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Dispersion entropy: A Measure of Irregularity for Graph Signals
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1 School of Engineering, Institute for Digital Communications,
University of Edinburgh, West Mains Rd, Edinburgh, EH9 3FB, UK.

2 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
(Dated: April 3, 2023)

We introduce a novel method, called Dispersion Entropy for Graph Signals, DEG, as a powerful
tool for analysing the irregularity of signals defined on graphs. We demonstrate the effectiveness
of DEG in detecting changes in the dynamics of signals defined on synthetic and real-world graphs,
by defining mixed processing on random geometric graphs or those exhibiting with small-world
properties. Remarkably, DEG generalises the classical dispersion entropy for univariate time series,
enabling its application in diverse domains such as image processing, time series analysis, and
network analysis, as well as in establishing theoretical relationships (i.e., graph centrality measures,
spectrum). Our results indicate that DEG effectively captures the irregularity of graph signals across
various network configurations, successfully differentiating between distinct levels of randomness and
connectivity. Consequently, DEG provides a comprehensive framework for entropy analysis of various
data types, enabling new applications of dispersion entropy not previously feasible, and revealing
relationships between graph signals and its graph topology.

Introduction. Entropy is a fundamental tool for
assessing irregularity and non-linear behaviour in data.
Permutation entropy (PE) is an effective algorithm for
capturing dynamics in time series (1D data) [1] and has
been widely used in finance, physics, and biology [2].
However, PE considers only the order of values, dis-
carding important amplitude information. Dispersion
Entropy (DE) was introduced to overcome this limita-
tion [3], and has since been applied to EEG analysis [4]
and rotary machines [5].

The growing availability of data defined on complex
networks, such as social networks [6], transportation sys-
tems [7], and industrial processes [8], has driven in-
terest in extending entropy metrics from time series
to more general domains. Recently, PE has been ex-
tended to analyse images (2D data) [9] and irregular do-
mains (graphs) [10]. While DE has been defined for 2D
data [11], there is no existing DE algorithm for analysing
data defined on graphs. Such an extension would enable
analysis of real-world systems with graph-based struc-
ture where classical DE was not previously applicable,
providing a powerful framework for data analysis across
a wide range of applications in Graph Signal Processing
(GSP) [7].

Smoothness is a fundamental property extensively
studied in GSP [7, 12, 13], typically through the use of the
combinatorial Laplacian’s quadratic form. Intuitively, a
graph signal is considered smooth if connected vertices
exhibit similar values [13]. Nonetheless, this definition
may not fully capture the complex dynamics of graph
signals due to its relationship with the spectrum [14]. To
address this limitation, we propose in this letter a novel
method, based on classical DE for time series, which ef-
fectively captures the irregularity of graph signals, pro-
viding critical insights into the underlying graph struc-
ture and data.

To evaluate our method’s performance, we employed
synthetic and real-world graphs, including random ge-

ometric graphs (used to model wireless sensor net-
works [15]) and small-world networks (observed widely
in biological systems [16], social networks [17], and com-
plex systems [18]). In our analysis, we generalised the
mix process MIX(p), a stochastic process combining a si-
nusoidal signal with random dynamics controlled by the
parameter p ∈ [0, 1]. This process has been employed
to assess the performance of various entropy metrics in
time series [19, 20] and images [21]. Moreover, we analyse
centrality measures, which assign ranking values to the
graph’s vertices based on their position or importance
within the graph. Centrality measures play a crucial role
in social network analysis for evaluating the importance
of vertices in communication [22, 23].

Contribution. In this letter, we propose a method
for defining Dispersion Entropy for Graph Signals, de-
noted as DEG. Our approach generalises the classical
univariate definition of DE by incorporating topological
information through the adjacency matrix. We demon-
strate the effectiveness of DEG on synthetic and real-
world datasets, and characterise the relationship between
graph topology and signal dynamics. Our results indi-
cate that DEG is a promising technique for analysing
graph data, holding potential for numerous applications
in fields such as biomedicine and social sciences.

