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The formation of heterogeneous vapour bubbles is widely studied due to its importance to two-phase thermal 
management systems, ultrasonic cleaning, and turbomachinery performance. However, the role that the surface 
plays in determining the growth of a bubble is still poorly understood. Currently, theoretical understanding of 
heterogeneous vapour bubble growth is limited to hemispherical bubbles or completely spherical bubbles next to 
a surface. We have previously developed an inertio-thermal model to accurately predict how heat transfer from 
the surrounding fluid affects homogeneous vapour bubble growth from the nanoscale to the macroscale (Sullivan 
et al. J. Fluid Mech. 948(A55):1-15, 2022). By accounting for the presence of the surface and its wettability 
on both the geometry of the bubble and on the available thermal energy in the surrounding fluid, we extend 
our model to capture heterogeneous vapour bubble growth. Using molecular simulations, we show not only how 
the strength of fluid-solid interaction affects the growth rate, but also how the formation of an adsorbed fluid 
layer under the bubble on lyophilic surfaces plays a vital role in determining the bubble shape and subsequent 
dynamics. These insights have potential to improve the performance of systems involving a change of phase from 
liquid to vapour by better understanding the role of surface wettability on this process.
1. Introduction

Vapour bubble formation has been attributed as the driving factor 
behind natural phenomena, such as geyser formation and volcanic erup-

tions [1]. Similarly, the explosive failure of pressurised containers and 
wear of turbomachinery caused by cavitation bubbles, highlight the 
deleterious effects of vapour bubbles on industrial processes [2]. The 
high heat fluxes dissipated from surfaces during bubble formation and 
growth have seen flow and pool boiling attracting significant interest 
for use in (opto)electronic thermal management systems [3].

Early studies on the growth rate of homogeneous vapour bubbles fo-

cused on analysing either the effects of limiting inertia [4] or heat trans-

fer [5]. The inertial growth of such spherical bubbles is described by the 
Rayleigh–Plesset (RP) equation, which balances the driving forces from 
the pressure difference across the bubble’s interface with the inertia of 
the liquid phase [4]. The RP equation includes the effects of capillar-

ity and viscosity on the pressure difference, which are most relevant 
for small bubbles [6], and has been extended to include the effects 
of mass transfer at the liquid-vapour interface [7]. Where heat trans-

fer is the dominant factor controlling bubble growth rate, Plesset and 
Zwick [5] considered the energy balance at the bubble interface, balanc-

* Corresponding author.

ing the latent heat required to grow the bubble with the heat available 
through conduction to the interface. These two limiting cases of iner-

tial and thermal bubble growth were combined by Mikic et al. [8], who 
interpolated between the inertial limiting velocity of the RP equation 
and the thermal limiting velocity of the Plesset–Zwick solution, show-

ing good agreement with a wide range of bubble growth data [1,9,10]. 
Recently, we have developed a more accurate approach by including 
the changing inertial growth (rather than using a constant inertial lim-

iting velocity) in our inertio-thermal bubble growth models, showing 
improved agreement in the early stages of bubble growth across ex-

periments and simulations [11].

While these models are useful in the idealised case of perfectly-

spherical bubbles growing in an infinite medium, in practice, bubbles 
typically form at a solid surface, where the barrier to nucleation is 
reduced [12]. This significantly changes the physics controlling the 
growth rate, as the presence of the solid surface alters the diffusive 
heat transfer in the liquid surrounding the bubble [13]. To simplify the 
analysis of heterogeneous bubble growth, either spherical or hemispher-

ical bubbles on a solid surface are typically analysed. Mikic et al. [8]

proposed a model for the growth of spherical bubbles at a wall by us-

ing an error function solution to capture the non-uniform temperature 
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field close to a heated surface. However, the model did not account 
for the changes in diffusive heat transfer that arise in the surround-

ing liquid when a bubble grows on a wall, predicting identical results 
to their homogeneous bubble growth model in the case of a uniformly 
heated fluid. Indeed, they show a disagreement of a factor of two with 
experimental results. The altered thermal diffusive behaviour near the 
wall resembles the case of the growth of gas bubbles by species dif-

fusion analysed by Enríquez et al. [13], who showed how the solid 
surface halved the growth rate of spherical bubbles on a surface when 
compared to a homogeneous bubble growth theory. The approach of 
Enríquez et al. [13] has not yet been adapted to analyse bubble growth 
driven by the unique thermal diffusion field from the surrounding liq-

uid rather than species diffusion and has not been extended to model 
the growth of partially wetting bubbles, only considering the case of 
spherical bubbles touching the surface at a single point.

