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Abstract. Resetting a stochastic process has been shown to expedite the completion

time of some complex tasks, such as finding a target for the first time. Here we consider

the cost of resetting by associating to each reset a cost, which is a function of the

distance travelled during the reset event. We compute the Laplace transform of the

joint probability of first passage time tf , number of resets N and total resetting cost

C, and use this to study the statistics of the total cost and also the time to completion

T = C + tf . We show that in the limit of zero resetting rate, the mean total cost

is finite for a linear cost function, vanishes for a sub-linear cost function and diverges

for a super-linear cost function. This result contrasts with the case of no resetting

where the cost is always zero. We also find that the resetting rate which optimizes the

mean time to completion may be increased or decreased with respect to the case of no

resetting cost according to the choice of cost function. For the case of an exponentially

increasing cost function, we show that the mean total cost diverges at a finite resetting

rate. We explain this by showing that the distribution of the cost has a power-law tail

with a continuously varying exponent that depends on the resetting rate.
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1. Introduction

It is well known that resetting a stochastic process to its initial condition can drastically

alter some key properties of the process [1]. For example, the time to find a target

(the first-passage time of the process) can be rendered finite, rather than infinite, by

introducing resetting to a diffusive search process [2, 3]. Conditions have been derived

for resetting to expedite a process [4, 5] and the explanation is that resetting cuts off

errant trajectories that would otherwise create a long time tail in the distribution of

completion times. Many further aspects of the effect of resetting on stochastic processes

have been explored in recent years (see e.g. [6–18]).

One key feature that needs to be taken into account when evaluating the efficacy

of resetting is its cost—in the real world resetting can’t be instantaneous and it must

consume some resource. Thus the cost of resetting encompasses a number of possibilities.

For example, a time penalty for resetting may be incurred, either through a refractory

period [19–21] after the reset, or a return phase of the process to its resetting position

[22–25]. The effects of time penalties on the stationary state and the mean time to find

a target have been studied in these works. In addition, energetic costs can be considered

particularly with regard to experimental realizations of resettings [26–28], and even the

thermodynamic cost has been appraised [29,30].

In this work, we consider a general additive cost of resetting where the contribution

of each reset is a function of the distance the particle must travel to its resetting position.

Thus the cost function C for a trajectory involving N resets is

C =
N∑
i=1

ci . (1)

Here ci = c(|xi − x0|) represents the cost of reset i, where xi is the position just before

the ith reset and x0 is the resetting position. We use C to represent the total cost over

the entire trajectory and c to represent the cost incurred at each reset. A constant cost

ci = constant corresponds to the case of a refractory period after a reset [19–21] and a

linear cost ci =
1
V
|xi−x0| recovers the time penalty incurred by a return phase in which

there is a constant velocity V [22–25]. However, in different physical contexts, the cost

could vary arbitrarily with the reset distance. For example, one could consider the energy

cost, which would depend on the resetting protocol and how energy is dissipated in the

surrounding medium. In the remainder of this work, we will not concern ourselves with

the details of such processes, instead our aim is to determine the possible behaviours

that may emerge by exploring different functional forms of the cost c(|xi − x0|) per

reset. We suggest possible relevant contexts for the different functional forms. We note

in passing that the total resetting cost (1) is an additive functional. Other additive

functionals have been studied in the context of Brownian motion [31,32] and Brownian

motion with resetting [33,34].

We will show that different forms of c(|xi − x0|) imply different regimes for the

mean total cost for a diffusive process in one dimension under Poissonian resetting with
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a target at the origin [2]. In particular, as the resetting rate r → 0, we show that

the mean total cost may be zero, finite or divergent according to the functional form of

c(|xi−x0|). The cases where the mean total cost is non-zero in the limit of zero resetting

are counter-intuitive since one would naively expect zero cost. However, any amount of

resetting drastically alters the system’s properties, so the limit of zero resetting rate is

not equivalent to no resetting. The explanation of a finite cost is that resetting events

with probability O(r1/2) may contribute a cost O(1/r1/2) thus generating a finite mean

total cost as r → 0.

In addition, we show that for finite resetting rate r > 0, the mean total cost may be

finite or divergent according to how quickly the cost function increases with the distance

of the reset. A divergent mean total cost originates in integrating over a tail of rare

events where the resetting distance becomes large.

