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Statistical modelling of dependence between net

demands and deficits in two area power systems
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Abstract

Power system resource adequacy risks is dominated by the extremes of the
relevant distributions or processes: the upper tail of demand and the lower
tail of available generation. Because of this, relevant data in the historic
record are sparse. Moreover, for interconnected systems, the degree of statis-
tical dependence in these extremes between systems can also have a sizeable
impact on the level of risk in each system. This paper uses results from sta-
tistical extreme value theory (EVT) to fit smoothed joint distributions for
the values of (demand minus available renewables) and of surplus/deficit de-
pendence in a two-area system, using data from the Irish and Great Britain
power system for examples.

As well as the statistical smoothing mitigating the consequences of lim-
ited volumes of data, the concept of asymptotic dependence provides a useful
explanation of the strength of dependence. There is strong evidence that
the deficits in the GB and Ireland systems are asymptotically independent,
whereas there is evidence for asymptotic dependence in the distributions of
(demand minus available wind capacity). This is consistent with the intu-
ition that, when independent distributions of conventional capacity are con-
voluted with those of demand and wind, the dependence is weakened. The
consequent use of a Gaussian copula to describe the dependence of deficits
provides a convenient means of carrying out sentivity analysis to the strength
of relationship.
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1. Introduction

Security of supply is one of the three pillars of energy policy, along with
affordability and sustainability. In Great Britain (GB), annual capacity pro-
curement auctions take place to ensure that capacity meets reliability stan-
dards based on risk estimates for future years [1]. For this reason, risk calcula-
tions and their statistical methodology are of considerable interest for policy
makers. Such estimates need to consider the existence of interconnectors
to other power systems, which potentially represent an additional capacity
source; this is particularly relevant in the context of decarbonisation, as the
aggregation of renewable generation over wider geographical regions is ex-
pected to result in less variable power output. On top of this, there are other
benefits regarding market integration [2] like economies of scale from shared
planning over wide regions.

Multi-area reliability has been studied since at least the 1960s; in [3]
calculations are shown for a two-area system with a no-shortfall-sharing in-
terconnection policy and an empirical model of daily peak demand. In [4] a
model is proposed for a general multi-area system, possibly with loops, as-
suming statistical independence across areas and considering both shortfall-
sharing and non-sharing policies. Methodology can vary considerably and
depend on factors such as the system’s topology and desired level of sys-
tem detail; methods range from failure states partitioning and aggregation
to simulation-based methods, or a combination of multiple approaches [5].
This variety is reflected in the range of practices found across different sys-
tem operators; in [6] an international survey was conducted by National Grid
and it was found that some system operators such as those in France and
Belgium as well as some parts of the US, have detailed models of neighbour-
ing systems and use them as input in their reliability studies, while others
take interconnector imports as fixed. In the case of Great Britain, an off-
line market model is used to specify a distribution of the interconnector’s
flow conditioned on different load percentiles, and this distribution is then
convolved with the overall supply balance thereafter. In this work, we use re-
sults from the statistical theory of extremes to propose a principled two-area
probability model for events that determine system reliability, e.g. high load
or low capacity surplus events. Models for extreme value theory (EVT) have
been used before in a single-area system model using data for GB [7]; we
build on this work by developing appropriate statistical dependence models
for extremal dependence between two areas.
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Most of the risk regarding capacity shortfalls come from rare events ei-
ther at the demand side, which can be unusually high perhaps due to cold
weather in the case of Great Britain (GB), or at the generation side, where
conventional generators can fail unexpectedly and renewable generation can
experience sustained drops in generation output due to certain weather pat-
terns [8]. Interconnected systems are usually geographically close, and so
their demand and renewable generation output is likely to be statistically
dependent through the action of weather systems and similar energy use
patterns. Simultaneous occurrence of extreme demand and renewable gener-
ation in both areas can have a large effect on the value of interconnection in
terms of security of supply; under strong dependence, it is more likely that
both systems experience stress at the same time.

It is a common practice in reliability studies both in industry and in the
literature to use the empirical distribution of historic load as input, either
suitably rescaled or as is [6, 9, 10]. Empirical distributions are sparse in the
tails, with all of the probability mass in these regions concentrated in only
a handful of points representing previously observed extreme levels. As risk
comes almost entirely from the tails, a consequence of this is that risk indices
can be essentially determined by a very small set of past observations [11],
potentially making risk estimates unreliable. A similar argument holds when
it comes to multi-area studies as post-interconnection risk are driven by an
even smaller number of points when using hindcast models (see Figure 1), in
particular those in which extreme values co-occur. Models from EVT provide
a sound methodological basis for finding smooth parametric alternatives to
the sparse tail regimes of hindcast models, and to characterise the tails of the
involved distribution and the dependence between them (i.e., the extremal
dependence) with a small number of interpretable parameters. This in turn
makes it straightforward to perform a sensitivity analysis of interconnection
value.