In the context of partially wetting bubbles, much of the existing liter-

ature has focused on the heat transfer into the bubble from the surface. 
Cooper and Lloyd [14] developed a model for hemispherical bubble 
growth on a heated surface driven entirely by evaporation from the 
liquid microlayer under the bubble, but neglected heat transfer from 
the bulk fluid. Later, van Stralen et al. [15] incorporated heat transfer 
through the bubble cap, in addition to the microlayer, using a lami-

nar boundary layer heat transfer approximation. However, their model 
requires knowledge of the time the bubble will take to leave the sur-

face due to buoyancy, and therefore cannot be used to predict bubble 
growth a priori. The models by Cooper and Lloyd [14] and van Stralen 
et al. [15] additionally neglect the effect of the contact angle on bub-

ble growth rate, only modelling hemispherical bubble growth. Despite 
the significance of wettability in bubble nucleation [12] and departure 
from the surface [3], its effect on growth rate remains unexplored.

In addition to theoretical modelling, a wide range of experimental 
and numerical investigations have been performed on heterogeneous 
vapour bubble dynamics, typically focused on the departure of bub-

bles from heated surfaces [16–20]. In these cases, surface wettability is 
typically measured using the contact angle of liquid droplets, however, 
Ardron and Giustini [21] have recently shown that the presence of a 
nanoscale adsorbed layer underneath vapour bubbles alters the free en-

ergy balance that determines the shape of the bubble, indicating that 
contact angle measurements using droplets cannot always accurately 
predict the contact angle of vapour bubbles. Note that this nanoscale 
adsorbed layer is only a few molecules thick, and is distinct from the 
micron-sized liquid micro-layer observed in pool boiling phenomena 
[22]. To avoid confusion between the two, it is often referred to as a 
non-evaporating layer (NEL) [23]. Previous continuum-based numeri-

cal investigations into the influence of surface wettability on vapour 
bubble dynamics were not capable of capturing the adsorbed layer, 
even after accounting for the changes to average near wall density [24]. 
Molecular dynamics (MD) simulations in contrast have been able to cap-

ture adsorbed layers underneath vapour bubbles [25,26], making MD a 
unique tool for studying the complete physics of surface wettability on 
nanoscale heterogeneous vapour bubble growth.

In summary, our understanding of heterogeneous bubble growth 
is currently limited to idealised approximations of bubble shapes and 
neglect the effects of the surface on the geometry of the bubble and dif-

fusive heat transfer in the bulk liquid. It has been shown in literature 
that surface wettability plays a significant role in the formation and de-

tachment of vapour bubbles, but there is currently little understanding 
of its effect on bubble growth, particularly in the early stages, when 
buoyancy forces are less relevant. Using MD, in this work we perform 
heterogeneous bubble growth simulations of nanoscale vapour bubbles. 
The bubble’s interface is also modified in these simulations through 
simple changes in surface wettability to investigate its influence on the 
diffusive heat transfer during bubble growth. We present a new an-

alytical model for the growth of heterogeneous vapour bubbles in a 
uniformly heated liquid, which extends our recently developed inertio-
2

thermal model [11] for homogeneous bubble growth. We compare the 
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predictions of our model to our MD results, showing good agreement, 
provided that the bubble shape can be accurately determined and the 
system inertia can be approximated with spherical symmetry.

2. Development of theoretical model

Spherical vapour bubble growth in an infinite medium is described 
by the RP equation, which balances the pressure difference across the 
bubble interface with the inertial resistance to growth. For the case of 
a Newtonian fluid, neglecting the effects of mass transfer at the bubble 
interface, the RP equation is given as:

𝑅𝑅̈+ 3
2
𝑅̇2 = 1

𝜌𝑙

(
𝑃𝑣 − 𝑃∞ − 2𝛾

𝑅
− 4𝜇𝑅̇

𝑅

)
, (1)

where 𝑅 is the radius of the bubble and dots are used to represent 
the time derivative. The liquid density, surface tension, and dynamic 
viscosity are given by 𝜌𝑙 , 𝛾 , and 𝜇, respectively. The terms on the left 
hand side of the equation represent the liquid phase’s inertia, while 
the right hand side accounts for the vapour pressure inside the bubble 
𝑃𝑣, the fluid far field pressure 𝑃∞, Laplace pressure 2𝛾∕𝑅, and viscous 
pressure 4𝜇𝑅̇∕𝑅. From this expression, the maximum growth velocity 
of a bubble can be shown to be [2]:

𝑅̇RP,max =

√
2Δ𝑃
3𝜌𝑙

, (2)

where Δ𝑃 = 𝑃𝑣 − 𝑃∞.

As an isolated bubble grows, maintaining the pressure inside the 
bubble requires evaporation of the surrounding liquid. The latent heat 
requirements associated with this vapour formation must be provided 
by sensible heat conduction from the bulk liquid. We can write the 
energy balance at the interface as:

𝜌𝑣ℎ𝑙𝑣𝑉̇𝑠𝑝 =𝐴𝑠𝑝𝑞′′, (3)

where 𝜌𝑣 and ℎ𝑙𝑣 represent the vapour density and latent heat of evap-

oration, respectively, and 𝑉̇𝑠𝑝 is the rate of change of volume of the 
bubble. The heat flux is given as 𝑞′′ across the interface of area 𝐴𝑠𝑝. So-

lutions to Eq. (3) have been found for spherical bubbles by Scriven [27]

and Plesset and Zwick [5], who solved for the heat flux using a thin 
thermal boundary layer approximation. Mikic et al. [8] interpolated 
between the inertial limit of Eq. (2) and the thermal limit of Plesset and 
Zwick [5], producing the MRG model for the radial velocity of a bubble, 
given as:

𝑅̇MRG = 𝑅̇RP,max

⎡⎢⎢⎣
√
𝑅̇2
RP,max

𝐵2 𝑡+ 1 −

√
𝑅̇2
RP,max

𝐵2 𝑡

⎤⎥⎥⎦ , (4)

where 𝐵 = 𝐽𝑎
√
12𝛼∕𝜋. Here, 𝛼 = 𝑘∕𝜌𝑙𝑐𝑝 is the thermal diffusivity of the 

liquid, 𝑘 is the thermal conductivity, and 𝑐𝑝 is the specific heat capacity. 
The Jakob number 𝐽𝑎, is the ratio of sensible heat to latent heat, given 
by 𝐽𝑎 = 𝜌𝑙𝑐𝑝Δ𝑇0∕𝜌𝑣ℎ𝑙𝑣, where Δ𝑇0 is the initial liquid superheat, i.e. 
the difference between the temperature of the fluid and the saturation 
temperature.

Recently, we developed a new class of inertio-thermal (IT) mod-

els which accurately tracks homogeneous bubble growth from the 
nanoscale to the macroscale [11]. A simplified IT model was shown to 
be accurate when the timescale of the acceleration of the bubble is less 
than the timescale at which thermal effects become dominant in deter-

mining the bubble growth rate [11]. This simplified IT model predicts 
the radial velocity of an initially static vapour bubble using a combina-

tion of the radial velocities predicted by solving the RP equation 𝑅̇RP
(Eq. (1)) and the MRG model 𝑅̇MRG (Eq. (4)):

̇
𝑅̇RP𝑅̇MRG
𝑅IT =
𝑅̇RP,max

. (5)
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Fig. 1. (a) Example of a spherical cap, defined by the bubble radius of cur-

vature 𝑅 and contact angle 𝜃𝑣 . (b) Comparison of the volume occupied by a 
hemisphere surrounding the heterogeneous bubble and the spherical sector of 
cone angle 𝜃𝑣 , shaded in gray. The vapour bubble (highlighted in blue) has the 
same contact angle as the cone angle that extends from its centre of curvature. 
(For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

In this paper, we will adapt this solution for the case of a hetero-

geneous bubble on an adiabatic surface. This allows us to neglect the 
effects of heat transfer from the surface, and isolate the role of wet-

tability in modifying diffusive heat transfer from the bulk liquid. This 
is achieved by modifying the terms of Eq. (3) to account for the al-

tered geometry of the bubble. We will assume the bubble takes the 
shape of a spherical cap on the surface, shown in Fig. 1(a), as this is the 
shape that minimises the interfacial free energy [28,29], which is par-

ticularly relevant to bubbles close to the critical radius for nucleation 
where capillary effects dominate. In the cases investigated here, the va-

lidity of this approximation is quantified through the Weber number 
𝑊 𝑒 = 𝜌𝑙𝑅̇RP,max𝑅0∕𝛾 , where 𝑅0 is the initial radius of the bubble, and 
capillary number 𝐶𝑎 = 𝜇𝑅̇RP,max∕𝛾 , which represent the ratio of inertial 
to capillary forces and viscous to capillary forces, respectively. As both 
quantities are small, i.e., 𝑊 𝑒, 𝐶𝑎 ≈ 0.1 capillary forces are the dominant 
factor in determining the shape of the bubbles. The volume of a spher-

ical cap 𝑉𝑠𝑐 can be expressed in terms of the volume of the sphere of 
equal radius as:

𝑉𝑠𝑐

𝑉𝑠𝑝
=

(
2 + cos𝜃𝑣

)(
1 − cos𝜃𝑣

)2
4

, (6)

where 𝜃𝑣 is the vapour side contact angle of the bubble. Similarly, the 
surface area of the spherical cap 𝐴𝑠𝑐 can be expressed in terms of the 
area of the sphere 𝐴𝑠𝑝 as:

𝐴𝑠𝑐

𝐴𝑠𝑝
=

(
1 − cos𝜃𝑣

)
2

. (7)

Taking the ratio of these two scaling factors, i.e. the ratio of the volume 
scaling to surface area scaling of a spherical cap, gives:

𝜓(𝜃𝑣) =
𝑉𝑠𝑐

𝑉𝑠𝑝

(
𝐴𝑠𝑐

𝐴𝑠𝑝

)−1
= 1

2
(
2 + cos𝜃𝑣

)(
1 − cos𝜃𝑣

)
. (8)

The energy balance from Eq. (3) can now be written for a spherical 
cap in terms of the sphere with the same radius and the factor 𝜓 as:

𝜓(𝜃𝑣)𝜌𝑣ℎ𝑙𝑣𝑉̇𝑠𝑝 =𝐴𝑠𝑝𝑞′′. (9)

While Eq. (9) accounts for the geometrical differences in heat trans-

fer at the bubble interface, it does not account for the change in 
available thermal energy due to the presence of the adiabatic wall. To 
account for this, we assume that the available thermal energy is con-

tained in a hemisphere around the bubble. The ratio of the volume of 
this hemisphere 𝑉ℎ𝑠 to the volume of the spherical sector 𝑉𝑠𝑠 of the same 
radius with a cone angle matching the bubble’s contact angle gives a 
comparison of the difference in thermal energy surrounding the hetero-

geneous bubble compared to a homogeneous bubble of the same radius. 
This is illustrated in Fig. 1(b). This gives a further scaling factor on the 
heat flux of:

𝑉𝑠𝑠
3

𝑉ℎ𝑠
= 1 − cos𝜃𝑣. (10)
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Dividing the scaling factor from Eq. (8) by the energy scaling factor 
in Eq. (10), an overall scaling factor for heterogeneous bubble growth 
𝐻(𝜃𝑣) is obtained:

𝐻(𝜃𝑣) =
1
2
(
2 + cos𝜃𝑣

)
. (11)

Taking the liquid and vapour angles to be complementary 𝜃𝑙 = 180◦−
𝜃𝑣, the heterogeneous scaling factor can be expressed in terms of 𝜃𝑙 as:

𝐻(𝜃𝑙) =
1
2
(
2 − cos𝜃𝑙

)
. (12)

We can now express the growth rate of heterogeneous bubbles in 
terms of the equivalent homogeneous bubble growth rate 𝑅̇𝑠𝑝 as:

𝑅̇(𝜃𝑙) =𝐻(𝜃𝑙)𝑅̇𝑠𝑝 =
1
2
(
2 − cos𝜃𝑙

)
𝑅̇𝑠𝑝. (13)

This new theoretical model allows us to predict the growth of heteroge-

neous bubbles by adapting homogeneous analyses. We can use this to 
express a heterogeneous inertio-thermal (HIT) model as:

𝑅̇HIT(𝜃𝑙) =𝐻(𝜃𝑙)𝑅̇IT, (14)

where we will refer to 𝐻(𝜃𝑙) as the HIT factor that relates the homoge-

neous growth prediction (𝑅̇IT) to the heterogeneous one (𝑅̇HIT).

3. Simulation methodology

Molecular dynamics (MD) simulations were performed to measure 
the growth of nanoscale vapour bubbles, using the open source software 
LAMMPS [30]. The interactions between the molecules were calculated 
using the Lennard–Jones (LJ) potential:

𝑈 (𝑟𝑖𝑗 ) = 4𝜀𝑖𝑗

[(
𝜎𝑖𝑗

𝑟𝑖𝑗

)12
−
(
𝜎𝑖𝑗

𝑟𝑖𝑗

)6
]
, (15)

where 𝜎 is the characteristic length scale, 𝜀 is the potential well depth, 
and 𝑟 is the distance between two molecules denoted by the subscripts 𝑖
and 𝑗. The fluid (subscript 𝑓 ) interaction parameters used in these sim-

ulations are 𝜎𝑓 = 0.34 nm and 𝜀𝑓 = 0.2392 kcal/mol, respectively, which 
were chosen to model argon [25]. The solid (subscript 𝑠) potential pa-

rameters used were 𝜎𝑠 = 0.247 nm and 𝜀𝑠 = 15.9743 kcal/mol, chosen to 
model platinum [31]. The LJ potential is truncated for values of 𝑟 > 𝑟cut, 
where 𝑟cut = 1.3 nm. The simulations are performed with a timestep of 
5 fs.

To investigate the effect of surface wettability, we adjust the molecu-

lar potential using the model of Nagayama and Cheng [32]. This model 
is based on the Lorentz–Berthelot mixing rules which predict the effec-

tive length and energy scales for the solid-fluid interaction [31], 𝜎𝑠𝑓
and 𝜀𝑠𝑓 , respectively, in terms of the solid and fluid values to be:

𝜎𝑠𝑓 = 𝑏1∕6
𝜎𝑠 + 𝜎𝑓

2
, (16)

𝜀𝑠𝑓 = 𝑎𝑏2
√
𝜀𝑠𝜀𝑓 . (17)

Their model [32] further incorporates the modifications made by Din 
and Michaelides [33] to the magnitude of the potential as well as by 
Barrat and Bocquet [34] to the attractive portion of the potential. Two 
new non-dimensional scaling factors are introduced; the factor 𝑎 scales 
the magnitude of the potential, while the factor 𝑏 adjusts the balance of 
attractive to repulsive components.