We can also consider the sum of the total cost, C, and the first passage time, tf ,

which we will refer to as the completion time T

T = C + tf . (2)

We require C to be normalized to have the dimension of time. Then the completion

time can be interpreted as the time penalties or return times associated with resetting

events, added to the first passage time tf as has been studied in [22, 23]. We will show

that minimising the mean completion time results in: a reduced optimal resetting rate,

as compared to simply minimising tf , for the case of a linear cost; an unchanged optimal

resetting rate for a quadratic cost, and an increased optimal resetting rate for a super-

quadratic cost. In the latter case, the increased optimal resetting rate helps eliminate

trajectories with large cost events.

The paper is organized as follows. In section 2 we first write down the general

renewal equation for the joint probability distribution function of number of resets,

time of absorption and cost. We show how various moments of any given cost can be

calculated. Then, considering the process with ordinary diffusion in one dimension with

a target at the origin, we explore in sections 3, 4, 5, 6 the cases of linear cost, quadratic

cost, a generalized power cost and exponential cost, respectively. In particular, we

concentrate on various limiting behaviours of each of these costs and the transition

from a finite to an infinite cost in various limiting regimes.

2. Renewal Equation for Cost of Resetting

The central quantity we consider is the joint probability distribution function

F (N, tf , C|x0) of the number of resets N , time of absorption tf and total cost C, given

that the particle initially starts and is stochastically reset to x0. We will use a renewal

approach to compute the Laplace transform (or moment-generating function) of these

joint probabilities and hence obtain the statistical properties of the cost. We note that

Laplace transforms of related quantities have previously been obtained in [22,23].
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We first consider an arbitrary process in one dimension with Poissonian resetting [1]

and construct a renewal equation for the joint probability density by considering the time

of the first reset. Related first-renewal equations have been previously used [19, 20, 35],

and in other contexts, last-renewal equations and unified renewal approaches have been

employed [2, 5, 36, 38–41]. We find

F (N, tf , C|x0) =

∫ tf

0

dt1 re
−rt1

∫ ∞

0

dx1G0(x1, t1|x0) (3)

× F (N − 1, tf − t1, C − c1|x0)Θ(C − c1) ,

where Θ is the Heaviside step function which constrains the cost to be non-negative.

x
0

x1

x
2

x
3 x

S
p

ac
e

.  .  .

Time
t1 t2 t3

t f0

N

ttN N+1

.  .  .

Figure 1: Example trajectory of diffusive process with resetting to x = x0 and absorbing

boundary at x = 0. t1 is the time of the first reset, ti is the time elapsed between (i−1)th

and ith reset, and tf is the first passage time at which the particle is absorbed. xi is

the position of the particle just before the ith reset. Note that tN+1 is the time elapsed

between the N th (final) reset and first passage time tf .

Equation (3) can be understood by referring to Figure 1. The integration is over t1, the

time of the first reset, and x1, the position just before the first reset. The factor re−rt1dt1
is the probability that the first reset occurs in the interval between t1 and t1 + dt1 and

G0(x1, t1|x0)dx1 is the probability, in the absence of resetting, for the process to have

survived and have a position between x1 and x1+dx1 at time t1. In principle, the cost of

the first reset c1 could be a general function of x1, the position of the particle just before

the reset, and x0, the resetting position. For clarity, we take the form where the cost

depends on the distance from the resetting position, that is, c1 = c(|x1 − x0|), although
much of the formalism below could be extended to the more general case (see [22]).

After the first reset, the process is renewed and F (N − 1, tf − t1, C − c1|x0) is now the

required joint probability distribution function with the contribution of the first reset

subtracted from the variables N , tf and C. Equation (3) holds for N > 0. For N = 0
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the corresponding equation is

F (0, tf , C|x0) = e−rtfF0(tf |x0)δ(C − 0) , (4)

where e−rtf is the probability of no resets up to time tf , F0(tf |x0) is the probability

density of completion at time tf in the absence of resetting and the total cost C must

be zero as there are no resets.

