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a b s t r a c t

The research fields of Complex Trait (or Statistical) Genetics and Neuroimaging face similar

challenges in identifying reliable biological correlates of common traits and diseases. This

Viewpoint focuses on five major lessons that allowed population-level genetics research to

overcome many of its issues of replicability and may be directly applicable to inter-

individual neuroimaging research. First, the failure of candidate gene studies inspires

abandoning overly simplistic studies mapping individual brain regions onto traits and

diseases. Second, developments in genetics research demonstrate that robust study results

can be achieved by increasing sample sizes. Third and fourth, the success of genome-wide

association studies motivates the use of mass-univariate testing and sharing summary-

level association data to boost large-scale collaboration and meta-analysis. Finally,

applying genetics methods dealing with complex data structures to vertex-wise (or voxel-

wise) neuroimaging data promises more robust discoveries without the need to develop

novel neuroimaging-specific methods. Those practices e that are firmly established in

genetics research e should either be further endorsed, or newly adopted by the neuro-

imaging community, promising to accelerate the evolution of Neuroimaging through

robust discovery.

© 2023 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Fifteen years ago, researchers claimed to have found a gene

responsible for depression. Roughly 450 peer-reviewed

studies, published in reputable journals, had delivered

apparently supporting evidence for the hypothesis that the

Serotonin Transporter Gene formed the biological basis of

depression (Border et al., 2019). As the name suggests, the

Serotonin Transporter Gene regulates serotonin levels in the

brain, making it a logical therapeutic target that conformed

with popular theories of depression at the time. Many other

so-called candidate gene studies, which tested similar
lsevier Ltd. This is an ope
hypotheses about single genes forming the basis of other

human traits and diseases, also claimed to have uncovered

underlying genetic mechanisms. Those studies were cited

thousands of times. Unfortunately, almost all this research

later transpired to be based on oversimplified notions of

human biology and could not be reliably replicated.

Candidate gene studies had mostly accumulated false re-

sults, and are now considered obsolete (Border et al., 2019).

The full extent to which candidate gene studies e exploring

inter-individual traits with complex biology e produced
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erroneous and oversimplified results became clear when

studies with better methods and superior statistical power

systematically contradicted candidate gene findings. The field

of Complex Trait Genetics overcamemany of its flaws through

drastically reforming approaches to analysing big genetic

data, which eventually allowed novel insights into human

biology. Contemporary genetic discoveries promise exciting

translations into applications of personalised healthcare, ac-

cording to which we may be able to predict disease risk from

an individual's genetic make-up to guide treatment, or even

prevent disease altogether (e.g., Brittain et al., 2017).

Neuroimaging research now faces some similar challenges

of replicability. Specifically, studies looking for brain regions

that may be “responsible” for functions (or dysfunctions) are

just as difficult to replicate as candidate gene studies. For

example, the Parieto-Frontal-Integration theory (P-FIT) e

suggesting that enlarged frontal and parietal brain regions

underpin good cognitive ability e shaped many of neuro-

cognitive studies. However, meta-analytic evidence for this

theory is inconsistent (Basten et al., 2015). It is possible, if not

likely, that our future selves will remember the P-FIT, as the

Serotonin Transporter Gene theory, as an abandoned piece of

the self-correcting scientific process.

It is the aim of this Viewpoint to outline striking parallels

between the challenges faced in the fields of Complex Trait

Genetics and inter-individual Neuroimaging. It is at the core of

my reasoning that traits and diseases have complex genome-

wide and brain-wide biology of which the corresponding data

structures demonstrate similar characteristics. I will discuss

firmly established practices that helped genetics research

overcome issues of replicability andmay help inter-individual

neuroimaging research do the same. Some of these practices

have already been endorsed by parts of the neuroimaging

community, but others are novel and may inspire an accel-

eration of the evolution of Neuroimaging.
1. Lesson 1: abandon traditional studies
mapping one biological variable onto traits and
diseases

To illustrate how lessons from one research field may inspire

change in another, I will first focus on advances in Complex

Trait Genetics that were key to moving past the replication

crisis. Most importantly, it was a conceptual shift from

candidate gene towards genome-wide approaches that allowed

genetics research to reliably identify genetic risk factors. In

essence, candidate gene and genome-wide approaches differ

in that the former describe the statistical relationship be-

tween a trait and one pre-specified gene-of-interest that the

researcher hypothesised to form its biological basis. Genome-

wide approaches are hypothesis-free, and consider thou-

sands, or millions of genetic markers.