To achieve a range of partial wetting cases, a fixed value of 𝑎 = 0.14
was used [35], allowing for wettability to be controlled by 𝑏 alone [34]. 
The values of 𝑏 used, and the corresponding contact angles, are given 
in Table 1. In addition to these partially wetting cases, a completely 
wetting case with 𝜃𝑙 = 0◦ was performed. This was achieved by using 
the fluid-fluid values of 𝜎 and 𝜀 for the solid-fluid interactions (i.e. 𝜎𝑠𝑓 =
𝜎𝑓 = 0.34 nm and 𝜀𝑠𝑓 = 𝜀𝑓 = 0.2392 kcal/mol).

The system setup used in the MD simulation is shown in Fig. 2. A liq-
uid slab was created using the software package Packmol [36], with the 
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Table 1

LJ scaling factors for varying 
wettability surfaces with ap-

proximate droplet contact an-

gles.

𝑏 𝜃𝑙 [◦]

0.9 10

0.7 40

0.65 55

0.6 70

0.5 95

0.4 120

0.3 150

dimensions of the slab chosen depending on the expected contact angle. 
The dimensions ranged from a height of 45 nm and length of 60 nm for 
the most wetting cases, to a height of 20 nm and length of 70 nm for the 
least wetting cases. The number of argon molecules 𝑁 was chosen to 
be slightly lower than the saturation density, creating a supersaturated 
liquid. This value ranged from 5 × 105 to 1.5 × 106 molecules depending 
on the case being tested. This liquid slab was contained between two 
rigid FCC walls, which are used to maintain the fluid pressure during 
the bubble’s growth. During the simulation, the lower wall is kept fixed 
in place, while the upper wall, which we call the piston, is allowed to 
translate in the normal direction after fluid equilibration to allow for 
bubble expansion. The other boundaries of the domain are periodic.

The liquid is initially equilibrated (with both surfaces fixed) in the 
NVT ensemble until the potential energy reached a steady value. The 
piston is then released to apply the required pressure 𝑃∞ = 0.1 MPa, 
through a constant force 𝐹 , applied to each atom. This force is given 
by 𝐹 = 𝑃∞𝐴𝑃 ∕𝑁𝑃 , where 𝐴𝑃 is the surface area of the piston, and 𝑁𝑃

is the number of piston atoms. During this stage, a damping constant 
of 𝑐 = 7 fNs∕m was applied to the motion of each piston molecule to 
prevent excessive oscillations, which could lead to cavitation bubbles 
forming in the liquid. The system was equilibrated again in the NVT 
ensemble until the piston reached a steady position, at which point the 
damping constant was removed.

At this point in the simulation setup, a spherical cap of molecules 
with a specified radius was removed from the liquid next to the station-

ary surface. The cap’s radius of curvature was chosen to be above the 
critical radius for the specified temperature and pressure and the con-

tact angle of the cap was set to match the expected wettability of the 
surface, allowing for control over the size and shape of the bubble for 
each investigation. A smaller number of vapour molecules were then 
inserted into this void, with the number of molecules set to match the 
saturated vapour density. This system was then run with the fluid in the 
NVT ensemble for 1000 timesteps to equilibrate the bubble, preventing 
any cavitation bubbles from forming in the system, and the setup was 
considered to be fully equilibrated at this point. The production simu-

lations could then be performed with the fluid in the NVE ensemble. 
The lower wall atoms were fixed in position during this time, which 
was equivalent to setting an adiabatic surface, and prevented any heat 
transfer to the fluid. These simulations were run for a total of 200, 000
timesteps, corresponding to a duration of 1 ns.

The vapour bubbles were detected and their size measured using 
the same technique as described in our previous work [11]. A non-

interacting grid was overlayed onto the simulation domain. The coor-

dination number of these grid points in relation to surrounding MD 
molecules was computed to determine if these grid points were lo-

cated in liquid or vapour regions. A threshold of 15 molecules or greater 
within a radius of 1.3 nm was chosen to determine if a grid point was 
in a liquid region. This value was scaled by the appropriate volumetric 
factor for grid points near the solid surface. By calculating the number 
of grid points in vapour regions, the bubble volume could be measured. 
4

An example of a measured bubble profile is shown in Fig. 2.
International Journal of Heat and Mass Transfer 217 (2023) 124657

Fig. 2. Sample MD simulation setup with detected bubble highlighted (coloured 
grey). The simulation domain length 𝐿 and height 𝐻 are chosen based on the 
expected contact angle of the bubble. The pressure of the system is controlled 
by applying a constant force on the piston atoms (coloured yellow). Some of 
the fluid and piston atoms are not shown to improve the view of the bubble.

4. Results and discussion

4.1. Comparison of MD results to HIT model

In order to test the accuracy of the HIT model, we compare the pre-

dicted values of 𝐻(𝜃𝑙) to the values measured from MD simulations. 
Taking the radial velocities measured from MD as the heterogeneous 
values and the predictions of the homogeneous IT model at the same 
conditions of temperature, pressure, and initial radius, as the homoge-

neous values, we can rewrite Eq. (14) to give the MD measured value 
𝐻MD(𝜃𝑙) as:

𝐻MD(𝜃𝑙) =
𝑅̇MD(𝜃𝑙)
𝑅̇IT

, (18)

where 𝑅̇MD(𝜃𝑙) is the heterogeneous bubble radial velocity measured 
from MD on a surface with a droplet contact angle of 𝜃𝑙 , and 𝑅̇IT is the 
growth rate predicted from the homogeneous IT model.