The outline of the paper is as follows: in Section 2, we give a brief re-
view of standard power system risk models and indices that we use in this
work. In Section 3, motivation for the use of extreme value theory is given,
and the most relevant results for this work are briefly discussed, referencing
more comprehensive material on the subject; Section 4 describes the data
used. In Section 5 we describe the methodology for the two-area net de-
mand model, and present results comparing this to a hindcast net-demand
model; in Section 6 we then analyse statistical dependence in capacity sur-
pluses, characterising dependence between systems and using this to perform
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sensitivity analysis of different risk indices to teh strength of statistical de-
pendence. Finally, Section 7 provides conclusions.

2. System model

In this section, we give a brief overview of some of the models from the
literature of security of supply that will be using in this work. We denote
random variables with uppercase letters and constants with lowercase letters;
vectors will use bold letters. We use X, Y and D to denote random variables
corresponding to available conventional generation, renewable generation and
demand respectively. Furthermore, we define net demand, or demand net of
renewables, as D′ = D − Y , and capacity surplus as Z = X − (D − Y ).

2.1. Single area system

Let the period of interest (say, a peak season) be divided into n hourly
segments. We will consider two risk indices, the loss of load expectation
(LOLE), which is the expected number of hours1 in which there is a shortfall,
defined as

LOLE = E

[
n∑

t=1

I(Zt < 0)

]
=

n∑
t=1

P(Xt < D′
t), (1)

and the expected energy unserved (EEU), which is the expected amount of
energy not supplied, defined as

EEU = E

[
n∑

t=1

max{0,−Zt}

]
. (2)

Here t indexes times in the future season or year under study. For the pur-
poses of statistical modelling, as in this paper, it is often more convenient
to work in a time-collapsed picture with the time-collapsed variable Z repre-
senting surplus at a randomly chosen point in time in the peak season under

1For simplicity, all results presented here are for an hourly time step, as per the avail-
able data from GB – in N American terminology this corresponds to LOLH. The results
generalise in a straightforward way to calculations for higher time resolutions. More detail
of definitions of LOLE for different time resolutions may be found in the IEEE Working
Group paper [12]
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study. For a system such as that considered here, which does not have stor-
age or other technologies which link time periods in a similar way, the LOLE
is then calculated as

LOLE = nP(Z < 0) = nP(X < D′), (3)

and an analogous formula applies for EEU.
The most common means of estimating the distribution of net demand

is to use the empirical historic distribution as the distribution for predictive
risk calculations, sometimes referred to as hindcast [13, 14]. The distribution
of net demand is then given by

P(D − Y ≤ w) =
1

T

T∑
τ=1

I(dτ − yτ ≤ w). (4)

where T is the number of observations in the historic record, τ indexes the
historic records, and historic demand and wind resource are rescaled ap-
propriately to the future system scenario under study. This approach may
also be interpreted as estimating the risk conditional on a repeat of historic
conditions in one or more years.

Available conventional generation at time t, Xt, is modelled as the sum
of individual generating units’ availabilities; conventional generators are as-
sumed to be either fully available or unavailable with a given probability
derived from historic data, and availabilities of different units are assumed
to be independent of each other and of all other variables. Within the ex-
amples presented, risk indices that depend on the distribution of Zt may
then be calculated by convolving the distributions of Xt and D

′
t. However,

a time-sequential model would in general be needed to consider technologies
such as storage that link time periods in the calculations, even when only
expected value indices such as EEU and LOLE are evaluated.

2.2. 2-area system

In a 2-area system, interconnection can make imports available to a sys-
tem under stress, up to the interconnection capacity, thereby reducing risk
for both systems. The impact of interconnection on the risk indices depends
not only on interconnection capacity and statistical dependence across areas,
but also on the shortfall-sharing policy, understood here as an agreement of
how the interconnector is used when one or both systems are under stress.
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Various policies have been studied in the literature; for instance, [15] dis-
cusses so-called veto and share policies, the former being that in which a
power system exports only spare available capacity, if any, while in the lat-
ter case shortfalls are shared across areas according to an agreed rule. In
this work, we assume a veto policy between both areas, as this will suffice
to illustrate the statistical approaches developed. If Z ∈ R2 is the bivariate
pre-interconnection vector of surpluses across both systems, and there is an
interconnector with capacity c ≥ 0 between them, the post-interconnection
shortfall region for area 1 under a veto policy can be divided in two subre-
gions:

R1 ={Z ∈ R2 |Z1 < −c} (5)

R2 ={Z ∈ R2 | − c ≤ Z1 ≤ 0,Z2 < −Z1} (6)

which represent the cases where area 1 has a shortfall larger than intercon-
nection capacity, and the case of area 2 not being able to cover a shortfall in
area 1, despite the shortfall being smaller than interconnection capacity.