Notation. A simple undirected graph G is defined as a
triple G = (V, E ,A), where V is a finite set of vertices
(without isolated vertices), E is the set of edges, and A
is the corresponding adjacency matrix. A graph signal
is a real function defined on the vertices X : V → R,
represented as an N -dimensional column vector, X =

[x1, x2, . . . , xN ]
T ∈ RN×1, with the same indexing as the

vertices. The combinatorial Laplacian and normalised
Laplacian are denoted by ∆ and L, respectively.

A d-dimensional Random Geometric Graph (RGG) is a
graph in which each vertex vi ∈ V is assigned a random d-
dimensional coordinate vi → xi = (x1

i , . . . , x
d
i ) ∈ [0, 1]d.

Two vertices vi, vj ∈ V are connected by an edge if the

ar
X

iv
:2

30
3.

18
07

9v
1 

 [
m

at
h.

C
O

] 
 3

1 
M

ar
 2

02
3



2

distance between their assigned coordinates is below a
predefined threshold r > d(vi, vj) (see [24]).
Dispersion Entropy for Graph Signals (DEG).

Let X be a graph signal defined on G, 2 ≤ m ∈ N be the
embedding dimension, L ∈ N be the delay time and c ∈ N
be the class number. The DEG is defined as follows:

1. The embedding matrix Y ∈ RN×m is given by Y =
[y0,y1, · · · ,ym−1], defined by

yk = DAkLX ∈ RN×1 , k = 0, 1, . . . ,m− 1 ,

where D is the diagonal matrix Dii = 1/
∑N
j=1(AkL)ij .

2. Map function. Each entry of the embedding matrix
Y is mapped to an integer number from 1 to c, called a
class. The function F : R → Nc where Nc = {1, 2, . . . , c}
is applied element-wise on the matrix Y, i.e. F (Y) ∈
NN×mc where F (Y)ij = F (yij).

3. Dispersion patterns. Each row of the matrix F (Y),
called an embedding vector, is mapped to a unique dis-
persion pattern. Formally, the embedding vectors consist
of m integer numbers (ranged from 1 to c) correspond-
ing to each row of the matrix F (Y), i.e., rowi(F (Y)) =
(F (yij))

m
j=1 for i = 1, 2, . . . , N . The set of dispersion

patterns is Π = {πv1v2...vm | vi ∈ Nc }. Each embed-
ding vector is uniquely mapped to a dispersion pattern,
i.e., rowi(F (Y)) → πv1v2...vm where v1 = F (yi1), v2 =
F (yi2), . . . , vm = F (yim).

4. Relative frequencies. For each dispersion pattern π ∈
Π, its relative frequency is obtained as:

p (π) =
|{i | i ∈ V, rowi(F (Y)) has type π}|

N
.

5. The Dispersion Entropy for Graph Signals DEG is
computed as the normalised Shannon’s entropy for the
distinct dispersion patterns as follows:

DEG(X,m,L, c) = − 1

log(cm)

∑
π∈Π

p(π) ln p(π) .

The DEG algorithm offers several unique features and
properties. The embedding matrix is a key component
that captures the topological relationships between the
graph and signal. With a chosen embedding dimension
3 ≤ m ≤ 7, and delay time commonly set to L = 1
(values suggested [1]), the embedding matrix Y ∈ RN×m
is constructed. Each column vector yk is calculated by
averaging the signal values of neighbouring vertices, i.e.
yk = DAkLX, where the power of the adjacency matrix
AkL denotes the number of kL-walks between two ver-
tices. Additionally, the diagonal matrix D serves as a
normalisation factor. The first column of the matrix Y
corresponds to the original graph signal, i.e., y0 = X, and
the second column is related to the normalised Laplacian
L, specifically, y1 = X− LX.