Fig. 3 shows the measured profile of a growing vapour bubble for 
𝜃𝑙 = 70◦ alongside the IT (homogeneous) and HIT (heterogeneous) pre-

dictions. The measured values of 𝐻MD(𝜃𝑙) are shown in Fig. 4(a), com-

pared to the theoretical HIT factor (Eq. (12)).

Fig. 4 illustrates the three distinct regimes depending on surface 
wettability. For the neutral wetting regime (when −0.5 < cos𝜃𝑙 < 0.5), we 
see excellent agreement with the HIT model predictions. Compared to 
an equivalent homogeneous bubble, we see an increased growth rate 
on the less wetting surfaces and a decreased growth rate on the more 
wetting surfaces, matching our theoretical predictions. In the lyophobic 
regime (cos𝜃𝑙 < −0.5), the bubble can no longer be described with the 
spherical symmetry needed to apply the Rayleigh–Plesset equation. This 
makes the growth rate of bubbles in our simulations become strongly 
dependent on the domain size and tend towards a 1D Stefan-type prob-

lem [37] (which we discuss in further detail in the SI). In the lyophilic 
regime (cos𝜃𝑙 > 0.5), we see greater bubble growth rates than those pre-

dicted by the HIT model, which will be discussed in the next section.

4.2. Lyophilic regime

For highly-wetting surfaces, we see in Fig. 4(a) that the measured 
bubble growth rates exceed the rates predicted by the HIT model 
(𝐻(𝜃𝑙) ≈ 0.75 once cos𝜃𝑙 > 0.5). Interestingly, the HIT factor measured 
across these cases is independent of wettability, which can be seen 
in Fig. 4(a), where the measured cases approach a constant value in-
stead of following the HIT trajectory predicted by surface wettability 
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Fig. 3. Simulation snapshot segments of a growing vapour bubble for 𝜃𝑙 = 70◦. The profile measured from MD is compared to the predictions of the homogeneous IT 
model and the heterogeneous HIT model. Some of the liquid molecules have been removed for visualisation purposes.

Fig. 4. (a) Measured heterogeneous scaling factors from MD simulations compared to the HIT model predictions. (b) Measured radius of vapour bubble with 𝜃𝑙 = 70◦
from MD compared to homogeneous (IT) and heterogeneous (HIT) models. Bubble profiles seen in the (c) lyophobic, (d) neutral, and (e) lyophilic regimes. A 
non-evaporating layer (NEL) forms underneath the bubble in the lyophilic regime. The smaller secondary bubbles visible in (c) are due to density fluctuations in the 
fluid near the lyophobic wall and do not affect the principle bubble’s growth.
alone. This result can be explained by analysing the contact angle of the 
vapour bubbles on these surfaces. Fig. 5(a) shows the size dependence 
of the equilibrium contact angle 𝜃0 of the vapour bubbles measured rel-

ative to the surface for various surface wettabilities (i.e. for varying 𝜃𝑙). 
From this plot we can see that 𝜃0 is independent of bubble radius for 
𝜃𝑙 > 70◦ (i.e. the data appear as a flat, horizontal line), and dependent 
on bubble radius for 𝜃𝑙 ≤ 70◦ (i.e. the data appear as tilted lines with a 
negative slope). When the equilibrium contact angle is independent of 
radius, the measured bubble contact angles 𝜃0 match the liquid contact 
angle measured from droplet simulations (𝜃0 ≈ 𝜃𝑙). When the equilib-

rium contact angle is dependent on radius, the relationship between 𝜃0
and 𝜃𝑙 no longer holds. Instead, we see an interesting trend in the lim-

iting value of 𝜃0 as the bubble radius becomes larger (and 𝑅−1 → 0). For 
each of these cases, Fig. 5(a) shows that the equilibrium contact angle 
tends to a similar value of 𝜃0 ≈ 60◦.

This behaviour can be explained by the formation of a non-

evaporating layer (NEL) underneath the bubble (see Fig. 4(e)). This 
NEL forms due to surface adsorption of molecules once 𝜃𝑙 < 70◦, and 
has been shown to break the complementary nature of bubble and 
droplet contact angles [21]. Instead of measuring the contact angle of 
the bubble relative to the solid surface 𝜃0, we can alternatively measure 
the contact angle relative to the top of the NEL 𝜃𝛿 (a schematic repre-

sentation of the differences between these two measurements of contact 
angle is shown in Fig. 5(c)), again for different 𝜃𝑙 as shown in Fig. 5(b). 
The thickness of the NEL, labelled 𝛿 in Fig. 5(c), ranges from a single 
layer of molecules thick (≈ 0.3 nm) to over 2 nm with the thickness in-

creasing with the surface wettability. We now see that the contact angle 
of the bubble becomes independent of surface wettability when a NEL 
forms, indicated by the collapsing of all cases onto a single line once 
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𝜃𝑙 < 70◦. This shows that the presence of the NEL fundamentally alters 
the bubble-surface interaction when compared to a bare surface. This 
leads to two fundamental questions: (a) by what mechanism does the 
NEL influence the contact angle behaviour? and (b) when and why does 
the NEL form?