Under a snapshot model the two risk indices may be calculated as follows
for area 1:

LOLE =n · P(Z ∈ R1 ∪R2) (7)

EEU =n · E[−Z1 · I(Z ∈ R1 ∪R2)] (8)

where I is an indicator function. This is, there is only a shortfall in area 1
when the pre-interconnection surplus vector Z is in R1 ∪R2. For area 2, the
reasoning is analogous with reversed indices.

3. Extreme value theory

In terms of LOLE and EEU, virtually all of the risk is concentrated in the
tails of net demand, that is, it comes from the highest net demand values. As
mentioned before, this concentration is especially severe in empirical hindcast
models of net demand, where risk indices can be determined by a very small
number of historic records with the highest net demand observations. In
order to alleviate this problem, we turn to EVT-based models which provide
a smooth parametric alternative to hindcast models.

EVT is a branch of statistics that provides mathematically principled
methods for making inferences about statistical properties of extreme events,
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including those rare enough to be outside the historic record’s range; these
models arise as limiting behaviour of sample maxima or exceedances above
progressibly large levels. EVT makes only mild regularity assumptions on
the data while providing general results on extreme occurrences of random
variables. It is widely applicable and routinely used in fields from insurance
to environmental sciences [16, 17]. In this work we are interested in the
threshold-exceedance framework which we outline below. Then, we briefly
discuss relevant results in multivariate EVT.

3.1. Univariate exceedances

A key result from EVT states that under mild assumptions on the dis-
tribution of a random variable X ∼ F (x), exceedances over a threshold u,
given by the conditional distribution X |X > u, follow a Generalised Pareto
distribution (GPD) in the limit, as u → ∞ [17]. For the purpose of this
work, this result means that for an appropriately large threshold u, net de-
mand exceedances over said threshold, conditioned on D − Y > u, are well
approximated by a GPD, whose cumulative function is given by

P(W ≤ w) = 1−
(
1 + ξ

(
w − u

σ

))−1/ξ

, w > u (9)

where ξ ∈ R and σ > 0, and reduces to an exponential distribution if ξ = 0.
A semiparametric model for the full data range can then be constructed by

using the fitted GPD model for tail exceedances above the chosen threshold
u, and the empirical data distribution F̂ below it. The full model can thus
be written as

F̄ (Z ≤ z) =

{
F̂ (z) z ≤ u

F̂ (u) + (1− F̂ (u)) ∗ FGP (z) z > u
(10)

where FGP is the fitted GPD. A model like this has already been applied to
a single-area power system using data from GB [7].

3.2. Asymptotic dependence and multivariate EVT

When dealing with extremes of multiple random variables, as is the case
in a two-area system, EVT also provides a framework to measure the degree
of association between different components at extreme levels, which in our
problem directly influences the utility of interconnection in terms of security
of supply.
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A central concept in this context is asymptotic dependence, which quan-
tifies the degree to which extreme values at different components occur to-
gether. Assuming without loss of generality (as the choice of marginal dis-
tributions do not change the dependence structure) that Y1, Y2 are standard
Frechet random variables with marginal CDF F (y) = exp(−1/y), y > 0, the
statistic χ is defined as

χ = lim
y→∞

P (Y2 > t |Y1 > y) (11)

The variables are asymptotically dependent if χ > 0, and asymptotically
independent otherwise. Asymptotically independent variables can still ex-
hibit strong dependence at non-extreme levels, with dependence vanishing
only in the tails; an example of this is the bivariate normal distribution with
correlation −1 < ρ < 1 whose components can be proven to be asymptot-
ically independent, regardless of ρ [16, p. 285]. Determining the presence
of asymptotic dependence is important in devising an appropriate model for
the data; there are many well studied parametric models for asymptotically
dependent data, while asymptotically independent data may require semi-
parametric or non-parametric modelling approaches instead, as done in [18].

