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Abstract 19 

Resprouting is a plant persistence response to disturbance or stressful environmental 20 

conditions. Frequent resprouters dominate in stressful environments, with a tendency to 21 

phylogenetic structuring of associated traits. Nevertheless, knowledge on resprouting 22 

expression in drought-prone, yet fire-free, is poorly understood. Here, we assess the 23 

incidence of resprouting in tree communities of tropical dry forests (TDF) subject to 24 

substantial seasonal water stress, also seeking to identify its main drivers and the 25 

evolutionary history underlying patterns. Based on inventories of 16 TDF fragments 26 

(15,642 trees of 321 species), we calculated two resprouting metrics (proportional number 27 

of multi-stemmed trees – resprouting frequency; and stems per tree), classified taxa 28 

according to their resprouting frequency and assessed the prevalence of these groups in 29 

the sampled fragments. We investigated the relative importance of environment versus 30 

taxonomic and evolutionary identity for resprouting response. Taxa with low and medium 31 

resprouting frequencies (17.19 and 40.2 % of resprouting frequency, respectively) are the 32 

most prevalent in TDF, compared to non-resprouters and high-frequency resprouters. 33 

Resprouting frequency was better explained by taxonomic identity than by environmental 34 
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factors. Altogether, resprouting ability appears to be an intrinsic trait that varies in 35 

response to environmental conditions but only within a range previously constrained by 36 

taxonomic identity. However, we found no phylogenetic signal above the genus level for 37 

any resprouting variables. Thus, the variation of resprouting variables in TDF lineages 38 

may have been determined by divergence between closely related taxa and convergence 39 

between distantly related ones, reflecting the specific restrictive factors to which they 40 

have been subjected. 41 

Key-Words: Tillering; persistence niche; sprouting; deciduous forests; phylogenetic 42 

signal. 43 

 44 

1 INTRODUCTION 45 

 Environmental pressures select functional traits and plant responses that increases 46 

species fitness (Cadotte & Tucker, 2017; Diaz et al., 1998). One such plant responses, the 47 

capacity to resprout, has been shown to increase plant persistence and fitness (Poorter et 48 

al., 2010) via the production of new shoots in response to physical or physiological stress 49 

(Bellingham & Sparrow, 2000; Pausas et al., 2016, Vesk & Westoby, 2004). The ability 50 

to resprout is widespread among ecosystems worldwide in response to several stressors, 51 

such as fire, herbivory, floods, hurricanes, water stress and edaphic restrictions (Araujo 52 

& Santos, 2019; Bond & Midgley, 2003; Ceccon et al., 2006; Jimenez-Rodriguez et al., 53 

2018; Souza et al., 2019; Zeppel et al. 2015). Resprouting in these different contexts of 54 

restriction are associated to a complex set of functional traits, thus not being a simple 55 

binary trait, but an ecological syndrome that integrates several functional traits and is 56 

inserted in a wide spectrum of ecological variability (Bond & Midgley, 2003; Pausas et 57 

al., 2016). Due to role in species maintenance in community, resprouting is normally 58 

considered part of a species’ “persistence niche”, as opposed to the classic “regeneration 59 

niche” that comprises traits of sexual reproduction (Bond & Midgley, 2001; Grubb, 1977; 60 

Pausas et al., 2016). 61 

 During the resprouting plants respond by allocating non-structural resources 62 

(carbohydrates) toward the maintenance of buds and to producing a new shoot that 63 

become new stems (Moreira et al., 2012, Schwilk & Ackerly, 2005). In a mature 64 

organism, new shoots benefit from mature root and leaf systems, which facilitate resource 65 

acquisition and resistance to local ecological stressors, since resprouts do not face 66 

environmental pressures that are usually experienced by seedlings (Bond & Midgley, 67 
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2003; Clarke et al., 2013; Pausas et al., 2016). In addition, some studies point to the 68 

existence of resprouting vs sexual trade-offs in the resource allocation, since the issuance 69 

of new stems reduces the resources used in reproduction, with consequences for the 70 

quality and quantity of seeds produced (Knox & Clarke, 2005; Nzunda & Lawes, 2011; 71 

Verdú, 2000). Finally, the adoption of resprouting by trees also reduces the plant species 72 

dependence on pollinators and seed disperses, in addition to resprouters not conditioning 73 

their permanence in the community to the existence of environmental conditions 74 

favorable enough for the reproductive age to be reached (Bond & Midgley, 2001; Bond 75 

& Midgley, 2003; Nzunda & Lawes, 2011). 76 

The occurrence of resprouting as strategy by species is thus intrinsically related to 77 

gains and losses in individuals’ survival and success. Besides the environmental stressors, 78 

the variations in the prevalence of resprouting in different ecosystems are thus also a 79 

direct response to local productivity and the intensity and frequency of disturbances 80 

(Nzunda & Lawes, 2011; Pausas & Keeley, 2014; Vesk & Westoby, 2004). It is expected 81 

that the importance of resprouting is greater in ecosystems subject to a regime of frequent 82 

and intense disturbances or with continuous restrictive factors, and consequently present 83 

lower importance in ecosystems with less stressful characteristics with few disturbances 84 

or low intensity disturbances (Bond & Midgley, 2003; Vesk & Westoby, 2004). This 85 

variation of the importance of resprouting response to variations in ecological constraints 86 

has implications for the ecological patterns of different biomes, conditioning the structure 87 

and diversity of their communities and consequently their functioning (Pausas et al., 88 