Map functions. To address limitations in assigning
the signal X to only a limited number of classes, vari-
ous maps functions F : R → Nc have been proposed [3].
The non-linear cumulative distribution function (NCDF)
is commonly utilised. The map G : (0, 1)→ Nc is defined
as G(x) = round(cx + 0.5), where rounding increases
or decreases a number to the nearest digit. The map
NCDF: R→ (0, 1) is defined as:

NCDF(x) =
1

σ
√

2π

∫ x

−∞
e

−(t−µ)2

2σ2 dt

where µ and σ represent the mean and standard deviation
of X, respectively. Thus, F = G ◦NCDF: R→ Nc is the
map function used in our implementation of the DEG

algorithm.
Dispersion patterns. The number of possible disper-

sion patterns that can be assigned to each embedding
vector is cm. Moreover, the number of embedding vec-
tors constructed in the DEG algorithm is N , one for each
vertex. In contrast, classical DE has a number of em-
bedding vectors dependent on the parameters m and L,
specifically, n− (m− 1)L.
Shannon’s entropy provides a measure of irregularity

that can be used to compare signals defined on different
graphs. The value of Shannon’s entropy ranges from 0
(regular behaviour) to 1 (irregular behaviour).
Dispersion entropy for directed graphs. The al-

gorithm DEG provides a tool for analysing undirected
graph signals, and can be extended to directed graphs
with minor modifications. Additionally, the algorithm
can be applied to any graph signal, but for time series,
it produces the same values as the classical DE [3]. This
is established in Proposition 1.

Proposition 1 (Equivalence of DE and DEG for time

series). Let X = {xi}Ni=1 be a time series and
−→
G =

−→
P is

the directed path on N vertices. Then, for all m, c and L
the following equality holds:

DE(m,L, c) = DE−→
P

(m,L, c) .

Proof. Please refer to the supplemental material [25].

MIX Processing on RGGs. We introduce a graph-
based stochastic process MIXG(p) defined on RGGs to
assess the performance of DEG in capturing complex sig-
nal dynamics. Here, G is a d-dimensional RGG with N
vertices, and the graph signal MIXG(p) is defined by:

MIXG(p)i = (1−Ri)Si +RiWi for 1 ≤ i ≤ N , (1)

where Ri is a random variable with a probability p of
taking the value 1 and a probability 1 − p of taking the
value 0, Wi is uniformly distributed white noise sampled

from the interval [−
√

3,
√

3], and Si =
∑d
j=1 sin(fxji )

represents a sinusoidal signal with frequency f .
The construction of a d-dimensional RGG requires se-

lecting two parameters, r and N , while the graph signal
generated by the MIXG(p) process incorporates random
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FIG. 1: Examples of RGGs with N = 1, 500 and values r = 0.06
and r = 0.10. The graph signals are generated by the MIXG

process with different parameter values.

noise (determined by p) into some values of the sinusoidal
signal (determined by f). Our algorithm, DEG, detects
changes in the frequency of the signal (increasing f), the
presence of white noise (increasing p), and the graph con-
nectivity (increasing r) by increasing the entropy values
of DEG. Fig. 1 illustrates the effectiveness of DEG in
detecting the dynamics of the MIXG process.

Fixing the graph, changing the signal. We analyse the
impact of different parameter values on the irregularity of
the graph signal MIXG(p) by fixing the underlying RGG
with constant N = 1500 and r = 0.06. We employ a fixed
embedding dimension of m = 3, the number of classes set
at c = 3, time delay L = 1, and NCDF as the non-linear
map (similar results are obtained for others non-linear
mappings and values of m, c, and L).

Increasing the frequency parameter f of the MIXG(p)
process results in a more irregular graph signal. The fre-
quency f = 2π and f = 4π of the sine function in Eq. 1
are depicted in Fig.1a)-b). This increase in frequency
produces more variation in the graph signal values be-
tween neighbouring vertices. Our algorithm DEG detects
these dynamics by increasing the entropy values. Simi-
larly, an increase in the randomness parameter p results
in a more random signal. The parameters p = 0 and
p = 0.2 in Eq. 1 are depicted in Fig.1a), c). The DEG al-
gorithm detects the change in randomness, by increasing
the entropy values.