Genome-wide methods successfully enabled robust dis-

coveries as they accommodate twomain characteristics of the

genetic architecture of traits and diseases. First, genome-wide
methods consider that markers across the genome are

correlated among one another, which reflects the fact that

genes are passed through families in conjunction with other

genes. Geneticists call this linkage disequilibrium. Second,

genome-widemethods recognise thatmost human traits have

many genetic correlates that are weakly associated and

diffusely distributed across the whole genome (as opposed to

being controlled by only one strongly associated gene). Ge-

neticists refer to this as polygenicity. It is now widely accepted

that many genetic correlates (sometimes thousands) account

for why traits and diseases are heritable. For example,

whether a person develops depression is influenced by how

many genetic risk markers this person inherits at birth. From

this perspective, it is intuitive that polygenic traits can only be

modelled appropriately by statistical methods that consider

the entire genome, as opposed to one individual gene.

Those genetic data structures (i.e., linkage disequilibrium

and polygenicity) both have close analogies in neuroimaging

data. The parallel is strongest when neuroimaging data is

represented in its raw vertex-wise (or voxel-wise) form,

including hundreds of thousands of brain-wide measures.

Like inter-correlated genetic markers, a measure of cortical

thickness at a certain vertex (or voxel) is correlated with other

vertex- (or voxel-) wise brain measures, particularly with

those in physical proximity. These interdependencies are

organised along cortical gradients (Huntenburg et al., 2018).

Furthermore, we know from functional neuroimaging and

other modalities, that traits have many correlates spread

across the brain (Marek et al., 2022), suggesting approaches

considering only one brain region oversimplify matters to a

substantial degree. As in genetics research, empirical in-

vestigations have shown that it is most appropriate to model

the brain based on thousands of vertex-wise brain measures,

instead of considering crudely averaged regions-of-interest

(ROIs) (Fürtjes et al., 2023). Hence, abandoning overly

simplistic studies mapping individual ROIs onto traits has the

potential to improve reliability of neuroimaging research.
2. Lesson 2: increase sample sizes

Using genome-wide approaches, the genetics community

soon realised that polygenic traits have many genetic corre-

lates with effect sizesmuch smaller than previously expected.

As small effects require large samples to achieve adequate

statistical power, it is widely accepted that insufficient sam-

ples had hindered the reliable identification of genetic

mechanisms. For example, Serotonin Transporter Gene

studies had a median sample size of 435 (Border et al., 2019),

and resulting false discoveries were amplified by publication

bias. Many efforts have since been devoted to increasing sig-

nificance thresholds to counteract chance findings, as well as

collecting large-scale genotyped samples, in some cases

including millions of participants (Yengo et al., 2022).

While some neuroimaging samples are continually

growing e for example, the UK Biobank cohort is on a

https://doi.org/10.1016/j.cortex.2023.08.003
https://doi.org/10.1016/j.cortex.2023.08.003


c o r t e x 1 6 8 ( 2 0 2 3 ) 7 6e8 178
trajectory to scanning 100,000 brains (Littlejohns et al., 2020)e

overall, they remain small.1 Where big samples collected

through consortia improved the reliability of genetics studies,

larger samples are imperative to improving neuroimaging

studies too. Consortia like ENIGMA (Thompson et al., 2014)

and repositories such as NeuroVault (2022), BrainMap (Fox

et al., 2005; Fox & Lancaster, 2002), or Neurosynth (Yarkoni

et al., 2011) are already pioneering data sharing of tens of

thousands of participants which will unlock the reliable

identification of many correlates spread across the brain.
3. Lesson 3: use mass-univariate testing

Beyond increasing sample sizes, genetics research established

statistical techniques handling complicated data structures,

that can alsomodel vertex- (or voxel-) wise neuroimaging data

and account for complex brain-trait relationships. A popular

genome-wide technique is mass-univariate testing, which

geneticists call genome-wide association studies (GWAS). GWAS

take a hypothesis-free approach to scanning the genome for

any association between a trait and millions of genetic

markers. GWAS results have been reliably replicated across

many phenotypes and samples (Visscher et al., 2017). Result-

ing summary statistics, which conceal sensitive participant-

level information, can be publicly shared, enabling large

collaborative efforts and powerful meta-analyses. It has

become routine for researchers to inform their genetic studies

with the newest GWAS association data, in order to predict

individual-level disease based on polygenic scores. Those

scores reflect an individual's propensity towards disease and

their predictive value is improving as sample sizes grow

(Visscher et al., 2017).