2016; Vesk & Westoby, 2004; Heineman et al., 2021). 89 

 Beyond its prevalence in fire-prone ecosystems, resprouting is a broadly adopted 90 

tree strategy under seasonal climates with little to no precipitation during the dry season, 91 

in detriment to reseeding, that may be harmed by stressful condition in initial plant life-92 

stages (Ceccon et al., 2006; Zeppel et al., 2015). In these dry ecosystems where a 93 

continuous restrictive factor related to water availability is present, the emission of new 94 

stems is a strategy to increase the chances of survival of the individuals through a new 95 

leaf and hydraulic system without the damages suffered by the main stem (Zeppel et al., 96 

2015). Due to these physiological characteristics, these new stems will have a greater 97 

chance of survival in the short term, with greater resistance to water scarcity compared to 98 

seedlings in the lower forest strata with leaf and root systems still under development 99 

(Ceccon et al., 2004; Souza et al., 2019; Zeppel et al., 2015).  100 
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However, there are many uncertainties around resprouting strategy in drought-101 

prone, yet fire-free environments, such as their importance in communities, their patterns 102 

of variation between taxa, what are their main drivers (the role of environmental 103 

restriction) and if there is a structuring phylogenetics of associated variables, with related 104 

taxa having similar resprouting. Expectations exist on such issues, however obtained in 105 

one-off studies with limited data sets that do not allow large-scale inferences, specially 106 

related to phylogenetic issues that only recently had significative advances (Bellingham 107 

& Sparrow, 2000; Bond & Midgley, 2003; Vesk & Westoby, 2004; Zeppel et al. 2015; 108 

Coelho de Souza et al., 2016). In addition, studies related to resprouting in environments 109 

with non-punctual but continuous stresses such as TDF are faced with the difficulty of 110 

identifying the association between environmental effects and the emission of new stems, 111 

in addition to overlapping the trends of trees changing to shrub forms (Götmark et al., 112 

2016). An alternative especially for studies involving permanent plots is to relate the 113 

occurrence of multi-stemmed trees with resprouting events, considering that in 114 

environments of continuous stress the emissions of new stems occur as a response to 115 

environmental pressures (Dunphy et al., 2000; Souza et al., 2021). 116 

 Tropical dry forests (TDF) are a particularly relevant and widespread vegetation 117 

formation for understanding the links between water stress and resprouting as a 118 

regeneration strategy across different taxa and communities (Fernandes et al., 2020; 119 

Pennington et al., 2009). TDF undergo seasonal water stress, with average annual rainfall 120 

below 1800 mm and 3 to 6 months with less than 100 mm of monthly rainfall 121 

(DRYFLOR, 2016; Pennington et al., 2009). Besides this, TDF are also particularly 122 

drought-prone in South America, with high inter-annual variability in water availability 123 

(Allen et al., 2017; Pennington et al., 2009). In fact, exploring the patterns related to 124 

resprouting occurrence in TDF is likely to provide relevant information about the ecology 125 

of seasonal communities and help to predict how other vegetation types may respond to 126 

predicted scenarios of increasing aridity worldwide (Allen et al., 2017; Bond & Midgley, 127 

2003; IPCC, 2014; Pausas et al., 2016). In addition, exploring the ecological patterns of 128 

resprouting in an approach that goes beyond the classic approach (i.e., presence vs 129 

absence of resprouting) can contribute to understanding their role in ecological patterns 130 

and in the functioning of these drought-prone ecosystems, which can be important 131 

including to think about the response of other ecosystems to arid increase scenarios 132 

(IPCC, 2014; Zeppel et al. 2015). 133 
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 Here we explored resprouting expression within and across lineages in tropical 134 

dry forests (TDF) with no recent (>40 years) anthropic disturbances to understand the 135 

importance of this ecological strategy as a means of persistence by species in drought-136 

prone ecosystems. First, we investigated the variability in the frequency of resprouting 137 

across species and genera of trees, assessing the existence of taxa groups with similar 138 

resprouting frequency and also their ecological representativeness in TDF. Considering 139 

the high ecological constraints caused by the limitations of water availability such strong 140 

seasonality, low rainfall and drought caused by interannual variations in the TDF (Allen 141 

et al., 2017; DRYFLOR, 2016; Pennington et al., 2009), our expectation is that species 142 

and genera with high resprouting frequency are the most representative in the 143 

communities. Second, we evaluated the influence of taxonomic identity (without 144 

phylogenetic information) and environmental factors on two resprouting variables: the 145 

frequency of resprouting and the number of stems per tree. We expect environmental 146 

factors are the main conditioning factors for the variation of resprouting variables, 147 

considering the recognized role of environmental stresses in determining the adoption of 148 

resprouting as a regeneration strategy in relation to reseeding (Bellingham & Sparrow, 149 