More generally, we compute the entropy values for a
range of frequencies from 3/2π to 16π, as well as for
different levels of noise, with probabilities ranging from 0
to 1. The results of 30 realizations are depicted in Fig. 2a,
showing the mean and standard deviation. The DEG

algorithm effectively detects the increasing irregularity
of the signal by increasing the entropy values. Moreover,
the algorithm can distinguish between different levels of
irregularity in the MIXG(p) signal based on the chosen
value of p.

Fixing the signal, changing the graph. By fixing the
graph signal, we investigate the behaviour of the DEG

algorithm as the underlying graph changes. Specifically,
we examine the impact of increasing the distance param-
eter r from 0.01 to 0.3 used for construct the RGG with

(a) (b)

FIG. 2: Entropy values (a) for a fixed graph, increasing the noise
and for several frequencies and (b) the underlying graph is more

connected.
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FIG. 3: Entropy values of DEG and smoothness based on the
Laplacian ∆ for the eigenvalues as graph signals.

N = 1, 500 vertices. Entropy values are computed for
20 realisations, and the mean and standard deviation are
depicted in Fig. 2b for several values of m and c. As r in-
creases, the number of edges increases, connecting more
distant vertices with different values. The resulting pat-
terns are more irregular, with more changes and a wider
distribution, leading to an increase in the entropy value.
The spectrum of the Laplacian and DEG. Let

X be a graph signal, the smoothness of X is given by
XT∆X [7]. We examine the relationship between DEG

and the spectrum of ∆ acting on an RGGs (similar results
are obtained for other random graphs).

Let G be a RGG with N = 1, 500 vertices. The eigen-
values of ∆ and its corresponding eigenvectors are de-
noted by σ = {λ1 ≤ λ2 ≤ · · · ≤ λN} and {fi}Ni=1, re-
spectively. The smoothness of each eigenvector is eval-
uated and normalised based on the classical definition,
i.e., λ−1

N fTi ∆fi, and the results are shown in Fig. 3.
Each eigenvector fi is considered as a graph signal and
DEG is computed for c = 2, 3, 4 and m = 2. The re-
sults are depicted in Fig. 3. The smoothness definition
is an increasing function, i.e., smaller eigenvalues cor-
respond to smoother eigenvectors (also known as graph
Fourier modes [26]). Such information is limited espe-
cially when eigenfunctions associated with equal eigen-
values (and equal smoothness) exhibit different levels of
irregularity. By applying the DEG algorithm, we can bet-
ter understand and analyse the dynamics of these eigen-
functions.

The dispersion entropy computed for different values
of m and c enables us to capture abrupt changes in en-
tropy values when the dynamics of eigenfunctions change.
Fig. 4 depicts six eigenvectors {fj}532

j=527 corresponding
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FIG. 4: Several eigenfunctions and their entropy values.

to the eigenvalues {λj}532
j=527. The definition of smooth-

ness of fj coincides with the value λ, and the eigenvalue
λ528 = 15 has a multiplicity equal to four, and its eigen-
functions {λj}531

j=528 exhibit a regular behaviour, while
f527 and f532 are more irregular. Hence, classical def-
initions are not able to fully capture the difference in
dynamics within the graph signals. In contrast, the DEG

algorithm is capable of detecting them. In particular,
the entropy value of the eigenfunctions is nearly close to
0 if the signal exhibits a more regular dynamic and close
to 1 for the most irregular eigenfunctions. Thus, DEG

detects eigenvalues with high multiplicity, useful for the
construction of isospectral graphs [27].

Small-world networks and DEG. We evaluate the
performance of DEG in detecting dynamics on signals
defined on small-world networks, generated by the Watts-
Strogatz model [17], and changing the mean degree k and
rewiring probability p. Let G be a small-world network
with N = 1, 500 and various graph signals, including a
random signal, a recurrence relation (logistic map [1]), a
stochastic process (Wiener process [28]), and a periodic
signal (sine).