Influence of NEL: We hypothesise that the first question, i.e. the 
change in the contact angle behaviour, can be attributed to the NEL 
changing the interfacial stress balance at the contact line. In these cases 
the NEL partially shields the bubble from the influence of the surface. 
To understand this process better, we need to quantify the variation in 
the interfacial stresses present in the NEL.

Using the theory of Irving and Kirkwood [38] and following the 
methodology from Yamaguchi et al. [39] and Nishida et al. [40], the 
liquid-vapour interfacial stress 𝛾𝑙𝑣 is calculated as the integral of the 
difference of the normal 𝜏𝑁 and tangential 𝜏𝑇 pressure components in 
the direction normal to the interface from a location in the bulk liquid 
𝑦𝑙 to one in the bulk vapour 𝑦𝑣:

𝛾𝑙𝑣 =

𝑦𝑣

∫
𝑦𝑙

(𝜏𝑁 − 𝜏𝑇 )𝑑𝑦. (19)

Note that the precise locations of 𝑦𝑙 and 𝑦𝑣 (within the bulk liquid and 
bulk vapour, respectively) do not influence 𝛾𝑙𝑣 as this integral is only 
non-zero in the interfacial region.

For the solid-liquid (𝛾𝑠𝑙) and solid-vapour (𝛾𝑠𝑣) interfacial stresses, it 
is simpler to measure the interfacial stress relative to a bare surface. In 
these cases, the lower bound of the integral is adjusted to be the fluid 
interface 𝑦𝑠𝑓 [39] with the higher bound at some location in the bulk 
fluid 𝑦𝑓 . Eq. (19) is then modified in terms of the difference between 

the solid-fluid interfacial stress 𝛾𝑠𝑓 and the bare surface 𝛾𝑠0 to give [39]:
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Fig. 5. Comparison of liquid contact angles measured against the (a) solid substrate 𝜃0 and (b) non-evaporating layer 𝜃𝛿 . The solid lines represent a linear best fit, 
extrapolating to the macroscale limiting value of contact angle. (c) Schematic highlighting the difference between the two measurements. Note the separation of the 
bubble from the surface by a distance of 𝛿 due to the non-evaporating layer.
𝛾𝑠𝑓 − 𝛾𝑠0 =

𝑦𝑓

∫
𝑦𝑠𝑓

(𝜏𝑁 − 𝜏𝑇 )𝑑𝑦. (20)

In the cases where a NEL forms, the solid-vapour interface becomes 
a solid-NEL-vapour interface, with a notable effect on the resulting in-

terfacial stress. Fig. 6(a) shows how the cumulative stress changes with 
distance from the wall for both the 𝜃𝑙 = 70◦ and 𝜃𝑙 = 10◦ cases. We can 
see for the 𝜃𝑙 = 10◦ case that there is a noticeable effect from layering 
of molecules near the surface for both the solid-liquid and solid-vapour 
measurements. There is a slight offset in the location of these peaks 
between the solid-liquid and solid-vapour curves. This is due to the dif-

ference in far field pressure in the bulk liquid and inside the vapour 
bubble caused by the Laplace pressure. For 𝜃𝑙 = 70◦, the layering is only 
visible in the liquid. As there is no NEL, there is no layering observed in 
the solid-vapour cumulative stress profile. Thus the presence of the NEL 
significantly affects the interfacial stresses, which in turn must influence 
the contact angle, which we will demonstrate next. By measuring the 
liquid-vapour, solid-liquid, and solid-vapour interfacial stresses, 𝛾𝑙𝑣, 𝛾𝑠𝑙 , 
and 𝛾𝑠𝑣 respectively, we can predict the resulting contact angle using 
Young’s equation:

cos𝜃𝑌 =
𝛾𝑠𝑙 − 𝛾𝑠𝑣
𝛾𝑙𝑣

. (21)

Fig. 6(b) compares the angle predicted by Young’s equation (Eq. 
(21)) with the geometrically measured angles from our MD simulations 
(shown in Fig. 5(b)). We see good agreement between the predicted 
Young’s angle 𝜃𝑌 and the measured NEL-based contact angle 𝜃𝛿 across 
the full range of wettabilities. This confirms that the NEL is responsible 
for the fixed 𝜃𝛿 when 𝜃𝑙 < 70◦.