2000; Bond & Midgley, 2003; Nzunda et al., 2007; Pausas et al., 2016). Finally, we 150 

investigated the evolutionary fingerprint on resprouting patterns across TDF genera by 151 

quantifying the extent of phylogenetic signal for resprouting characteristics. As it is a 152 

crucial strategy for the survival of individuals in the face of restrictive factors, we hope 153 

that the resprouting variables are more similar in phylogenetic closer species, with their 154 

expression having been passed through the lineages. We rely on forest inventory data in 155 

which we consider multi-stemmed trees as a proxy for resprouted trees, considering that 156 

in the presence of continuous restrictive factors in the environment (such as water scarcity 157 

in the TDF), the largest part of the stems was produced in response to ecological 158 

restriction. By studying variation in the number of stems produced by resprouters and in 159 

the frequency with which different taxa resprout, we aim to advance knowledge on 160 

resprouting expression in tropical trees beyond a traditional binary classification of taxa 161 

as resprouters versus non-resprouters. 162 

 163 

2 MATERIAL AND METHODS 164 

2.1 Study areas 165 

 We used data from 16 fragments (hereafter plots) of tropical dry forests (TDF) 166 

located in the Brazilian states of Minas Gerais and Bahia, distributed in the southern 167 
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portion of the Caatinga biome and in patches within the Cerrado biome (Fig. 1; Table S1). 168 

The regional climate is classified as Köppen As/Aw (tropical with dry winters), with 169 

average monthly temperature in the sampled sites ranging from 22 to 24.6 ° C, and total 170 

annual rainfall ranging from 754 to 1060 mm, concentrated between November and 171 

March. Flatlands predominate in the region, although relief may vary in areas near 172 

watercourses or adjacent to limestone outcrops. Arboreal Caatinga, a tall upright 173 

deciduous forest vegetation, predominates in the region (Santos et al., 2012), with 174 

occasional variations in vegetation physiognomy, floristics and structure driven by 175 

microenvironmental factors such as the presence of rocky outcrops and floodplain 176 

sandbanks (Aguiar-Campos et al., 2020; Apgaua et al., 2015; Paula et al., 2018; Souza et 177 

al., 2019). The sites sampled are considered old-growth forests, with no large-scale 178 

disturbances in the last 40 years, according to information collected from residents of the 179 

region and satellite image observations. 180 

  181 

2.2 Vegetation data collection 182 

From 2006 to 2017, we established 313 permanent sample units or subplots, each 183 

of 400 m², in the dimensions of 20 x 20 m or 10 x 40 m, depending on terrain 184 

characteristics (see Fig. S1), totaling 12.52 ha of sampled area. Sampling intensity at each 185 

plot ranged from 5 to 51 subplots, depending on environmental heterogeneity, fragment 186 

size and data collection goals (see references in Table S1). In each subplot we included 187 

all woody individuals (excluding lianas) with diameter at breast height (DBH, 1.30 m 188 

above the ground) ≥3 cm. An individual with multiple stems was included in the sample 189 

when its equivalent diameter was ≥ 3 cm, that is obtained by the square-root of the sum 190 

of squares of the stems’ DBH (only stems with DBH ≥ 1cm are included due to measure 191 

limitation). That is, a multi-stemmed individual may be sampled even when no individual 192 

stem surpassed 3 cm, but the stems joint may correspond to a tree with an equivalent 193 

diameter that reach the minimum size. Thus, we sample all the variety of behaviors related 194 

to multi-stemmed individuals, including since single stem individuals to multiple stems 195 

individuals. It is also important to highlight that many of the woody individuals included 196 

in the sample correspond to shrub/arboreal or shrub life forms according to traditional 197 

classifications REFLORA (2020), but which perform ecological functions like trees in 198 

the community due to vegetational characteristics. In other words, in a forest with a 199 

canopy at a height of 10 - 12 m, individuals with shrub forms measuring 2.5 or 3 m are 200 

an important part of the lower forest strata. 201 
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The use of equivalent diameter as measure we adopted for the decision of 202 

sampling or not a tree was proposed by Souza et al. (2021), which called this practice as 203 

the inclusion method “by tree”. The use of this method is a common practice in tropical 204 

forest in which multi-stemmed trees are very frequent, since it allows to consider the tree 205 

size as a whole by the contribution of all stems and allow to sample tree species in shrub 206 

form due to environmental conditions (Araújo & Santos, 2019; Paula et al., 2018; Souza 207 

et al. 2019; Souza et al., 2021). We identified all individuals to the species level and 208 

measured each stem diameter that met the inclusion criterion (achieving breast height, or 209 

1.30 m above the ground). Plant identification was carried out by experts in the field or 210 

in herbaria and followed taxonomic nomenclature of the Angiosperm Phylogeny Group 211 

(APG IV, 2016). Name standardization followed REFLORA (2020), through the flora 212 

package (Carvalho, 2016), implemented in the software R v. 4.0.3 (R Core Team, 2020). 213 

Forest inventory data for the 16 sites are stored in the ForestPlots.net database 214 

(https://www.forestplots.net/) (see plot codes in Table S1).  Our total sample thus 215 

comprises 16 TDF fragments (12.52 ha of total area sampled), with 15,642 trees of 321 216 

species. 217 

We also obtained edaphic and climatic variables for each subplot. The edaphic 218 

variables were collected in the field in the superficial layer (0-15 cm depth) of each 219 

subplot (313 samples) and latter send to specialized laboratories to extract the measures 220 

of interest according to EMBRAPA reference manual (EMBRAPA, 2017). The variables 221 

measure were pH in water, available phosphorus content (P – mg/cm³); aluminum (Al – 222 

cml/cm³), soil organic matter (SOM – dag/kg), sum of basis (SB – cmolc/cm³) and 223 

proportion of sand (%). The climatic variables of each subplot were obtained using the 224 