Although a useful theoretical concept, precise estimation of χ is not
straightforward, and typically visual inspection of empirical approximations
are used to assess asymptotic dependence. A related statistic that is more
amenable to numerical estimation is the coefficient of tail dependence η [16,
p. 345]; this is bounded by 0 ≤ η ≤ 1, and is defined by making an additional
assumption in the context of (11), namely

P(Y1 > y, Y2 > y) = L(y) · P(Y1 > y)1/η, y > 0 (12)

where L(x) is a slowly varying function, that is, L(yz)/L(y) → 1 as y →
∞ for all z > 0. Intuitively, slowly varying functions become flat rapidly
(in a precise sense) as y → ∞ (note that L does not necessarily converge,
e.g. L(z) = ln(z)). This class of functions arise in many important results
from the theory of extreme values, and (12) has been shown to be valid
for a broad range of conditions and models [19, 20]; here, η describes the
type of dependence and L(y) its strength within the dependence type given
by η. We have η = 1 whenever χ > 0, and 0 ≤ η < 1 otherwise, thus
characterising the presence of asymptotic dependence; furthermore, we can
estimate η by maximum likelihood as the shape parameter ξ in (9) from a
sample of Z = min{Y1, Y2}. This in turn allows us to estimate η for our
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data by transforming it to approximate standard Frechet margins using the
transformation vi = 1/(1 − F̄ (yi)), i = 1, ..., n for the net demand samples
of each individual system, with F̄ as in (10), and using the component-

wise minima of the transformed data zi = min{v(1)i , v
(2)
i }, i = 1, ..., n, where

superscripts correspond to each of the systems.

3.3. Models of extremal dependence

Models of statistical dependence can be described using copula functions.
A copula is a multivariate distribution with uniform marginals in [0,1], and
can be constructed for any given distribution simply by transforming its
marginal distributions to standard uniform. Any multivariate distribution
can be written in terms of its univariate marginal distribution functions and
a copula function, see [16, p. 272] (which references [21] as the original source
of this result).

Copulas arising from dependence between extremes are called extreme
value copulas. More specifically, C∗(u) is an extreme value copula if there is
a copula C(u) such that

C∗(u) = lim
n→∞

(
C(u1/n)

)n
(13)

This means the copula between component-wise sample maxima from C(·)
converges to C∗(·) as the sample size goes to infinity, and we say that C(·)
is in the domain of attraction of C∗(·). Sometimes it is more convenient
to characterise extreme value copulas through their Pickands dependence
function A(t), 0 ≤ t ≤ 1 [16, p. 285]. This is a convex function bounded by
max{t, 1− t} ≤ A(t) ≤ 1, and has a one to one relationship with C∗(u). In
the two-dimensional case any such function induces an extreme value copula,
and we can write

C(u, v) = (uv)A(log(v)/ log(uv)) (14)

From the above we can see that A(t) = 1 produces independent components.
Conversely, A(t) = max{t, 1− t} produces perfectly dependent components.

One of the simplest parametric model of extremal dependence is the so
called logistic model, defined by

A(t) =
(
t1/α + (1− t)1/α

)α
, α ∈ (0, 1] (15)

This Pickands function induces a Gumbel-Hougaard copula, given by

C(u, v) = exp
(
−
(
(− log u)1/α + (− log v)1/α

)α)
, α ∈ (0, 1] (16)
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which has been shown to arise as an extremal dependence structure from a
wide family of copulas in the underlying distributions [22]. However, from
(15) we see that this model entails symmetry in A(t) in the sense that A(1/2−
t) = A(1/2+ t) for all 0 ≤ t ≤ 1/2, which is not always appropriate. A more
flexible generalisation of this model is the asymmetric logistic model whose
Pickands function in the bivariate case is given by

A(t) = (ψ2 − ψ1)t− ψ2 + 1 +
(
(ψ1t)

1/α + (ψ2(1− t))1/α
)α

(17)

with 0 ≤ ψ1, ψ2, α ≤ 1. This reduces to the logistic model if ψ1 = ψ2 = 1,
and to independence if α = 1 or ψ1 = 0 or ψ2 = 0.

Another advantage of working with Pickands functions is that they pro-
vide a way to visually inspect the goodness of fit of a model for extremal
dependence by comparing the fitted model’s Pickands function to the empir-
ical approximation induced by the data, as in Fig. 4.

Note that most if not all parametric models of extremal dependence make
the asumption of asymptotic dependence. This is because the only possible
limiting behaviour from asymptotically independent copulas is full indepen-
dence; this means that for, say, normally distributed data with correlation
−1 < ρ < 1, the dependence between components weakens at progressively
more extreme levels and disappears completely in the limit, reducing to com-
pletely independent components, and hence limiting parametric dependence
models are not very useful in this case. However, some useful semiparametric
approaches have been explored [18].