Mass-univariate testing, which is what a GWAS does, has

also been employed by neuroimaging studies in which asso-

ciations between traits and hundreds of thousands of vertex-

(or voxel-) wise brain measures are quantified. Vertex- (or

voxel-) wise mass-univariate testing is used in many neuro-

imaging studies (Ashburner & Friston, 2000), however, it has

not fully replaced limited ROI-based studies. A downside to

mass-univariate testing is the considerable power losses due

to many significance tests that need correction for multiple

testing. However, increasing neuroimaging sample sizes and

larger computational resources promise small but accurate

estimates of vertex- (or voxel-)trait associations, which will
1 I am unaware of a study reporting a median sample size for
inter-individual neuroimaging studies only. Marek et al. (2022)
and Szucs and Ioannidis (2020) report a median sample size of
N ¼ 25, however, many of the studies included in this figure do
not make inference on an individual-level. If the goal is to make
inference on an individual-level e as is the focus in this View-
point e N ¼ 25 is insufficiently small. When it is the aim to create
a task average contrast map using functional imaging, for
example, N ¼ 25 may be sufficient. Note that a parallel between
neuroimaging and genetics research may be extended to brain
maps ewhich could parallel research of genetic components that
are identical across all humans (i.e., not varying across the pop-
ulation) e however, this discussion is out-of-scope of this
Viewpoint.
help uncover meaningful brain-wide association patterns in

the future.
4. Lesson 4: use and share summary-level
association data

GWAS summary statistics are routinely used as input data to

infer estimates of genetic overlap, which quantifies the level

of overlapping genetic biology shared between two traits.

Many studies focus on genetic overlap to better understand

comorbidity or disease risk factors. Based on estimates of

genetic overlap, more advanced statistical approaches model

relationships between traits at the level of their underlying

genetic architecture, enabling tests of specific theories about

the shared biology between traits (e.g., Genomic SEM

(Grotzinger et al., 2019), Genomic ICA (Soheili-Nezhad et al.,

2021), Genomic PCA (Fürtjes et al., 2021)). Many more

methods build on GWAS summary data, uncovering biologi-

cally interpretable mechanisms, for example, by linking them

with gene expression or cell type profiles (de Leeuw et al.,

2015).

Adopting practices that encourage collaboration andmeta-

analysis also greatly benefits neuroimaging research. Just as

geneticists share GWAS summary statistics, neuroimagers

should calculate summary-level trait associations for all

vertices (or voxels) across the brain and share them publicly.

Meaningful summary data will require great, consortium-

level efforts to reduce noise and (scanner) bias. Inspired by

practices surrounding GWAS, vertex- (or voxel-) wise associ-

ation data may be used to infer brain-based etiology shared

between traits (parallel to genetic overlap), or to uncover un-

derlying biological mechanisms by mapping association data

onto brain-specific gene expression (Shen et al., 2012) and

neurotransmitter systems (Hansen et al., 2022).
5. Lesson 5: use multivariate approaches
that were originally developed for genetics
research

Alternative multivariate techniques exist that simultaneously

map thousands of biological markers onto a trait or disease.

Multivariate techniques do not require extensive multiple

testing correction, and they therefore have more statistical

power than mass-univariate methods. For example, the ge-

netics technique genome-wide complex trait analysis (GCTA)

(Yang et al., 2011) is ubiquitously used to estimate heritability.

Implemented in efficient software, the GCTA framework em-

ploys linear mixed models fitting millions of variables as a

vector of random effects, to quantify trait variance accounted

for by genome-wide markers (i.e., heritability), while recog-

nising the correlation structure between them. Recent neu-

roimaging studies repurposed GCTA which enabled the

estimation of morphometricity, which is the trait variance

explained by brain-wide measures (Couvy-Duchesne et al.,

2020).

All traits are heritable (Turkheimer, 2000), and given heri-

tability and morphometricity have an analogous statistical

definition, it is unsurprising that most traits are also

https://doi.org/10.1016/j.cortex.2023.08.003
https://doi.org/10.1016/j.cortex.2023.08.003


c o r t e x 1 6 8 ( 2 0 2 3 ) 7 6e8 1 79
considerably morphometric (Couvy-Duchesne et al., 2020). A

recent study applied the GCTA framework to neuroimaging

data, and compared the variance accounted for by ~300,000

cortical measures with variance accounted for by coarser

brain atlases (Fürtjes et al., 2023). It demonstrated that atlas-

based representations of the cortex explained a fraction of

the morphometricity that was explained by vertex-wise

measures, which highlights that considering brain-wide ver-

tex- (or voxel-) wise measures maximises the potential of

uncovering neuronal underpinnings of traits and diseases. As

in candidate gene approaches, coarse representations of the

cortex using ROIs do not reliably account for trait variance.