WorldClim Global Climate Data repository based on their spatial coordinate, with 30 arc-225 

seconds resolution (1-km² spatial resolution) (Fick & Hijmans 2017). From the available 226 

variables, we selected 6 that have a recognized influence on vegetation patterns: BIO 1, 227 

the mean annual temperature (MAT - ° C x 10); BIO 4, the temperature seasonality 228 

(MATSZ - ° C x 100); BIO 5, the max temperature of warmest month (MTW - °C x 10); 229 

BIO 12, the mean annual precipitation (MAP - mm); BIO 15, the precipitation seasonality 230 

(MAPSZ, %); and BIO 17, the precipitation of driest quarter (MAPDQ, mm). The variable 231 

MAT-SZ corresponds to standard deviation of temperature × 100, while MAP-SZ 232 

corresponds to the coefficient of variation of precipitation between months. 233 

 234 

 235 

https://www.forestplots.net/
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2.3 Analyses of resprouting 236 

For general patterns of resprouting across taxa, we calculated two measures for 237 

each species and genus across our dataset: the average number of stems per tree and the 238 

proportion of individuals that are multi-stemmed (hereafter, resprouting frequency). We 239 

are considering that the presence of two or more stems in a tree is a sign of an ecological 240 

response to some restrictive factor, that may be a punctual disturbance or a continuous 241 

stress that may be part of the environment itself. That is, we assume that the additional 242 

stems to the main one (here considered as the one with the greatest DBH) were produced 243 

in response to some stress, at some point in the individual's life history. Although there 244 

are theoretical controversies regarding the equivalence between resprouted trees and 245 

multi-stemmed trees, we consider that this approach is appropriate in environments such 246 

as TDF where stressors have a continuous effect. The point of split of stems varies a lot 247 

between trees and could be observed below-ground, at the ground-level and above-248 

ground.  249 

To classify species and genera into groups based on resprouting frequency, we 250 

used the k-means algorithm (Jain, 2010). To ensure sufficient sampling to quantify 251 

resprouting patterns, we set a threshold of including taxa (species or genus) with a 252 

minimum abundance of 10 individuals sampled in the entire dataset (167 species and 114 253 

genera). We tested a number of k-values ranging from two to seven and selected the 254 

optimal number of groups (i.e., optimal k-value) based on within-group sum of squares 255 

through the elbow method (Kodinariya & Makwana, 2013). Aside from the non-256 

resprouting taxa (not included in this partitioning), the analyses indicated the existence of 257 

three groups (optimal k-value = 3), which we term low-frequency (center value of 16.4 258 

%), medium-frequency (center value of 42.01 %) and high-frequency (center value of 259 

76.2 %) resprouters. We quantified the proportion of species and genera in our dataset 260 

that fell into each category, and also the proportion of each group in the total number of 261 

trees, total number of stems and total aboveground woody biomass, the latter obtained 262 

using allometric equations at the tree-level from Chave et al. (2014) (see supplementary 263 

information for more details).  264 

In order to compare the relative influence of site-specific environmental factors 265 

versus taxonomic identity on resprouting variables, we used generalized linear mixed 266 

effects models and variance partitioning. For understanding variation in number of stems 267 

per individual, we modelled the observed stem count for each individual as a Poisson 268 

distributed variable in function of edaphic and climatic variables (as fixed variables) and 269 
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with two sets of nested random effects as explanatory variables: the site factors, using the 270 

subplot and plot within which the individual to control the dependence between trees 271 

located in the same subplot and plot; and taxonomic identity, using the species, genus and 272 

family of each individual. For understanding variance in frequency of resprouting, we 273 

calculated the number of individuals that had resprouts for each species in each plot 274 

versus the number of individuals in the plots that did not have resprouts. We modelled 275 

this as a binomial response (‘successes’ and ‘failures’ to resprout) with the same edaphic 276 

and climatic variables as fixed variables and with same two sets of nested random effects. 277 

For modelling we used the glmer function of the lme4 package (Bates et al., 2010). The 278 

global model obtained for the two resprouting variables followed the mold of equation 279 

(1). 280 

 281 

Equation (1) 282 

𝑅𝑒𝑠𝑝𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ~ 𝑀𝐴𝑇 + 𝑀𝐴𝑇𝑆𝑍 + 𝑀𝐴𝑃 + 𝑀𝑇𝑊 + 𝑀𝐴𝑃𝑆𝑍 + 𝑀𝐴𝑃𝑆𝑍 +283 

𝑝𝐻 + 𝑃 + 𝐴𝑙 + 𝑆𝑂𝑀 + 𝑆𝐵 + 𝑆𝑎𝑛𝑑 + (1│𝑃𝑙𝑜𝑡: 𝑆𝑢𝑏𝑝𝑙𝑜𝑡) +284 

 (1│𝐹𝑎𝑚𝑖𝑙𝑦: 𝐺𝑒𝑛𝑢𝑠: 𝑆𝑝𝑒𝑐𝑖𝑒𝑠)  285 

 286 

 From the models’ results, first we quantified the marginal (referring to the fixed 287 

effects) and conditional (referring to the fixed plus random effects) coefficient of 288 

determination (R²) using the r.squaredGLMM function of the MuMin package (Bartón 289 

2009; Nakagawa & Schielzeth, 2013), with subsequent quantification of the R² of the 290 

random effects by subtracting the previous two. With this we can quantify how much of 291 

the variation is associated with environmental effects (fixed variables) and how much is 292 

associated with taxonomic and sampling factors (random effects). Then, we performed a 293 

variance partitioning analysis to assess variance explanation by random effects (Fyllas et 294 

al., 2009; Oliveras et al., 2020). This aimed to quantify inside the random effects the 295 

contribution of taxonomic factors (family, genus and species identity) and sample factors 296 