Fixing k, changing p. By fixing k = 1, we analyse the
effect of the parameter p (ranging from 0 to 1) in the
construction of the network Gp and the entropy values.
We compute DEG for each graph signal for 20 realiza-
tions, and the mean and standard deviation are depicted
in Fig. 5a. For p = 0, the underlying graph Gp is a cycle
of N vertices. A path graph is a geometric perturbation
of a cycle [29, 30] and due to Prop. 1, we can consider the
values of p = 0 to be the classical DE. The classical DE
is able to detect the dynamics of various signals, but its
computation does not involve the topological structure,
thus it only works for the path graph. In contrast, DEG

takes into account not only the signal information but
also the graph structure. In this setting, the dynamic
of the random signal is almost constant, because it is
not affected by Gp. The Wiener process and sine signals
exhibit lower entropy values for p = 0 (e.g., the cycle),
as their dynamics stem from either periodicity (sine) or
stochastic processes (Wiener). However, as p increases,
the underlying graph becomes more random, and hence
the entropy value also increases. In any case, DEG is
still able to distinguish the random signal from the pe-
riodic signal and the Wiener process (for all p < 0.8).

0 0.2 0.4 0.6 0.8 1

Parameter p

0.2

0.4

0.6

0.8

E
n

tr
o

p
y
 v

a
lu

e

Random signal

Logistic (chaotic)

Wiener process

Sine signal

Logistic (oscillation)

(a)

1 2 3 4 5 6

Parameter k

0.2

0.4

0.6

0.8

(b)

FIG. 5: Entropy values for different signals defined on a
small-world network generated by the Watts-Strogatz model.

Two logistic map signals are generated, one with oscilla-
tory behaviour (r = 3.3) and one with chaotic behaviour
(r = 3.7). These characteristics are is well detected by
DEG for all values of p.
Fixing p, changing k. By fixing p = 0.05, the underly-

ing graph Gk where 1 ≤ k ≤ 6 increases the connectivity.
In Fig. 5b, we present the entropy values for each graph
signal. The entropy values for the sine and Wiener sig-
nals almost remain constant, independent of Gk, due to
their periodicity and stochastic dynamics. However, the
logistic map exhibits a higher degree of variability in its
entropy values as k increases. This is because the logistic
map is defined by a recurrence formula, where each value
depends only on the previous sample, and if k increases,
the underlying Gk has more connections between neigh-
bourhoods, which may disrupt the recurrence relation,
generating more irregular signals and resulting in higher
entropy values. Conversely, the random signal shows a
reduction in entropy values as k increases, as the creation
of more connections leads to a more robust average value
due to the law of large numbers.
Graph Centrality Measures and DEG. Each cen-

trality measure can be considered as a graph signal, al-
lowing the application of the DEG algorithm to assess
the irregularity of centrality measures on real and syn-
thetic graphs (refer to Table I in the supplemental mate-
rial [25]).

We used six centrality measures as graph signals,
namely [22, 23]: Eigenvector centrality, Betweenness,
Closeness, Harmonic centrality, Degree and Pagerank.
The DEG algorithm leverages the graph topology to ef-
fectively detect irregularities generated by each central-
ity measure, as demonstrated in Fig. 6. In particular,
the Eigenvector Centrality produces smooth signals [13]
in most graphs, and this is reflected in low entropy val-
ues. Well-connected vertices tend to appear on the short-
est paths between other vertices. When the graph has
only a few such vertices, the entropy of the Betweenness
measure is lower. In cases where the graph has a more
irregular distribution of vertices with this characteristic
(e.g., in the sphere due to its symmetry), the entropy
values are higher. A similar effect occurs when consider-
ing the average length of the shortest path between the
vertex and all other vertices, as detected by the Close-
ness measure. Finally, the Degree and PageRank mea-
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sures produce more irregular graph signals because each
signal’s value defined on the graph depends only on lo-
cal properties (the degree or the number and importance
of the other vertices connected to it) rather than global
properties (such as average paths between vertices in the
previous measures).