We now take the Laplace transform of (3) with Laplace variables s and p for tf and

C respectively. The resulting expression, derived in Appendix A, is

F̃ (N, s, p|x0) =

∫ ∞

0

dtf e
−stf

∫ ∞

0

dC e−pCF (N, tf , C|x0) (5)

= rW (r + s, p|x0)F̃ (N − 1, s, p|x0) , (6)

where W (r + s, p|x0) is defined as

W (r + s, p|x0) =

∫ ∞

0

dx e−pc(|x0−x|)G̃0(x, r + s|x0) . (7)

In (7), G̃0(x, s|x0) is the Laplace transform of G0(x, t|x0) with respect to t

G̃0(x, s|x0) =

∫ ∞

0

dt e−stG0(x, t|x0) . (8)

Finally we obtain from (4)

F̃ (0, s, p|x0) = F̃0(r + s|x0) (9)

where F̃0(s|x0) is the Laplace transform of the first passage time distribution for the

system without resetting. Iterating (6) yields our central result

F̃ (N, s, p|x0) = [rW (r + s, p|x0)]
N F̃0(r + s|x0) . (10)

The importance of (10) is that it gives us the full joint statistics of the number of resets,

the time to absorption and the cost of resetting. For example, setting p = s = 0 yields

the distribution of the number of resets, P (N |x0) up to the first passage time, tf :

P (N |x0) =
[
rQ̃0(r|x0)

]N
F̃0(r|x0) , (11)

where

W (r, 0|x0) = Q̃0(r|x0) (12)

is the Laplace transform, with Laplace variable r, of the survival probability without

resetting, having started from x0. The distribution (11) is evidently a geometric

distribution and rQ̃0(r|x0) is simply the probability that the particle is not absorbed

before the next reset. The geometric distribution (11) is a simple property of a renewal

process and similar distributions appear in other contexts, such as the probability of N

records in record statistics [47].
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Similarly, setting p = 0, which corresponds to integrating out the cost, and summing

over N recovers the Laplace transform, or equivalently moment generating function, of

the first passage time distribution under resetting with rate r [2]

⟨e−stf ⟩ = F̃0(r + s|x0)

1− rQ̃0(r + s|x0)
. (13)

This has been used to study the mean first passage time and its minimization with

respect to resetting rate [2] and also the coefficient of variation [4, 5] and various other

properties.

We now use (10) to investigate the statistics of the total cost of resetting C. Setting

s = 0, which corresponds to integrating over all absorption times tf , and summing over

the number of resets N gives the moment generating function of the cost distribution,

⟨e−pC⟩ = F̃0(r|x0)

1− rW (r, p|x0)
. (14)

The moments of the cost function are obtained as follows,

⟨Cn⟩ = (−1)n
∂n

∂pn
⟨e−pC⟩

∣∣∣∣
p→0+

. (15)

The expressions derived so far are independent of the underlying process. The approach

can also be generalized to higher dimensions as we will discuss in the conclusions. If

we are provided with the first passage time density and the propagator for the system

without resetting, we can, in principle derive the joint probability of number of resets,

time of absorption and the cost.

2.1. The case of one-dimensional diffusion with resetting

In the following, the underlying process we consider is one-dimensional diffusion with

an absorbing boundary (the target) at x = 0. We use the standard expressions for the

Laplace transform of first-passage time density, Laplace transform of the propagator,

and Laplace transform of survival probability [42,43]:

F̃0(r|x0) = e−α0x0 , (16)

G̃0(x, r|x0) =
1

2
√
Dr

(
e−α0|x−x0| − e−α0|x+x0|

)
, (17)

Q̃0(r|x0) =
1

r
(1− e−α0x0), (18)

where α0 =
√

r/D. The first two moments of the total cost of resetting are then given

by

⟨C⟩ = −reα0x0
∂

∂p
W (r, p|x0)

∣∣∣∣
p→0+

, (19)

⟨C2⟩ = ⟨C⟩2 + reα0x0
∂2

∂p2
W (r, p|x0)

∣∣∣∣
p→0+

. (20)
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Using (18) and (16) in (11), the distribution of the number of resets for one-dimensional

diffusion with resetting becomes the geometric distribution

P (N |x0) = e−γ(1− e−γ)N , (21)

where γ is the dimensionless resetting rate

γ =

√
r

D
x0 . (22)

γ is a key parameter that is used throughout this paper and can be interpreted as the

ratio of two distances, namely the distance to the target, x0 and the typical distance

travelled between resets,
√

D/r.