(plot and subplot) on resprouting expression. We also compared the effect of each factor 297 

(Fixed vs Sampling vs Taxonomic) using the Akaike Information Criterion corrected for 298 

small sample size (AICc), to assess the importance of variables for the model fitting. For 299 

this, we compared the AICc of the global model with options without each one of the 300 

factors, in order to evaluate which has a great impact on the AICc value. We stress that 301 

this approach does not include relatedness between species, genera or families, so that the 302 
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results related to the taxonomic component comes down to how much species' identity 303 

influences the variation in resprouting expression.  304 

 305 

2.6 Evolutionary fingerprint on resprouting expression 306 

 To explore the evolutionary fingerprint on resprouting characteristics (average 307 

number of stems per tree and resprouting frequency) in TDF, that is, the phylogenetic 308 

structure of resprouting variables, we used data from genera with a minimum of 10 309 

individuals in the sampled region. This threshold aimed to avoid potential errors in 310 

quantifications for undersampled genera. As a phylogenetic tree, we used the genus-level 311 

phylogenetic hypothesis for lowland tropical tree genera in South America from Neves et 312 

al. (2020) due to its recognized quality in comparison to other available options, specially 313 

related to the occurrence of polytomies. 314 

To evaluate the evolutionary fingerprint, we measured the extent of phylogenetic 315 

signal for each resprouting variable using Pagel's λ (Freckleton et al., 2002; Pagel, 1999), 316 

which is a more robust parameter for incomplete phylogenies (Molina-Venegas & 317 

Rodríguez, 2017). To estimate whether phylogenetic signal was greater than expected by 318 

chance, we shuffled genera randomly in the phylogeny and calculated the proportion of 319 

1000 randomizations that have λ greater than the observed. λ quantifies similarities 320 

between sister lineages and usually ranges from 0 to 1. If λ = 0, there is a lack of 321 

phylogenetic signal and no correlation between resprouting values and relatedness of 322 

taxa; if λ = 1, the distribution of trait values across the phylogeny reflects the evolutionary 323 

relatedness among taxa and fits the expectation under a null Brownian motion model of 324 

evolution (Freckleton et al., 2002); if 0 < λ < 1, trait values are similar between closely 325 

related taxa, but influenced by evolutionary processes other than BM (Crisp & Cook, 326 

2012). 327 

To account for the uncertainty of the phylogenetic hypothesis used herein, we 328 

repeated our analyses with 100 trees from the posterior distribution (also available in 329 

Neves et al., 2020). From the 100 trees, we calculated the confidence interval and p-value 330 

significance for Pagel's λ values obtained with each tree for each of the resprouting 331 

variables. We also performed phylogenetic signal analyses for the resprouting categories 332 

(low-, medium- and high-frequency resprouters) using two different approaches: the D 333 

measure for binary comparisons between categories (Fritz & Purvis, 2005), and the δ 334 

measure by Borges et al. (2019) for discrete categories. We conducted all phylogenetic 335 

analyses using functions from the phytools (Revell, 2012), ape (Paradis et al., 2004), 336 
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geiger (Harmon et al., 2008) and caper (Orme et al., 2020) packages in the R Statistical 337 

Software v.4.0.3 (R Team, 2020). 338 

 339 

3 RESULTS 340 

3.1 Resprouting occurrence and prevalence in TDF 341 

 The total sample consists of 15,642 individual trees and 25,720 stems, belonging 342 

to 321 species (239 with multi-stemmed trees), 171 genera (134 with multi-stemmed 343 

trees) and 51 plant families (49 with multi-stemmed trees; Tables S2 and S3). The average 344 

number of stems per tree and resprouting frequency varied widely across genera (Figs 2 345 

and 3; Table S2; S3 and S4). Across all monitored individuals, 32.5% (5084 individuals) 346 

had multiple stems, with an average of 1.64 stems per tree. When considering just trees 347 

with resprouts, the average increases to 2.98 stems per tree. 348 

Most genera and species fit the categories of low- and medium-frequency 349 

resprouters (Figs 2 and 3). Only a small proportion of the pool of genera and species in 350 

the studied TDF was classified as non-resprouters (i.e., with resprouting never observed) 351 

or as high-frequency resprouters (i.e., 70% of resprouting frequency) (Fig. 2 and 3). Most 352 

genera and species had an average number of stems per tree between 1 and 2 (low- and 353 

medium-frequency resprouters). Only a small proportion of the pool of genera and species 354 

never resprouted or had an average of more than three stems per tree (Fig. 2). In general, 355 

most genera and species recorded are considered facultative resprouters (intermediate 356 

categories), meaning that individuals belonging to these taxa may or may not adopt the 357 

resprouting strategy. 358 

 359 

3.2 Resprouting across forest plots: site and taxonomic effects 360 

Variation in resprouting variables was determined to a greater degree by 361 

taxonomic identity (species, genus and family) than by the plot or site in which 362 

individuals occurred (i.e., greater variance explained by all taxonomic levels together; 363 