4. Data

Wind data were obtained from [23]. It consists of hourly wind capacity
factors based on atmospheric reanalysis data and the locations of installed
generation on January 2015, and for this work it has been rescaled to a
total wind capacity of 3 GW in IRL and 15 GW in GB. Different installed
wind capacities can be obtained for purpose of numerical experimentation
by rescaling by a constant factor.

Demand data consist of hourly measurements for the peak seasons of 2007
to 2013 for both systems; GB demand data was obtained from [24] while
data for IRL was provided by Baringa Ltd; the data has been standardised
by rescaling each peak season by their corresponding Average Cold Spell
estimates as in reference [25] to correct for external factors such as economic
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growth but preserving variation due to weather patterns [7]. Subsequently,
all normalised peak seasons were again rescaled to fix the average seven-year
period LOLE to three hours per year.

Capacity and failure probability data for conventional generating units
in Ireland were developed by Baringa Ltd for the Irish Single Electricity
Market Committee in 2016, and are publicly available at [26]; in the case of
Great Britain, data were provided by National Grid, and were anonimased
to protect its sensitivity; we take the anonymised data as representative of
the real system.

Finally, in this work, we refer to each historic peak season in the data by
the year at which the season started, so for example we refer to the 2007-2008
winter just by 2007. We illustrate results on a subset of years in the body
of the paper, in the interests of space; the full series of plots for all years is
shown in the online supplement.

5. Modelling net demand

As mentioned above, we assume that available conventional generation
is independent between the systems, and so dependence between the sys-
tems’ capacity surpluses or deficits comes entirely from net demand. The
main motivation in looking for a smooth alternative to a hindcast net de-
mand model is its tendency to produce risk estimates that are almost entirely
determined by a very small number of points. Figure 1 shows the concentra-
tion of LOLE in the highest net demand observations for each season under a
hindcast model. For instance, for 2011 in GB roughly 80% of the estimated
pre-interconnection LOLE comes from just eight observations. Moreover,
this concentration is exacerbated in post-interconnector calculations, par-
ticularly for IRL which is smaller relative to interconnection size. The use
of smooth, parametric models in the regions of interest could offer a more
balanced alternative.

As the influence of net demand on shortfall risks is almost completely
limited to the upper tail of net demand data in both systems, i.e. from the
highest values of (demand minus available wind), this section describes the
application of methodology from the theory of extremes to model net demand
tail events in the two-area system, modelling each peak season separately but
using the same methodology for all of them. Then, we compare risk estimates
of this model to those of an empirical (hindcast) model of net demand. All of
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Figure 1: Attribution of pre-interconnection (green) and post-interconnection(purple)
LOLE proportion for the highest net demand measurements in each peak season under
a hindcast net demand model. For instance, just three demand measurements virtually
determine post-interconnection LOLE in 2012 for IRL (lower right corner).

this was done using a bespoke Python package riskmodels which is publicly
available through the PYPI repository [27].

5.1. Parametric models for net demand extremes

5.1.1. Fitting GPD tail models

We first fit univariate Genralised Pareto distributions for each system
using the largest net demand observations in the peak season under con-
sideration; in order to set exceedance thresholds, we follow the approach
described in [17] using mean residual life plots, concluding that 95% quan-
tile thresholds are appropriate for both areas in all individual peak seasons;
then, using the exceedances above said thresholds we fit generalised Pareto
models. For both areas and all peak seasons we observe negative fitted shape
parameters (ξ in (9)); this means net demand data has light tails in the sense
that the fitted models have a finite upper endpoint. Fig. 2 shows Q-Q plots
for the fitted tail models in both areas; we observed similar goodness of fit
for net demand in all years. Finally, fitted parameters are shown in Table 1.
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Figure 2: Q-Q plots for tail models in both areas. Data shown are exceedances above the
95% quantile threshold for each peak season, and the fitted models are generalised Pareto
distribution.

5.1.2. Testing for extremal dependence in net demand

Empirical approximations for χ were consistent with the hypothesis of
asymptotic dependence for most years, as the empirical realisation of (11)
keep consistently away from zero for the largest percentiles (see Fig. 3b),
hence making the hypothesis of having χ > 0 plausible. However a more
quantitative answer can be obtained performing a Bayesian ratio test to test
both hypothesis, namely asymptotic dependence and asymptotic indepen-
dence. We do this through estimation of the coefficient of tail dependence η
as described in Section 3.2 using the 95% quantile as threshold for both sys-
tems; as the hypothesis of asymptotic dependence consists of a single point
in the hypothesis space, namely H0 : η = 1 vs H1 : η ̸= 1, η ∈ [0, 1], we cal-
culate the Savage-Dickey ratio r, defined as the ratio between the posterior
and prior densities for the value of interest [28, 29], in this case η = 1. This
can be thought of as the limiting value of a Bayes ratio test when the null
hypothesis subset shrinks to a single point; the test value itself, r, equals the
ratio of posterior to prior odds for H0 [30].