3. Linear resetting cost

As a first example, we consider a linear cost per reset, that is

ci =
|xi − x0|

V
. (23)

Here V has dimensions of velocity and is introduced to allow an interpretation of the

cost as the time required to reset the process to its starting point. In this case, one finds

from (7) that

W (r + s, p|x0) =
1

2
√

D(r + s)

(
2

α + p̂
+

2p̂

α2 − p̂2
e−2αx0 − 2α

α2 − p̂2
e−(α+p̂)x0

)
, (24)

where p̂ = p/V and α =
√

(r + s)/D. The mean of the total cost is then obtained from

(19) as

⟨C⟩lin =
x0

V

(
2 sinh γ − γ

γ

)
. (25)

The result (25) has been obtained for a linear resetting cost, or home return time,

in [22,23,26]. We have also verified the mean total cost using simulations—see Figure 2.

The mean total cost is minimized at γ∗, which is obtained by evaluating d⟨C⟩/dγ =

0. For the linear case, it is clear that γ∗
lin → 0, i.e. the limit of zero resetting rate.

However, in this limit, the mean total cost is non-zero

⟨C⟩∗lin =
x0

V
(26)

as opposed to a system with no resetting in which this cost would be zero. The finite

mean total cost in the r → 0 limit of the linear cost case has been noted in [26].

We now explain how this finite contribution to the total cost, in the limit of zero

resetting rate, comes from a few rare trajectories of the process that do involve a reset.

The reset of these trajectories involves a large displacement of the particle, incurring
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Figure 2: Simulation results of mean total cost obtained for a system with linear cost

per reset (see Appendix C for details) compared with the analytical result obtained from

the calculations. We have fixed D = 1, x0 = 1 and V = 1.

a large cost. This interplay of a tiny, but significant resetting chance with the large

displacement, which scales as the inverse of the small probability, contributes to the

finite total mean total cost for resetting.

This argument can be made more rigorous by finding the probability of resets and

the mean distance travelled between resets. The geometric distribution (21), in the limit

of small rate of resetting i.e. γ → 0 becomes

P (N |x0) ≃ (1− γ)γN . (27)

This distribution can be used to write down the leading contributions to the resetting

events, which would be the case of no resets and a single reset to the leading order

P (0|x0) = 1− γ +O(γ2) ,

P (1|x0) = γ +O(γ2) .
(28)

We now make an approximation which ignores the absorbing boundary and consider

the probability distribution of the position at the reset,

P (x) ≃ r

∫ ∞

0

dt
e−rt

√
4πDt

exp

(
−(x− x0)

2

4Dt

)
(29)

=
α0

2
e−α0|x−x0| . (30)

In (29) we have used a Gaussian distribution for the position after time t, and averaged

over the distribution of times to the reset, employing a standard integral (see [1]



The cost of stochastic resetting 9

Equation 2.17). In this way, we approximate the distribution for the position just

before the reset with the exponential distribution (30). When the cost is averaged over

this exponential we obtain

⟨c(|x− x0|)⟩ ≃
1

V

∫ ∞

−∞
dx

α0

2
|x− x0|e−α0|x−x0| =

1

V

x0

γ
. (31)

The expected total cost for small r is then obtained by multiplying the probability of

the number of resets and the mean cost for the given number of resets

⟨C⟩lin ≃ (1− γ) · 0 + γ · 1
V

x0

γ
+O(γ)

=
x0

V
+O(γ) .

(32)

Thus as mentioned before, the non-zero contribution to the cost comes from the

rare trajectories (with probability ∼ γ) in which one reset occurs. That reset incurs a

large cost c ∼ 1/γ, resulting in a finite contribution to the mean total cost.

We can also consider the resetting rate which optimizes ⟨T ⟩, defined through (2)

as the mean total cost of resetting plus the mean first passage time

⟨T ⟩ = ⟨C⟩lin + ⟨tf⟩ , (33)

where the mean first passage time is given by [1, 3]

⟨tf⟩ =
x2
0

D

(
eγ − 1

γ2

)
. (34)

This expression for ⟨tf⟩ can be obtained from (13) by taking the derivative with respect

to s at s = 0. The first term in (33) is an increasing function of γ whereas the second

term has a unique minimum at a non-zero value of γ. Therefore the optimal resetting

rate, which minimizes (33) is lower than that in the absence of a cost. This optimal

resetting rate is the solution to the transcendental equation

2γ2 cosh(γ)− 2γ sinh(γ)

γeγ − 2eγ + 2
+

x0V

D
= 0 . (35)

A similar expression for the combined minimization of mean total cost and mean

first passage time has been obtained earlier [22].