Fig. 4). The environmental effects (fixed variables) had an R² of 1.30 and 2.76% for 364 

average stems per tree and resprouting frequency, respectively, while the random effects 365 

corresponded to 23.68 and 42.21% for the same variables (Fig 4 - a), accounting for the 366 

largest part of the variation of the global model. The unexplained part of the variation 367 

evaluated corresponded to 75.02 % and 45.03 % for stems per tree and resprouting 368 

frequency, respectively. Within the random effects, taxonomic effects explained 12.46 % 369 

and 27.68 % of total variance in the average number of stems per tree and resprouting 370 
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frequency respectively, whereas sampling effects explained only 2.14 % and 15.73 % of 371 

the variation for the same variables (Fig. 4; Table S5). Within taxonomic levels, for both 372 

resprouting frequency and average number of stems per tree, genus identity was the most 373 

important taxonomic component, followed by species and family identity (Fig. 4; Table 374 

S5). The large majority of the variation in these measures of resprouting remained 375 

unexplained, 85.41 % for average stems per tree and 56.59 % for resprouting frequency. 376 

Greater importance of taxonomic effects is also confirmed by examining the AICc values 377 

of different models: removing taxonomic effects generated a greater increase in AICc 378 

compared to removing environmental variables and sampling factors (Table 1). 379 

 380 

 3.3 Resprouting across lineages: phylogenetic signal 381 

 We found no significant phylogenetic signal for resprouting according to 382 

estimates for Pagel’s Lambda across 100 phylogenetics genus-trees (mean of λ = 0.15 383 

and mean p = 0.19 for average number of stems per tree and mean λ = 0.16 and mean p 384 

= 0.19 for frequency, both using the values 100 phylogenetics genus-trees) (Figs. 5 and 385 

6; Table S6). Phylogenetic signal results for resprouting frequency categories through D 386 

(Fritz and Purvis, 2005) and δ (Borges et al., 2019) corroborate this result: an absence of 387 

phylogenetic signal for resprouting expression (see supplementary information and Fig. 388 

S2). That is, resprouting variables are not phylogenetically structured so that related taxa 389 

have more similar values and less related taxa have more distinct values. 390 

 391 

4 DISCUSSION 392 

 Our results show that diverse resprouting strategies exist in tropical dry forests 393 

(TDF), in which low- and medium-frequency (10-50 % of frequency) were the most 394 

prevalent resprouting groups, in contrast with our expectations of high prevalence of 395 

high-frequency resprouters.  Contrary to our expectation, we also found that resprouting 396 

patterns across TDF species are determined more by taxonomic identity (with no 397 

relatedness considered yet) than environmental factors. That is, both resprouting 398 

frequency and average number of stems per tree are intrinsic taxonomic characteristics, 399 

significantly explained by taxonomic information, mainly genus and species identity. 400 

Additionally, although it is a crucial strategy for survival in these environments, there is 401 

no phylogenetic signal for resprouting strategies above the genus level. These results 402 

suggest that resprouting strategies are phylogenetically labile, in which sister lineages can 403 

show contrasting resprouting patterns in these highly threatened, yet poorly understood 404 
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dry ecosystems. These findings suggest that resprouting ability may have evolved 405 

repeatedly and independently over the phylogeny, rather than constrained to certain 406 

clustered clades. 407 

 408 

4.1 General resprouting patterns and environmental vs taxonomic effects 409 

 We expected that the high-frequency resprouter species were the most 410 

representative, however we found that within TDF most species are low- and medium-411 

frequency resprouters, with values of representativity of multi-stemmed trees lower than 412 

previous reported in other works in tropical dry forests (Dunphy et al., 2000). These 413 

species of resprouting frequency between 10 and 50 % in average are the most part of 414 

species, trees, stems and biomass, thus been consequently related to the TDF ecosystem 415 

functioning. Although water stress is a continuous restrictive factor that we expect to 416 

promote broad resprouting (Pausas et al., 2016; Vesk & Westoby, 2004), these species of 417 

moderate and low resprouting tend to dominate in these dry environments. This finding 418 

agrees with the expected variation of occurrence of resprouting due to their consequences 419 

to population growth capacity and individual fitness (Bond & Midgley, 2003; Ceccon et 420 

al., 2006; Clarke et al., 2013; Pausas & Keeley, 2014). In a context of not restrictive 421 

conditions, species would naturally tend to “opt” for seedling strategy, which is associated 422 

with greater growth capacity and, among other factors, increased genetic diversity 423 

(Bellingham & Sparrow, 2000; Nzunda & Lawes, 2011; Pausas et al., 2016). However, 424 

due to strong environmental filters in TDF, particularly strong seasonal water stress, some 425 

individuals of these species could resprout to ensure their survival by emitting a new leaf 426 

and hydraulic system to obtain resources. The prevalence of low and medium-frequency 427 

resprouters, even in relation to non-resprouters, corroborates with this strategy: high-428 

frequency species can guarantee their local survival, but may not ensure broad ecological 429 

success within TDF communities due to the resprouting negative consequences for 430 

individual fitness. 431 

 Resprouting is adopted by tree species to endure the hydric stress in TDF, which 432 

is caused by the long dry season (that may last for up to 8 months), by the large year-to-433 

year variation in the timing of wet season start and in the intensity of precipitation 434 