To perform the test, we set P(H0) = P(H1) = 0.5 and use a Jeffreys prior
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Figure 3: Diagnostics for asymptotic dependence in net demand data.

on both parameters η and σ; Jeffreys priors are invariant under reparametri-
sation [31], which makes them a robust choice when no additional information
is available. We restrict η to [0, 1] and treat σ > 0 as a nuisance parame-
ter. Under this setting, r values larger than 1 make H0 more credible than
the alternative, and we find this this to be the case for all individual years
except 2012 (Fig. 3a). Note that even though some values might appear to
provide only weak evidence for H0, the fact that it is at the very edge of the
hypothesis space might make the posterior converge slowly to H0 even when
it is true, and indeed we observed similar values for r when using synthetic
data for which H0 was the correct choice; moreover, the use of uniform priors
did not alter the conclusions of the tests. We thus conclude asymptotically
dependent extreme value models are appropriate for net demand data.

Lastly, as asymptotic dependence was the favored hypothesis for all other
years, for the sake of simplicity we use the same model for 2012 too, rather
than alterantives such as [18]. There is further discussion of the validity
of this model of asymptotic dependence in Section 6.1 (which considers de-
pendences between surpluses, as opposed to the net demands studied here).
The very strong evidence seen there against asymptotic dependence in sur-
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plus/deficit provides further support for using a different model with asymp-
totic dependence for the case of net demands.
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Figure 4: Comparison of the fitted logistic (teal) and asymmetric logistic (yellow) Pickands
functions to the empirical Pickands function (red) for each peak season.

5.1.3. Fitting the dependence model

To fit the dependence models we use the same modelling thresholds as
for the marginal exceedance models, and we consider logistic and asymmet-
ric logistic dependence (Section 3.3). A visual comparison of the empirical
Pickands approximation induced by joint exceedance data (as calculated in
[32]) against those of the models fitted on joint exceedances (Fig. 4) suggests
that both models provide an appropriate descriptions of the data, except for
2008 where the asymmetric logistic produces a better fit. However, the ef-
fect of the choice between these two models turns out to be minimal in the
consequent results, and so we choose a logistic model for parsimony.

Lastly, the model is fitted in all of the exceedance region, i.e. that in
which at least one exceedance in the two areas occur. Fitted dependence
parameters are shown in Table 1.
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5.1.4. The fully fitted model

The fully fitted model is semiparametric and comprises the empirical
data distribution for the non-extreme region Y ≤ u, with threshold vector
u given in Table 1, and an exceedance model defined on the region Y ≰ u.
The exceedance model’s marginal distributions are as in (10) with fitted
tail parameters as in the referenced table, and dependence in this model is
governed by the fitted extreme value copula, restricted to the corresponding
exceedance region in copula space.

season GB (u, σ, ξ) IRL (u, σ, ξ) dependence (α)
2007 (43.18, 2.78, -0.33) (6.96, 0.37, -0.08) 0.53
2008 (44.7, 2.58, -0.31) (7.3, 0.5, -0.21) 0.51
2009 (45.42, 2.05, -0.23) (7.44, 0.48, -0.28) 0.47
2010 (45.4, 2.9, -0.3) (7.54, 0.5, -0.18) 0.46
2011 (43.91, 2.66, -0.26) (6.7, 0.52, -0.2) 0.56
2012 (45.43, 2.41, -0.26) (7.08, 0.47, -0.21) 0.6
2013 (42.45, 2.48, -0.36) (6.85, 0.53, -0.27) 0.5

Table 1: Table with fitted model parameters for all peak seasons. GB and IRL columns
show the fitted parameters for the respective univariate exceedance distributions; u, σ are
in GW, and u correspond to the 95% quantile in all cases.

5.2. Comparison to hindcast net demand models

In this subsection, we compare LOLE estimates from the logistic model
fitted in previous subsections to those from the hindcast model (4).