4. Quadratic resetting cost

We turn now to the case of a quadratic cost per reset

ci =
|xi − x0|2

V
. (36)

A quadratic cost function has appeared in the context of entropy production of resetting

in the stationary state of the system without an absorbing boundary [30]. The exact



The cost of stochastic resetting 10

expression for W is provided in Appendix B (B.6). The mean total cost can be obtained

for (36), using (B.6) and (19), as

⟨C⟩quad =
2x2

0

V

(
eγ − 1

γ2

)
− x2

0

V
. (37)

Expression (37) is in excellent agreement with simulation results, see Figure 3. Apart

from a constant factor and an additive constant, expression (37) is of the form of

the mean first passage time (34). Minimizing the mean quadratic cost thus results

in the exact same transcendental equation as that of minimizing the mean first passage

time [1, 3]

γ

2
= 1− e−γ (38)

which can be solved to obtain γ∗ = 1.5936 . . ..
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Figure 3: Simulation results of mean total cost obtained for a system with quadratic

cost per reset (see Appendix C for details) compared with the analytical result obtained

from the calculations. We have fixed D = 1, x0 = 1 and V = 1.

This matching of optimal resetting rates is not a coincidence and can be explained

using a diffusive scaling argument. The mean squared displacement between resets,

ignoring the absorbing boundary, is given by the diffusive result

⟨(xi − x0)
2⟩ = 2Dti . (39)

Using this, we make the approximation

c(|xi − x0|) ≃
2D

V
ti . (40)
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Then given N resets before absorption, the mean total cost can be written as

⟨C⟩quad ≃ 2D

V

〈
N∑
i=1

ti

〉
≃ 2D

V
⟨tf⟩ , (41)

where ⟨tf⟩ is given by (34). This approximation recovers (37) up to an additive constant.

One might wonder whether the equivalence between cost and tf extends beyond the

mean. We have computed the variance of the cost, but a simple relation to the variance

of tf does not hold and so the quadratic cost distribution is different in general from

the distribution of tf .

Further, upon inspecting the small resetting limit of (37), we see that the mean

total cost diverges as

⟨C⟩quad ∼ 2

γ

(
x2
0

V

)
. (42)

This divergence can again be explained in terms of the number of resets and a scaling

argument for the mean squared displacement. The number of resets in the limit γ → 0

has a leading contribution of the order γ, while the mean squared displacement has a

leading contribution of the order 1/γ2. The product of these, which gives the mean total

quadratic cost, diverges as 1/γ. Between the linear resetting cost and quadratic resetting

cost, the behaviour of the mean total cost in the small resetting limit transitions from

a finite value to an infinite value.

5. General power resetting cost

To probe further the transition of the cost in the small resetting rate regime, we now

consider a generalization to the linear and quadratic cost by considering a general power

cost, given by

ci =
|xi − x0|β

V
. (43)

The case β = 1/2 corresponds to home returns with constant acceleration studied in [23].

The mean total cost in the case of general β can be calculated as

⟨C⟩β =
xβ
0

V

γ−β

2

{[
2 sinh(γ) + eγ − (−1)−β−1e−γ

]
Γ (β + 1) + (−1)−β−1e−γΓ (β + 1,−γ)

− eγΓ (β + 1, γ)

}
, (44)

where Γ (a, z) is the upper incomplete Gamma function given by

Γ (a, z) =

∫ ∞

z

dt ta−1e−t . (45)
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The relevant quantities for the calculation of (44) are provided in Appendix B. Recall

that γ in (44) is the dimensionless resetting rate given by (22). For positive integers

(44) can be simplified to

⟨C⟩β =


xβ
0

V
γ−β

2
β!

[
2eγ −

∑β
k=0

1
k!

(
(−γ)k + γk

)]
if β is even ,

xβ
0

V
γ−β

2
β!

[
4 sinh(γ) +

∑β
k=0

1
k!

(
(−γ)k − γk

)]
if β is odd .