Critics may argue that modelling vertex- (or voxel-) wise

data e using genetics frameworks e would disregard the de-

cade'sworth of brain sciences that derived brain atlases to help

interpret brain-trait associations. To facilitate more biologi-

cally meaningful interpretation, Couvy-Duchesne et al. (2020)

demonstrate that the GCTA framework permits integrating

prior knowledge about brain organisation by grouping vertex-

wise measures based on the researchers input, and fitting

each set of vertices as random effects. This analysis has the

advantage that it still models vertex-wise cortical structure,

while it drastically reduces multiple testing burden compared

with mass-univariate testing, as it only performs a single as-

sociation test per set of vertices. I suggest this framework has

the potential and flexibility to fully replace ROI-based studies

with robust vertex- (or voxel-) wise approaches.
6. Limitations of translating genetics
practices to neuroimaging research

It must be noted, however, that the discussion above only

applies to studies researching inter-individual traits that

commonly vary across the general population. Depression is a

prominent example, as it affects about 15% of people at some

point in their lives (Bromet et al., 2011). It is precisely this

variance across the population that the methods discussed

above leverage to draw inference. Those methods would be

inappropriate to model rarer monogenic traits. Huntington's
disease, for example, only affects 1 in 10,000 people and was

linked to one single gene coding for a protein called huntingtin

(Coleman et al., 2021), which would not map onto models of

polygenicity. Nonetheless, parallels between the fields hold as

monogenic traits in genetics research are analogous to lesion-

based neuroimaging studies. The latter link localised brain

lesions (that often result from rare accidents) with very spe-

cific loss of cognitive function (e.g., Scoville & Milner, 1957).

Both monogenic and lesion-based correlates are rare, they

both have large effect sizes, and smaller clinical samples are

sufficient to detect them.

A meaningful application of genetic methods to neuro-

imaging data must consider differences in data structures,

which dictate the interpretation of results in their genetic- or

brain-specific context. Primary among these differences is

that genetic markers are inherited at conception and remain

unaltered across the lifespan, while the brain evolves with its

environment. Thus, genetic propensity towards a trait can

imply directionality of effects, which cannot be inferred from
neuroimaging studies. Genetic and neuroimaging data both

contain interdependent measures, but the architecture of this

interdependence is different, which may affect techniques

deriving genetic or brain-based trait overlap. It complicates

interpretation of genetic studies that trait correlates often sit

in parts of the genome with complicated regulatory, and no

direct coding functions (Visscher et al., 2017). In comparison,

the interpretation of vertex- (or voxel-) wise brain associations

is trivial, as the strongest associations are between vertices (or

voxels) in physical proximity.

This Viewpoint aimed to translate specific genetics

research practices to vertex-wise neuroimaging data. How-

ever, interdisciplinary lessons may also be transferred vice

versa e from neuroimaging to genetics research. An example

may be that neuroimaging research derives sophisticated

methods to adjust for multiple testing [e.g., non-stationary

spatial correlations (e.g., Davey et al., 2021)] that could guide

future genetic studies to more powerfully account for LD and

correlated patterns of trait associations. More broadly, it ap-

pears that making sense of genetic and neuroimaging data e

or any other multivariate data e is marked by similar chal-

lenges and opportunities which becomes evident when

considering interdisciplinary parallels in data structures and

analysis techniques. Hence, future scientific progress may

benefit from exploring parallels between all research disci-

plines and translating unique insights across them.
7. Conclusion

Population traits have both complex genetic and brain-based

biology, and here I argue that practices firmly established in

genetics research can be directly applied to improving neu-

roimaging studies. Based on striking parallels between the

two fields, this Viewpoint transferred lessons drawn from the

field of Complex Trait Genetics to Neuroimaging, which

promises more robust discoveries if widely endorsed by the

neuroimaging community. The failure to produce reliable

findings, by both candidate gene and neuroimaging studies

mapping individual brain regions onto inter-individual traits,

illustrates that future efforts should keep increasing sample

sizes, and counteract noisy findings by correcting for multiple

testing. Genetics research teaches that we can improve

replicability by abandoning hypothesis-driven overly

simplistic approaches, and by adopting hypothesis-free

methods exemplified by GWAS and GCTA. Sharing

summary-level association data will boost large-scale collab-

oration andmeta-analysis. Those genetic practices, applied to

vertex- (or voxel-) wise neuroimaging data, promise an ac-

celeration of the evolution of neuroimaging studies, without

requiring painstaking innovation of neuroimaging methods

that would overcome the same challenges that Complex Trait

Genetics already solved.
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