(Pennington et al., 2009). In these stress situations, especially due to the delay in the start 435 

of water availability or precipitation reduction, the resprouting is being adopted as an 436 

immediate response to water deficit and to the water stress physiological challenge that 437 

threatens individual survival (Ceccon et al., 2006; Pausas et al., 2016; Zeppel et al., 2015). 438 
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In the absence of water stress, or in life stages where individuals have greater resistance 439 

to ecological filters, resprouting would probably become an obsolete strategy and 440 

therefore, may not be adopted (Bond & Midgley, 2001; Pausas & Keeley, 2014). This 441 

non-continuous need of resprouting may explain the generally low resprouting frequency 442 

and low average number of stems per tree we found here, in addition to other possible 443 

relations with physiological responses at deeper levels, such as in anatomical structures 444 

relevant to the water use by plants (Pausas et al., 2016). In the rainy season, the water 445 

availability enables reproduction, dispersal and germination of seeds produced by 446 

resprouting individuals, however with a compromised success due to the previous use of 447 

non-structural resources in new shoots emission (Ceccon et al., 2006; Clarke et al., 2013; 448 

Moreira et al., 2012; Pausas et al., 2016).  449 

Resprouting is an important persistence strategy that increases plant fitness 450 

(Poorter et al., 2010), therefore, it should be expected that its manifestation is mainly 451 

determined by environmental conditions (i.e., high resprouting frequency and number of 452 

stems per tree in response to stronger environmental filter). In contrast, our results show 453 

that resprouting expression is mainly determined by species identity (taxonomic 454 

information), whilst environmental conditions (climatic and soil variables) seem to play 455 

a minor role. Thus, resprouting variables considered seems to be intrinsic traits that varies 456 

in response to environmental conditions but within a limited range of variation previously 457 

determined by taxonomic identity, mainly to genus and species identity. That is, the 458 

values presented by the species for the resprouting variables considered vary within a 459 

limit established by their taxonomic identity. It is important to state that current abiotic 460 

variables may be correlated with a plant response that occurred previously, what can be 461 

explain the low exploratory power of the site variables.  We also recognized that a large 462 

proportion of the variation remains unexplained. The residual variation may be associated 463 

with communities’ structure and dynamics (dominance, diversity relationships and long-464 

term trends), population age structure, canopy dynamics, biotic interactions, functional 465 

traits not correlated to the phylogenetic patterns, intra-specific variability and other 466 

factors we did not explore here. We also must consider the limitation of our work related 467 

to considering the stems present in multi-stemmed trees as a result of the resprouting 468 

process, in response to restrictive factors of continuous action. In this sense, a greater 469 

control of the effects of disturbances in the identification of resprouting can help to reduce 470 

the residual variation. In addition, studies on larger spatial scales that comprises longer 471 
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environmental gradients may find greater importance of environmental factors such as 472 

climate and soil on resprouting variation. 473 

Prevalence of low and medium resprouters in TDF rather than high-frequency 474 

resprouter as we expected could also reflect the absence of large herbivorous mammals 475 

in South America and consequently of their disturbance effects related by herbivory and 476 

physical injuries. For African savannas, there is clear evidence that large animals drive 477 

woody plant functional patterns, selecting traits such as i) higher wood density that 478 

confers greater mechanical resistance to stem breakage) and ii) higher number of spines 479 

and iii) lower frequency of resprouting related to the absence of fire due to higher 480 

removing of biomass (fuel) by herbivores (Dantas and Pausas., 2020). However, in South 481 

America, these large herbivorous mammals went extinct around 10,000 years ago 482 

(Doughty et al., 2017), therefore, Cerrado plant functional traits are mainly determined 483 

by the presence of fire, in these fire-driven ecosystems (Dantas & Pausas, 2020). In the 484 

absence of these large animals, resprouter species may resprout in response to water 485 

scarcity, but not often as under the previous disturbance regime in which the higher 486 

herbivory may have promoted resprouting, thus adopt the reseeding as strategy of 487 

regeneration. In fact, if large herbivores had not been extinct, they would occur in the 488 

south, east and southeast South America regions, which overlaps our study region 489 

(Doughty et al., 2016). In comparison to the thicker leaves in Cerrado species, TDF 490 

species leaves may be more attractive to herbivores due to their high nutritional content 491 

(related to TDF richer soils), in addition to be thinner and less tough. Based on current 492 

knowledge, this discussion is still incipient, but our results, together with the recent 493 

evidence cited, draw attention to possible relationships between the past occupancy 494 

patterns of large herbivores mammals and the vegetation patterns in South America as 495 

well, especially in the Tropical Dry Forests. More studies are need to better clarify the 496 

questions related. 497 

 498 

4.2 Resprouting within and across lineages: phylogenetic signal 499 

Contrary to what we expected, we found there is no phylogenetic signal for 500 

resprouting variables above the genus-level:  evolutionary relationships of lineages do not 501 

imply an ecological similarity in terms of resprouting strategies and sister lineages can 502 

have contrasting resprouting expression (e.g., the euphorbiaceae genera Jatropha and 503 

Croton). Resprouting ability is likely a result of the different local restrictive factors (e.g., 504 

fire, water stress, flood) to which individuals of these genera and their constituent species 505 



16 
 

have undergone throughout their evolutionary history (Bond & Midgley, 2003; Nzunda 506 

et al., 2007; Pausas & Keeley, 2014; Vesk & Westoby, 2004). Although heritability can 507 

be an important driver of intrinsic trait values (Coelho de Souza et al. 2016; Fyllas et al. 508 