(46)

It is straightforward to check that for values β = 1 and β = 2, (46) recovers the linear

and quadratic cost cases studied in sections 3 and 4. To study the small resetting rate,

we use the following series expansion for Γ (a, z)

Γ (a, z) = Γ (a)−
∞∑
k=0

(−1)kza+k

k!(a+ k)
a ̸= 0,−1,−2 . . . (47)

and obtain the cost in the limit γ → 0 from (44), which is given by

⟨C⟩β
γ→0−−→ xβ

0

V

Γ (1 + β)

γβ−1
. (48)

We can see from (48) that there is a phase transition in the mean total cost in the

γ → 0 limit. The mean total cost undergoes a transition from 0 cost for β < 1, to a

finite value at β = 1, to a divergence of the form γ1−β for β > 1. The same behaviour

can be observed in the optimal resetting rate as a function of β (See Figure 4) which is

obtained as the solution of the transcendental equation,

e2γ(β − γ)Γ (β + 1, γ)−
(
2βe2γ − γ − 2γe2γ − β + (−1)−β (β + γ)

)
Γ (β + 1)

+(−1)−β(β + γ)Γ (β + 1,−γ) = 0 . (49)

The transition can again be explained using (28) which states that a reset has

probability O(γ). The mean total cost has a finite value only when the vanishing

resetting probability is compensated exactly by the cost given by (43) which is of

O(1/γβ) which can be obtained using (30). This occurs only when β = 1. For β > 1 we

obtain a divergent contribution.

We now turn to the optimization of the mean time to completion (2), which is the

sum of the mean total cost and the mean first passage time. We recall that the mean

total cost (44) is minimized at the solution of (49) which we denote γ∗
β. The mean first

passage time, on the other hand, has a unique minimum at γf = 1.5936 . . .. Now, we

have seen that for β > 2, γ∗
β > γf . Thus d⟨T ⟩/dγ < 0 at γ = γf and d⟨T ⟩/dγ > 0

at γ = γ∗
β. Therefore, the mean time to completion (the sum of the mean total cost

and mean first passage time) must have a minimum at a value of γ, γf < γ < γ∗
β when

β > 2. Thus we deduce that a power law cost of resetting with power β > 2 implies an

increased optimal resetting rate over the case of no cost.
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from zero resetting to a finite value of resetting at β = 1. The optimal resetting rate in
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6. Exponential resetting cost

Finally, we consider an exponentially increasing cost per reset

ci =
1

V
exp

(
|xi − x0|

κ

)
, (50)

where κ is the scaling length for the cost. The motivation here is that, due to the

exponential function growing faster than any power, it models situations where the

particle being transported a long distance are heavily penalized. For example, this

could be because of physical constraints limiting the distance of transport. By defining

a dimensionless length scale

δ = κ/x0 (51)

and using the dimensionless resetting rate γ (22), the mean total cost is obtained from

(19) as

⟨C⟩exp =
γδ

V

2 sinh(γ) + γδ
(
eγ − e

1
δ

)
γ2δ2 − 1

 when γ >
1

δ
. (52)

For an exact expression of the function W for this case, see Appendix B. Expression (52)

is compared with simulation results in Figure 5. The agreement is excellent for γδ > 1

and there are some fluctuations due to finite sampling error near γδ = 1. Compared to

all the previous cases, the exponential cost is interesting as the mean total cost diverges
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for a non-zero resetting rate as shown in Figure 6. Figure 7 illustrates that the mean

total cost diverges at γδ = 1.
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Figure 5: Simulation results of mean total cost obtained for a system with exponential

cost per reset (see Appendix C for details) compared with the analytical result obtained

from the calculations. We have fixed δ = 1, D = 1, x0 = 1 and V = 1. The mean total

cost diverges as discussed in the text for γδ = 1.

In Appendix D we derive the exact large C asymptotic behaviour for the distribution

of the total cost and find

P (C) ∼ 1

V γδ
γδ sinh(γ)C−(γδ+1) . (53)

The power-law tail obtained in (53) indicates that the mean total cost is divergent for

γδ < 1 and variance is divergent for γδ < 2. We probed this power-law behaviour using

simulations (See Figure 8) which are consistent with the prediction (53).