Eigenvector Betweenness Closeness Harmonic Degree Pagerank
0

0.2

0.4

0.6

0.8

1

E
n
tr

o
p
y
 v

a
lu

e

Minnesota map

Facebook

Arxiv

Power Grid

Stanford Bunny

Sphere

FIG. 6: The dispersion entropy for various centrality measures.

Comparing DEG and PEG Performance The
Permutation Entropy for Graph Signals, denoted by
PEG [10], marked the first entropy metric specifically de-
signed for graph-based data analysis. Both methods rely
on the adjacency matrix, but PEG primarily focuses on
the order of amplitude values (local properties), which
might result in the loss of valuable information regard-
ing the amplitudes (global properties). DEG addresses
these limitations by providing a more comprehensive way
to characterize the dynamics of graph signals. We con-
ducted the same previous analysis with PEG (supplemen-
tal material [25]), and found that DEG consistently out-
performs PEG in all cases, highlighting the potential of
our novel method for effectively analysing graph signal
irregularities.

Conclusions. We have introduced Dispersion En-
tropy for Graph Signals (DEG), a method that enhances
the analysis of irregularities in graph signals. Our ap-
proach generalises classical dispersion entropy, enabling
its application to a wide array of domains, including real-
world graphs, directed and weighted graphs, and unveil-
ing novel relationships between graph signals and graph-
theoretic concepts (e.g., eigenvalues and centrality mea-
sures). By overcoming the limitations of the classical
smoothness definition, DEG offers a more comprehensive
approach to analysing graph signals and holds significant
potential for further research and practical applications,
as it effectively captures the complex dynamics of signals
across diverse topology configurations.

Acknowledgement This work was supported by the
Leverhulme Trust via a Research Project Grant (RPG-
2020-158).
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Supplemental Materials for
“Dispersion entropy: A Measure
of Irregularity for Graph Signals”

I. DISPERSION ENTROPY FOR DIRECTED
GRAPHS.

In the letter, we have introduced the Dispersion En-
tropy for graph signals, denoted as DEG, in the context
of undirected graphs. To extend this concept to directed
graphs or digraphs, the approach remains analogous, with
the primary distinction being the need to incorporate
specific constraints on the rows of the embedding ma-
trix. These constraints are imposed by the well-defined
vectors yk.

Let
−→
G = (V, E ,A) be a digraph with N vertices, where

A denotes the adjacency matrix of the directed graph,

and X = {xi}ni=1 is a signal defined on
−→
G . Given an

embedding dimension m with 2 ≤ m ∈ N, a delay time
L ∈ N, and a class number c ∈ N, the Dispersion Entropy
for Directed Graphs (DE−→

G
) is defined as follows:

1. Embedding matrix. Let V∗ ⊂ V be the set given by:

V ∗ = { i ∈ V |
n∑
j=1

(AkL)ij 6= 0 for all k = 0, 1, . . . ,m−1 }.

The embedding matrix Y∗ ∈ R|V ∗|×m is given by:

Y∗ = [y∗0,y
∗
1, · · · ,y∗m−1] (S0)

where y∗k ∈ R|V ∗|×1, given by the restriction of yk to the
vertices in V ∗, i.e., y∗k = yk

∣∣
V ∗ .

2. Map function. Each element of the embedding matrix
Y∗ is mapped to an integer number from 1 to c, called a
class, i.e., we define a function F : R → Nc where Nc =
{1, 2, . . . , c} that applies element-wise on the matrix Y∗,
i.e. F (Y∗) ∈ NN×mc where F (Y∗)ij = F (y∗ij).