To make this comparison more relevant in the context of growing renew-
ables penetrations and market integration, we perform numerical experiments
using an interconnection capacity of 2 GW and a wind generation capacity
of 2.5 times that installed in 2014 (i.e. installed wind capacities of 7.5 GW
for IRL and 38 GW for GB). The distribution of surplus in each system is
then shifted to keep the pre-interconnector value of LOLE averaged across
all seven years at the initial level of 3 h/y.

5.2.1. Comparison of LOLE estimates

Fig. 5 shows post-interconnection LOLE estimates for both areas; be-
cause the integral in (7) cannot be calculated exactly for the fitted tail mod-
els, Monte Carlo estimates are used instead, and corresponding confidence
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Figure 5: Comparison of LOLE estimates from hindcast (orange) and logisitc (blue) mod-
els. Because estimation from a logistic model requires Monte Carlo simulation, 95% con-
fidence bands for its central estimate are shown.

bands for the central estimate are shown. As these results consider the con-
tribution of interconnection, LOLE values are generally low, particularly for
Ireland where the system is smaller relative to the capacity of interconnection.
However we can observe large relative differences between model estimates
in both areas, e.g. years 2011, 2012 for GB and 2008, 2012 for IRL; fur-
thermore, for 2011 in GB and 2008 in IRL, both models suggest diverging
risk estimates as more wind is installed. While the difference between the
hindcast and EVT results are not very great for the highest risk year (2010),
there are substantial differences in some of the higher risk years (2012 in GB,
2008 in Ireland), demonstrating how the effect of smoothing the tail can be
material in practical risk calculations.

There are two main theoretical reasons to prefer EVT estimates over hind-
cast estimates. Firstly, EVT smoothes the tail of the distribution, reducing
the influence of outliers and small variations in the tail data. This is particu-
larly important because we know that much of the risk in hindcast estimates
is concentrated in a small number of extreme observations. Secondly, EVT
allows us to extrapolate beyond the most extreme observation seen in the
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dataset – one side effect of this is that EVT can be used to calculate prob-
abilities for events that have not previously been observed. If we were able
to simulate multiple realisations of a given year and compute both EVT and
hindcast estimates of the LOLE for each realisation, we would expect the
variance of the EVT estimates to be smaller than the variance of the hind-
cast estimates (because of the smoothing effect described above). However,
producing such a set of realisations to test this is challenging because net
demand is a time series with serial correlation as well as complex seasonal
trends that would need to be replicated in any simulation.

6. Statistical dependence in capacity deficits

Having developed a model for extreme net demand events in the two-
area system in the previous section, we now turn our attention to statistical
dependence in capacity deficits, i.e. between negative values of (available
supply minus demand) in the two areas. The analysis in the previous section
demonstrated a strong association in extreme net demand co-occurrences,
however each of these net demands is convolved with the available conven-
tional capacity in the relevant area, and the available conventional capacities
are assumed independent. It is thus natural to think that in a relevant sense
the dependence may be weaker for capacity deficits than for net demand –
this section will investigate this hypothesis, again by assessing the strength
of tail dependence and using this to fit an appropriate statistical model.

We work with the right tails of (demand minus available supply), thus
treating capacity shortfalls as maxima instead of minima to make results
from EVT immediately applicable. To avoid any confusion we call this the
shortfall distribution, and negative values simply indicate the non-occurrence
of a capacity shortfall.

6.1. Charactersing statistical dependence

We proceed in a manner similar to the analysis of net demand in Section
5, performing the same Bayesian ratio test as in Section 5.1.2 to determine
whether asymptotic dependence is present, resulting in a Savage-Dickey ratio
of r < 10−3 for all years and a wide range of quantile thresholds between 80%
and 99.99%. This provides strong direct evidence of capacity shortfalls being
asymptotically independent.

The evidence for asymptotic dependence between the two net demands
was not as definitive as this evidence against for the shortfalls, but the differ-
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ence in r for the two cases clearly demonstrates stronger tail dependence for
the net demands as compared to the capacity shortfalls. This would appear
to confirm the intuition that the convolution with the (independent) conven-
tional plant distributions should weaken the dependence between the systems
– and provides some further justification for the use of the logistic model for
the earlier cases even where the evidence for asymptotic dependence was
relatively weak.

Extreme value copulas like the ones used on net demand data are not
appropriate to model asymptotically independent data. However, as stated
in Section 3.2, Gaussian copulas provide a simple parametric example of an
asymptotically independent copula, and we test this as a dependence model
for joint exceedances of the shortfall distribution, finding that it is a good fit
for all peak seasons and tested thresholds between 80% and 99.99%. Fig. 6
shows the comparison between contour lines for each decile of the empirical
and fitted Gaussian copula for a threshold of 80%.