Formation of NEL: There remains the second question about why and 
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when the NEL forms. To answer this, we develop a criterion based on 
the potential energy barrier that a molecule would need to overcome 
in order to evaporate from the surface into the bubble. The potential 
barrier consists of the attractive potential from the wall (𝑃𝐸𝑤𝑎𝑙𝑙) as 
well as from the pressure in the vapour (𝑃𝐸𝑣𝑎𝑝𝑜𝑢𝑟), effectively pushing 
molecules towards the surface. We hypothesise that if the kinetic energy 
(𝐾𝐸) of the molecules is less than the potential barrier, the molecules 
lack sufficient energy to escape from the potential energy well of the 
surface and the NEL forms. Otherwise, the NEL does not form. We can 
then express this NEL formation criterion as:

𝐾𝐸 − 𝑃𝐸𝑤𝑎𝑙𝑙 − 𝑃𝐸𝑣𝑎𝑝𝑜𝑢𝑟 < 0. (22)

This is similar to the PK norm measurement proposed by Chen 
et al. [31], who considered the local potential and kinetic energy to 
predict the location of bubble nucleation sites. Comparing the value 
of this criterion to our contact angle observations in Fig. 6(b), we can 
see good agreement with our simulation results. The change in sign 
of our NEL criterion, expected to occur when the potential barrier ex-

ceeds the available kinetic energy, occurs exactly when the NEL forms 
(𝜃𝑙 ≈ 70◦) and the bubble contact angle becomes independent of wetta-

bility. This provides additional evidence that the formation of the NEL 
is responsible for the disparities between the different contact angle 
measurements.

We can thus clearly see that the presence of the NEL causes the 
liquid-side contact angle of the vapour bubble 𝜃𝛿 to deviate from pre-

dictions of a droplet analysis. When the bubble growth data is compared 
to the HIT theory using the measured contact angles from bubble sim-

ulations (i.e. 𝜃𝛿 , Fig. 7), rather than the values obtained from droplet 
simulations (i.e. 𝜃𝑙 , Fig. 4 (a)), we see significantly improved agreement 
in the lyophilic regime. This indicates that while using droplet contact 
angles is useful for non-dimensionalising the wettability, they are not 

appropriate for analysing bubble systems when the NEL is present.
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Fig. 6. (a) Interfacial stress measurements of the solid-liquid and solid-vapour interfaces for liquid contact angles of 10◦ and 70◦. (b) Liquid contact angles predicted 
by Young’s equation 𝜃𝑌 compared to those measured from MD simulations 𝜃𝛿 . The predicted angle reaches a constant value as the NEL formation criterion changes 
sign.
Fig. 7. Measured heterogeneous scaling factors from MD simulations com-

pared to the HIT model predictions with measured liquid contact angle 𝜃𝛿 . The 
hatched region where cos𝜃𝛿 < −0.5 indicates where the model predictions do 
not hold in the lyophobic regime (further details in the SI). The grouping of 
points around cos𝜃𝛿 = 0.5 is due to the NEL formation.

5. Conclusions

We develop a new heterogeneous inertio-thermal (HIT) model by ex-

tending our previously published homogeneous inertio-thermal model 
to account for the changes to diffuse heat transfer in the liquid sur-

rounding a bubble growing on a solid surface. The model scales the 
bubble surface area and volume terms in the interfacial energy bal-

ance to that of an equivalent spherical cap. Additionally, the available 
thermal energy is scaled to be contained in a spherical cap around the 
bubble rather than the spherical sector that the equivalent homoge-

neous bubble would have available.

Three distinct regimes of bubble growth are identified. For the neu-

tral wetting regime (−0.5 < cos𝜃𝑙 < 0.5), we see excellent agreement of 
the HIT model predictions with MD results, with an increased growth 
rate observed for less wetting fluids and a decreased growth rate for 
more wetting fluids. In the lyophobic regime (cos𝜃𝑙 < −0.5), the inertia 
of the system can no longer be well described by the spherical symme-

try of the Rayleigh–Plesset equation and therefore cannot be accurately 
modelled. In the other extreme, in the lyophilic regime (cos𝜃𝑙 > 0.5), a 
non-evaporating layer (NEL) of adsorbed molecules forms on the sur-

face underneath the bubble. The NEL substantially alters the interfacial 
stress balance at the contact line, causing the measured liquid-side 
contact angle of the bubble 𝜃𝛿 to differ from the liquid contact angle 
measured for a droplet i.e. 𝜃𝛿 ≠ 𝜃𝑙 . We show that when the NEL forms, 
the correct bubble growth dynamics can still be obtained if the liquid 
contact angle measured from the top of the NEL 𝜃𝛿 is used instead of 
the value obtained from droplet measurements 𝜃𝑙 in the HIT model.

This improved understanding of heterogeneous bubble growth will 
lead to an improved performance of bubble technologies. In particular, 
7

we now have a better understanding of the role the surface plays on 
the thermal diffusion in the bulk liquid, which may provide additional 
insights for the design of phase change thermal management systems. 
The effect of surface adsorption in forming the non-evaporating layer 
has been shown to significantly alter the geometry of vapour bubbles. 
It has yet to be determined what effect this has on the interfacial heat 
transfer as the bubble grows, providing a promising avenue for future 
research.
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