3. Dispersion patterns. Each row of the matrix F (Y∗),
called an embedding vector, is mapped to a unique dis-
persion pattern. Formally, the embedding vectors con-
sist of m integer numbers (from 1 to c) corresponding
to each row of the matrix F (Y∗), i.e., rowi(F (Y∗)) =(
F (y∗ij)

)m
j=1

for i = 1, 2, . . . , N . The set of disper-

sion patterns is defined as Π = {πv∗1v∗2 ...v∗m | v
∗
i ∈ Nc }.

Each embedding vector is uniquely mapped to a dis-
persion pattern, i.e., rowi(F (Y∗)) → πv∗1v∗2 ...v∗m where
v1 = F (y∗i1), v2 = F (y∗i2), . . . , vm = F (y∗im).

4. Relative frequencies. For each dispersion pattern π ∈
Π, its relative frequency is obtained as:

p (π) =
|{i | i ∈ V, rowi(F (Y)) has type π}|

|V∗|
.

5. Shannon’s entropy. The dispersion entropy for graph
signals DE−→

G
is computed as the normalised Shannon’s

entropy for the distinct dispersion patterns as follows:

DE−→
G

(X,m,L, c) = − 1

log(cm)

∑
π∈Π

p(π) ln p(π) .

Properties The DE−→
G

algorithm for directed graphs
exhibits the following properties:

The directed graph version of DE−→
G

serves as a gener-
alization of its undirected counterpart. If G is an undi-
rected connected (non-trivial) graph, then V∗ = V, and
all the steps remain the same in both the directed and
undirected versions of the algorithm.

The restriction process y∗k = yk
∣∣
V ∗ is equivalent to the

vertex virtualisation process presented in [31].
Similarly, the DE−→

G
algorithm can be extended to

weighted (directed or undirected) graphs by restricting
the subset to

V ∗ = { i ∈ V |
n∑
j=1

(WkL)ij 6= 0 for all k = 0, 1, . . . ,m−1 }.

where W represents the weighted adjacency matrix. This
generalisation allows for a more comprehensive analysis
of graph signals in various contexts.

II. PROOF OF PROPOSITION 1.

The classical dispersion entropy for time series was es-
tablished in the literature by [3]. In the following propo-
sition, we demonstrate that when the DEG is restricted
to time series (considering the directed path as the un-
derlying graph), the DEG is equivalent to the classical
DE.

A directed path on k vertices is a directed graph that
connects a sequence of distinct vertices with all edges

oriented in the same direction, denoted as
−→
P . Its vertices

are given by V = 1, 2, . . . , k and its arcs are (i, i+ 1) for
all 1 ≤ i ≤ k − 1.

Proposition 1 (Equivalence of DE and DEG for time

series). Let X = {xi}Ni=1 be a time series and consider
−→
G =

−→
P the directed path on n vertices, then for all m, c

and L, the following equality holds:

DE(m,L, c) = DE−→
P

(m,L, c) .

Proof. The adjacency matrix for the directed path A is
given by

Aij =

{
1 if i = 1, 2, . . . , N − 1 and j = i+ 1 ,

0 otherwise .

For any k ∈ N, the matrix Ak is given by

(
Ak
)
ij

=

{
1 if i = 1, 2, . . . , N − k and j = i+ k ,

0 otherwise ,
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in particular, for all k = 0, 1, . . . ,m− 1

N∑
j=1

(AkL)ij =

{
1 if i = 1, . . . , N − (m− 1)L ,

0 otherwise .

Thus, we have

y∗k = yk|V ∗ = DAkLX
∣∣
V ∗

= [x1+kL, x2+kL, . . . , xi+kL, . . . , xN−(m−1)L]T .

The embedding matrix is given by:

Y∗ =


x1 x1+L . . . x1+(m−1)L

x2 x2+L . . . x2+(m−1)L

...
...

. . .
...

xN−(m−1)L xN−(m−2)L . . . xN

 ,

and, given a map function F : R→ Nc defined by F =
G ◦NCDF: R→ Nc, the matrix F (Y∗) is given by:

F (Y∗) =


z1 z1+L . . . z1+(m−1)L

z2 z2+L . . . z2+(m−1)L

...
...

