethological validity. This systematic

review and meta-analysis provides a comprehensive summary of studies that investigated the

effect of injuries and disease models associated with persistent pain and analgesic drug treat-

ments on rodent thigmotactic behaviour. Its use, however, may be limited in certain injury

and disease models because our analysis suggested that thigmotaxis may be associated with
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locomotor function. We have identified where the external validity of preclinical pain research

can be improved through increased biological variation e.g., female animals, more genetically

diverse strains. To improve internal validity and assessment of reliability of results researchers

should mitigate experimental biases and report their methods transparently. In the quest for

clinically relevant outcomes, stimulus-evoked and ethologically relevant behavioural para-

digms should be viewed as two separate entities because they are conceptually and methodo-

logically different from each other that can be used and interpreted together.

5. Materials and methods

The protocol was registered on PROSPERO (CRD42040408044 https://www.crd.york.ac.uk/

prospero/display_record.php?RecordID=208044) and published [75].

5.1. Search strategy

We systematically searched Ovid EMBASE, PubMed, and Web of Science on 8 October 2020,

30 March 2022 and 2August 2022 with no restrictions on languages and date of publication.

The full search strategy for each database is provided in S5 File. Studies were amalgamated

into an Endnote library (version 20.4) and duplicates removed.

5.2. Eligibility criteria

Inclusion criteria:

• Population: in vivo rodent models of disease associated with persistent pain

• Intervention: any clinically approved or novel drug analgesics used to interfere with

nociception

• Comparison:–a cohort of control animals

• For animal modelling experiments, a control population was defined as sham or naïve. For

studies which used transgenic rodents to study persistent pain, a wild-type control was

required

• For studies which investigated the effect of analgesic drug interventions on rodent thigmo-

taxis, a vehicle control was required

• Outcome: thigmotactic behavioural metrics assessed during the OFT, which are:

• Time spent in the centre

• Time spent in the periphery

• Entries to the centre

• Latency to enter the centre

• Number of central crossings

• Distance travelled in the centre

• Distance travelled in the periphery

For the meta-analysis, a study was required to report the following data: 1) the mean thig-

motactic outcome, 2) its variance (i.e., standard deviation (SD) or standard error of the mean

(SEM)) and 3) the number of animals per treatment group.

Exclusion criteria:
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Non-rodent in vivo studies. Studies that investigated acute nociception. Studies that did not

investigate thigmotactic outcome in the OFT. All other control conditions (i.e., baseline mea-

surements) and/or absence of a control group. Non-primary research articles.

5.3. Study selection

Retrieved studies were screened on the Systematic Review Facility (SyRF) [76]. Studies were

screened against the inclusion criteria in duplicate based on 1) titles and abstracts (TiAb), and

2) full texts. Since thigmotaxis can be referred to in numerous ways and sometimes informa-

tion relating to behavioural assessments is not reported in detail in abstracts, we applied a

strategy of study overinclusion (i.e., included studies that reported pain-associated rodent

behaviours in the abstracts) during the title abstract screening to prevent the risk of falsely

omitting relevant studies. Screening was completed by at least two independent reviewers and

discrepancies were resolved by a third independent reviewer.

5.4. Data extraction

Data extraction was conducted on SyRF by two independent reviewers and discrepancies rec-

onciled by a third independent reviewer.

For qualitative analysis, study-level data were extracted including bibliographic data,

reporting quality, animal husbandry, and OFT characteristics (Table 5.1 in S5 File). Studies

that were eligible for quantitative meta-analysis had experimental design and data extracted

included animal model characteristics, intervention details and outcome measures(Table 5.2

in S5 File).

The primary outcome of interest was an outcome metric that denoted thigmotaxis. Thig-

motaxis can be measured differently during an OFT and often multiple thigmotactic outcome

metrics are reported within a study. Therefore, a hierarchy was applied (Table 4) when multi-

ple metrics were reported. Reviewers extracted the data of the highest-ranking thigmotactic

outcome metric. The other thigmotactic outcomes reported were noted. Metrics were ranked

based on their relevance to the definition of thigmotaxis (i.e., decreasing time spent in the

aversive open arena and/or increasing time spent in in proximity of the sheltered wall area).

Total distance travelled in the OFT was also extracted because locomotor activity can be

impaired by the interventions, so it serves as a confounding outcome. The secondary outcome

was any stimulus-evoked limb withdrawal when assessed in the same cohort of animals used

in the OFT.

Continuous data were extracted independent of the unit of measurement. Digital ruler soft-

ware (Webplotdigitizer) was used to manually extract graphically presented data. When multi-

ple time points were reported, the time point of the maximum effect was extracted. If the type

Table 4. Thigmotactic outcome metrics hierarchy.

Hierarchical System

1) Time in the centre

2) Time in the periphery (obverse to time in the centre)

3) Entries to the centre

4) Latency to the centre

5) Number of central crossings

6) Distance travelled in the centre

7) Distance travelled in the periphery (obverse to distance travelled in the centre)

https://doi.org/10.1371/journal.pone.0290382.t004
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of variance (i.e., SD or SEM) was not reported, it was characterised as SEM (i.e., to give the

most conservative estimate). The most conservative estimate was extracted when data (e.g.,

sample size) were given as a range. When key information was unclear or not reported (i.e.

mean data, variance, sample size), the corresponding authors were contacted. If the author did

not respond or could not provide the information, the study was recorded as having missing

data and was excluded from the meta-analysis.