We note that Gaussian copulas are not typically used to model extremal
dependence in the EVT literature because they are not an extreme value
copula in the sense of Equation (13). Our choice here is instead based on
practicality, as it provides a simple parametric model that accurately de-
scribes tail dependence in the capacity shortfall distribution.

Based on this evidence, we proceed as with the net demand model and
use a Gaussian copula to describe dependence between exceedances at both
components, defining an exceedance as a shortfall in the corresponding com-
ponent; the modelling region is illustrated in Fig. 7b. The quantile threshold
in this case was much higher than for net demand, as shortfalls occur with a
probability of approximately 0.001% in each area, due to the LOLE normal-
isation to three hours per year over the whole seven-year period.

The difference between the regimes of tail dependence in net demand
and the shortfall distributions can be more clearly seen in Fig. 7: the net
demand distribution’s tails are much more concentrated around the diagonal
of the graph than those of capacity shortfalls. A consequence of this, is that
simultaneous shortfalls occur rarely relative to shortfalls in just one region,
whereas there is a much stronger tendency for extremes of net demand to
occur in both areas at the the same time. Fitted dependence parameters for
this model are given in Table 2.

We note that these observations about dependence between deficits in the
two areas follows in substantial part from the assumption of independence
between available conventional capacities in the two areas. This assumption
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Figure 6: Contour lines for cumulative probability functions of empirical (orange) and
fitted Gaussian copulas (blue); the first nine deciles are shown. The data consisted of 2500
simulated joint shortfalls.

season ρ
2007 0.68
2008 0.7
2009 0.69
2010 0.76
2011 0.7
2012 0.66

Table 2: Fitted values for Gaussian exceedance dependence model.

is usually made in practical calculations, though it must be caveated if there
is a possibility of a common cause event affecting units in both systems –
for instance restriction on primary fuel supply, or elevated failure rates in
certain weather conditions as in [33, 34]. Nevertheless, these results around
asymptotic dependence are helpful in understanding outputs of present risk
calculations, and it seems reasonable to think that even where common cause
events are relevant the influence of conventional plant will weaken the tail
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Figure 7: Hex-binned net demand and shortfall distribution scatterplots for 2010. The
modelling thresholds, which delimit the modelling region (shaded orange) are shown as
dashed lines. Points in the modelling regions were simulated from the fitted models.

dependence between the distributions of deficit in the two areas as compared
to the dependence between net demands.

6.2. Sensitivity of risk metrics to dependence strength

Having a single-parameter dependence model for the shortfall region in
the shortfall distributions makes it straightforward to perform a sensitivity
analysis of LOLE and EEU to statistical dependence strength between the
capacity shortfalls at both areas. Fig. 8 shows the results of the sensitivity
analysis using data from 2010, with a similar pattern seen using data from
other years. The dependence of the LOLE level is quite weak at low values
of ρ, with the estimated risk level only increasing significantly above the
‘independence’ limiting case forρ above about 0.5.

7. Conclusion

This paper has presented approaches to statistical modelling of net de-
mands and of shortfalls in two area power systems. The general approach
is to assess whether the quantities of interest are asymptotically dependent,
and then to choose an appropriate bivariate model based on this assessment.
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Figure 8: Sensitivity of each metric (LOLE and EEU) to dependence strength, in both
areas and for both policies; the dotted blue line represents the estimated dependence
strength in the GB-IRL system.

The methods have been developed for two area systems, but can be extended
to multi-area systems.

In the case of net demands, the tests are consistent with asymptotic de-
pendence, though this conclusion is not very definitive. Other diagnostics
do also suggest that an extreme value copula with asymptotic dependence
provides a good fit to the empirical dependence structure. The resulting
smoothing of the sparse extreme region of the empirical distribution of net
demand can change risk calculation results substantially, with a possible
explanation being that the calculation results involving the empirical distri-
bution are driven by a very small number of historic records.

We also demonstrate how the dependence structure of the shortfalls in
the two areas may be modelled directly. In this case there is very strong
evidence against asymptotic dependence, and we find that a Gaussian cop-
ula describes the behaviour appropriately in this case. This contrast in the
assessment of asymptotic dependence for the two cases confirms the intuition
that dependence between shortfalls in the two systems might be weakened by
convolution with the distributions of available conventional capacity (which
are assumed independent between the systems). This also provides a means
of performing sensitivity analysis of the risk model outputs to the strength
of dependence between the shortfalls, by varying the correlation coefficient
of the Gaussian copula.
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lications del’Institut de Statistique de l’Université de Paris (8) (1959)
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