2009), it would appear that closely related genera may have experienced different 509 

selective pressures throughout their evolutionary history, to which they responded with 510 

different resprouting patterns. For example, some genera also occur in the Cerrado 511 

savannas, in Atlantic semideciduous forests and in the different vegetation types within 512 

the Caatinga domain, all of which have different environmental filters (Aguiar-Campos 513 

et al., 2020; Moro et al., 2014; Santos et al., 2012; Souza et al., 2019). In contrast, distantly 514 

related lineages may have experienced similar selective pressures and converged to 515 

similar resprouting patterns. In addition, because resprouting is controlled by a linked set 516 

of complex traits and physiological processes (such as a dispersal syndrome), variations 517 

in resprouting expression must involve a number of evolutionarily integrated changes and 518 

also be influenced by other traits related to reseeding, which is the direct ecological 519 

alternative strategy (Bond & Midgley, 2003; Lamont et al., 2011; Pausas & Keeley, 2014; 520 

Pausas et al., 2016).  521 

 Our conclusions require a note of caution due to an incomplete phylogeny; many 522 

genera in our study have relatives that occur outside our study region and were not 523 

included. We emphasize that we only considered the final expression of resprouting by 524 

the presence of multi-stemmed trees, which could stem from different sets of traits 525 

according to different environmental restrictions endured by the individuals that display 526 

it (Bond & Midgley, 2003; Pausas & Keeley, 2014). Therefore, these interpretations 527 

cannot be directly extended to other resprouting-related traits, given that the final 528 

expression of this strategy may owe to several functional patterns (Bond & Midgley, 529 

2003; Pausas et al., 2016).  530 

 531 

4.3 General implications 532 

 The response of tropical dry forests to observed and predicted climate change 533 

scenarios of increased aridity, consecutive years of prolonged droughts and variation in 534 

annual precipitation (Allen et al., 2017; IPCC, 2014) are and will be complex. 535 

Resprouting is an important immediate strategy to avoid mortality, but carries a cost of 536 

mobilizing stored resources to grow new shoots, which could jeopardize other vital 537 

functions related to growth and reproduction (Moreira et al., 2012; Schwilk & Ackerly, 538 

2005). However, as resprouting is repeatedly used as a persistence strategy, stored 539 
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resources may become scarce and the possibility of emitting new shoots and the 540 

individual’s capacity to endure water stress may be compromised (Pausas et al., 2016).  541 

 Our study begins to address the need to build knowledge on ecological resprouting 542 

patterns in fire-free environments, especially those subject to extreme dry periods. 543 

Resprouting is currently an important strategy in these drought-prone plant communities 544 

and may have been more in the past. Investigating how it manifests in communities 545 

contributes to a better understanding of present-day ecosystem function and future 546 

responses to ongoing climate change. In scenarios of climate changes, resprouting may 547 

become a more common strategy in communities subjected to extreme or long-term 548 

droughts and be an important part of ecosystems ecological responses. 549 
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Tables 870 

 871 

Table 1: Results for GLMM models for each resprouting variable evaluated: average 872 

stems per tree and resprouting frequency. The results are for the global model (1), global 873 

model not including fixed variables (2), global model not including sampling effects (3) 874 

and global model not including taxonomic effects (4). Delta AICc (∆ AICc) refers to the 875 

comparison between the global models and for the options accounting for relative 876 

influence of each factor considered. 877 

Model 
Average stems per tree Resprouting frequency 

AICc ∆ AICc AICc ∆ AICc 

(1) Global model (GM) 44206.3 - 47333 - 

(2) GM - fixed effects 44200.5 5.8 47358.9 -25.9 

(3) GM - sampling effects 44417.9 -211.6 47374.2 -41.2 

(4) GM - taxonomic effects 45746.5 -1540.2 48098.5 -765.5 

 878 

  879 
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Figures legend 880 

 881 

Figure 1: Location of 16 tropical dry forests (TDF) plots in the states of Minas Gerais 882 

(MG) and Bahia (BA), Brazil. Position of the sites relative to South America and 883 

Brazilian biogeographic regions (official boundaries) are also shown. 884 

 885 

Figure 2: Distribution curves of resprouting frequency values and average stems per tree 886 

for species and genera evaluated in 16 tropical dry forests, with taxa colored according to 887 

our k-means partitioning of resprouting frequency classes. 888 

 889 

Figure 3: Proportion of resprouting frequency categories in the total number of taxa, 890 

trees, stems and aboveground woody biomass (AGWB) in 16 fragments of tropical dry 891 

forests, calculated for when genera are categorized (left-hand panel) or when species are 892 

categorized (right-hand panel). The term “taxa” refers to species or genus taxonomic 893 

levels, presenting the number of species or genus in each category. 894 

 895 

Figure 4: Coefficient of determination (R²`) of fixed and random effects in the global 896 

model (a); and variance partitioning analysis of sampling (plot and subplot) and taxonomy 897 

(family, genus and species) effects within the random effects (b) for number of stems per 898 

tree and resprouting frequency recorded in 16 fragments of tropical dry forests. 899 

 900 

Figure 5: Phylogeny of 111 tropical dry forest tree genera with branches colored 901 

according to number of stems per tree. Note that the number of genera represented here 902 

is lower than the total number used in classification, since 3 genera were not present in 903 

the phylogenetic tree. 904 

 905 

Figure 6 Phylogeny of 111 tropical dry forest tree genera with branches colored 906 

according to resprouting frequency. Note that the number of genera represented here is 907 

lower than the total number used in classification, since 3 genera were not present in the 908 

phylogenetic tree. 909 