5.5. Risk of bias assessment

An adapted version of the CAMARADES checklist and SYRCLE Risk of Bias tool [77, 78]

were used to assess the reporting of six methodological quality criteria: random group alloca-

tion, allocation concealment, blinding of outcome assessment, sample size calculation, rede-

fined animal inclusion criteria and animal exclusions. Reviewers stated whether each criterion

was reported and included the description of the method used. Each criterion was rated sepa-

rately according to the following criteria: low risk (accepted methods and were adequately

described), high risk (inappropriate methods that did not efficiently mitigate bias), and unclear

risk (the methodological quality criterion was not reported, or details of methods were insuffi-

ciently reported). Reporting of conflict of interests and compliance of animal welfare regula-

tions were also extracted but were not included in the overall risk of bias.

5.6. Reconciliation

The data extracted by 2 independent reviewers were compared and any discrepancies recon-

ciled by a third independent reviewer. For graphically presented data, the standardised mean

difference effect sizes of individual comparisons were calculated for each reviewer’s extracted

data. When individual comparisons differed by <10%, the reconciler took an average of the

two means and variance measures. When they differed by >10%, the reconciler had to extract

the outcome data.

5.7. Data analysis

Thigmotactic data were separated by species and the type of experiments (i.e., animal model-

ling or drug experiments). The data is therefore divided into 4 datasets: (i) modelling of persis-

tent pain in rats (ii) effects of drug interventions in rat models of persistent pain (iii)

modelling of persistent pain in mice (iv) effects of drug interventions in mouse models of per-

sistent pain. For animal modelling experiments, data were further separated according to the

type of model control (sham or naïve) and were analysed separately. The number of indepen-

dent cohort-level comparisons (k) required for each meta-analysis is�10. When k is<10 a

descriptive summary was presented. Subgroup analyses were conducted to investigate how

study characteristics influence effect sizes. All analyses were conducted using R statistical pack-

ages: dmetar (version 0.0.9); meta (version 6.0.0); and metafor (version 3.8.1).

5.7.1. Effect size calculation. For every individual comparison (defined as a cohort of ani-

mals that received an intervention compared to a control group), an effect size was calculated

using the Hedges’ g standardised mean difference (SMD) method. To obtain the “true number

of control animals”, all sample sizes was corrected by dividing the reported number of animals

in the control group by the number of treatment groups it served. Effect sizes were weighted

using the inverse variance method to reflect the contribution of each comparison to the total

effect estimate. Stimulus-evoked limb withdrawal behavioural data were grouped according to

the type of stimulus: mechanical, heat and cold. When more than one outcome of the same

type of stimulus was reported from the same cohort of animals, a single nested effect size,

which denotes a summary effect of the cohort, was calculated throughout. Cohort-level effect
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sizes were pooled using a random-effects model as it considers within-study and between

study variances. The restricted maximum-likelihood method was used to estimate the variance

of the distribution of true effect sizes [79]. The Hartung-Knapp-Sidik-Jonkman method was

also applied to adjust confidence intervals [80–82].

5.7.2. Heterogeneity. Cochran’s Q and I2 tests were conducted. A p value was calculated

for Q, indicating whether all cohort-level comparisons shared a common effect size (p> 0.05)

or not (p< 0.05). I2 test calculated the proportion of total variance between studies that is due

to true differences in effect sizes as opposed to chance. I2 values were interpreted according to

the definition given by Higgins and Thompsons [83]: 0–25% indicates very low heterogeneity;

25–50% indicates low heterogeneity; 50–75% indicates moderate heterogeneity; and>75%

indicates high heterogeneity.

5.7.3. Subgroup analyses. Stratified meta-analyses for categorical variables were per-

formed according to rodent species, strain, sex, model class, drug class, type of thigmotactic

outcome metric, time (rat and mouse nerve injury models) and methodological quality crite-

ria. Multiple meta-regressions were conducted to identify other variables relating to experi-

mental conditions and OF apparatus that could influence the thigmotactic outcome (Table 5.3

in S5 File for detailed list).

5.7.4. Other biases. Funnel plots were generated to visually inspect plot asymmetry.

SMDs were plotted against sample size-based precision estimate (1/
p

N) [84]. Egger’s regres-

sion test provided a statistical assessment of the presence of biases including publication bias.

Trim-and-fill analysis attempted to correct funnel plot asymmetry by imputing the theoreti-

cally missing studies and enabled a recalculation of the effect size.

5.7.5. Correlation of thigmotaxis and total distance travelled in the OFT. Cohort-level

comparisons of experiments that assessed both thigmotaxis and total distance travelled were

used to investigate correlation. A Pearson’s correlation test was conducted between total dis-

tance travelled and each thigmotactic metric type. Regardless the number of cohort-level com-

parisons, post-hoc analyses were also conducted by pooling SMDs of total distance travelled

from animals that received the same treatment (i.e. the same model and drug class) using a

random-effects model accompanied by the restricted maximum-likelihood method and the

Hartung-Knapp-Sidik-Jonkman method.

5.7.6. Correlation of thigmotaxis and stimulus-evoked limb withdrawal. Cohort-level

comparisons of experiments that assessed both thigmotaxis and stimulus-evoked limb with-

drawal were used to investigate correlation. A Pearson’s correlation test was conducted

between each thigmotactic metric type and each stimulus type (mechanical, heat, cold).
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