. . .
...

zN−(m−1)L zN−(m−2)L . . . zN

 .

Subsequently, the embedding vectors are represented
as rowi(F (Y)) =

(
zi, zi+L, . . . zi+(m−1)L

)
. Due to the

fact that |V | = N − (m − 1)L, the relative frequencies
and Shannon’s entropy associated with the graph-based
dispersion entropy (DE−→

G
) and the classical dispersion

entropy (DE) are identical.

III. GRAPHS USED FOR ANALYSING
CENTRALITY MEASURES.

TABLE S1

Underlying Graph |V| |E| Reference
Minnesota road network 2,642 3,303 [32]
Social circles: Facebook 3,959 84,243 [33]
Arxiv GR-QC collaboration 5,241 14,484 [34]
The US power grid 4,941 6,594 [16]
Pointcloud (Stanford Bunny) 2,503 13,726 [35]
Sphere 4,000 22,630 [36]

IV. COMPARING DEG AND PEG

PERFORMANCE

In this section, we demonstrate the superior perfor-
mance of the Dispersion Entropy for Graph Signals
(DEG) over the Permutation Entropy for Graph Signals,
denoted by PEG [10]. By applying both algorithms to all
the examples in the manuscript, we consistently observe

that DEG outperforms PEG, highlighting the potential
and efficacy of DEG for analysing graph signal irregular-
ities.

Following the same setting used to produced Fig. 2, 3,
5 and 6 in the manuscript, we substitute PEG for DEG.
The results are depicted in Fig. S1, S2, S3 and S4, re-
spectively.
Random Graphs and PEG. The PEG algorithm

is not able to detect increasing of the signal irregularity
(due to frequency increments) and is unable to differenti-
ate between distinct levels of irregularity in the MIXG(p)
signal based on the parameter p (Fig. S1a). Similarly, in
Fig. S1b, as graph connectivity increases (by raising r)
the algorithm saturates for an embedding dimension of
m = 2. To achieve accurate characterisations, it is neces-
sary to increasem > 2 and even that, the behaviour is not
monotonous, whereas DEG performs well with smaller
embedding dimensions.
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FIG. S1: Entropy values using PEG (a) for a fixed graph,
increasing the noise and for several frequencies and (b) the

underlying graph is more connected.

The spectrum of the Laplacian and PEG. The en-
tropy values of PEG exhibit a highly consistent and regu-
lar behaviour, with minimal variations (Fig. S2). Despite
the varying degrees of irregularity in the eigenvalues (as
shown in Fig. 4 of the manuscript), the PEG algorithm
fails to detect these differences.
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FIG. S2: Entropy values of PEG and smoothness based on the
Laplacian ∆ for the eigenvalues as graph signals.

Small-world Networks and PEG. The stochastic
dynamics of the Wiener process are not adequately char-
acterized by PEG (Fig. S3a), as its entropy values are
higher than those of random behaviour (random signal).
Periodic dynamics are detected only with lower parame-
ter values of p, and the chaotic and oscillation behaviour
(Logistic map) are identified by PEG, which is consis-
tent with the results presented in [10]. However, as the
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FIG. S3: Entropy values of PEG for different signals defined on a
small-world network generated by the Watts-Strogatz model.
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FIG. S4: The permutation entropy for various centrality
measures.

parameter k is increased (Fig. S3b), the performance of
PEG remains similar when the parameter p is changed.
This is due to PEG considering the order of the values
but not their amplitude.
Graph Centrality Measures and PEG. Smooth

signals produced by the Eigenvector Centrality are not
effectively detected by PEG (with the exception of the
Arxiv and Facebook graphs). The remaining centrality
measures yield similar entropy values, making it challeng-
ing to establish a relationship with PEG (Fig. S4). This
limitation highlights the greater value of DEG for such
analyses.
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