The power-law distribution and divergence of the mean total cost for γδ < 1 can

be explained in a simple way by using the approximate probability distribution of the

position at the reset (30) (obtained by ignoring the absorbing boundary). When the

exponential cost per reset is averaged over this exponential position distribution, we

get a divergence when α0 < 1/κ (i.e. γ < 1/δ). This essentially corresponds to a

competition between the exponentially decaying tail of the steady-state distribution

and the exponentially growing contribution of the cost. The transition from finite to

infinite cost occurs at the point where the contributions from both are exactly the same

i.e. γ = 1/δ. We can also consider the distribution of the cost per reset, f(c), defined

as

f(c) = P (x)

∣∣∣∣dxdc
∣∣∣∣ . (54)
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Then using approximation (30) and

c =
1

V
exp

(
|x− x0|

κ

)
, (55)
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one finds

f(c) ≃ γδ

2V γδ
c−(γδ+1) . (56)

Thus the combination of an exponential tail of the distribution of resetting distances

and an exponential resetting cost gives rise to a power-law decay of the cost per reset

distribution with a continuously varying exponent γδ+1. The mechanism leading to this

power-law decay appears in many contexts such as trap models of glassy dynamics [44],

where the time to exit a trap scales as exp (E/(kBT )), and the trap energy E has an

exponential distribution P (E) ∼ exp
(
−E/Ē

)
. Consequently, the waiting time in a trap

has a power-law distribution. Another similar mechanism can be found in [45].

The distribution of the mean total cost (53) is consistent with C being a sum

of random variables each distributed according to (56). To understand this, we note

that C, defined in (1), is a sum of N random variables ci, where N is the number of

resets. In the large C limit the probability of the sum taking value C is dominated

by one of the random variables taking value close to C and the others taking typical

values. This phenomenon is known as condensation and the single dominant random

variable is known as the condensate [46]. Then the probability of the large C event is

given by P (C) ≃ Nf(c = C) where the factor N comes from the N possibilities for the

condensate. In the present case N , the number of resets, is itself a random variable with

geometric distribution (21). The mean of N is then given by eγ. We find eγf(c = C)

where f(c) is given by (56) indeed recovers the exact asymptotic (53) of P (C) when γ

is large so that sinh γ ≃ eγ/2.
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Figure 8: Log-log plots of the probability density function of total exponential cost

obtained from simulations. The expected slope of the data computed analytically is

plotted alongside for comparison.

Further, the optimal resetting rate for the minima of the mean total exponential
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cost can be obtained for a given value of δ as the solution to the transcendental equation

γ(γ2δ2 − 1) cosh(γ)− (γ2δ2 + 1) sinh(γ) + γδ

(
γ3δ2

2
− γ

2
− 1

)
eγ + γδe

1
δ = 0 . (57)

We plot the solution against δ in Figure 9a. We also show in Figure 9b that by varying

δ, the resetting rate which minimizes the mean time to completion may be increased or

decreased with respect to the rate which minimizes the mean first passage time, γf .
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Figure 9: Optimal reset value in the case of an exponential cost per reset (50) as a

function of δ for (a) the mean total cost (⟨C⟩exp) and (b) the mean time to completion

(T ) . For (b) the case of mean time to completion, we have chosen D = x0 = V = 1,

and we see that the optimal resetting rate can be greater than or lesser than the optimal

rate for the first passage problem (Black dashed line) depending on the value of δ.

7. Conclusions

In this work, we have studied the mean total cost of resetting for one-dimensional

diffusion using an additive cost function with various forms for the cost of an individual

reset. We have derived the Laplace transform of the joint probability distribution of the

number of resets, first passage time and total cost function, from which all moments

can be computed.

We have considered several different forms for the cost per reset: linear, power

law and exponential. When we optimize the time to completion (2) (sum of cost

plus first passage time) we find that compared to optimising only the first passage

time, the optimal resetting rate is reduced in the linear cost case, unchanged in the

quadratic cost case and increased for power-law costs with exponent greater than two.

For exponentially increasing cost per reset, the optimal resetting rate may be decreased

or increased with respect to the no cost case. What is perhaps surprising is that the
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introduction of a cost can increase the optimal resetting rate, but the explanation is that

this reduces the chance of large displacement resets. Thus the subtle interplay between

the minimization of the absorption time for a task and minimization of the cost of resets

must be borne in mind when designing resetting strategies for more general problems.

Other unexpected phenomena have emerged, namely that in the limit of zero

resetting rate, the mean total cost remains finite for a linear cost function. Moreover, for

super-linear cost functions the mean total cost is divergent in this limit. This counter-

intuitive behaviour can be understood as the effect of resetting events with vanishing

probability making divergent contributions to the total cost.

In addition, we have seen that for an exponential cost function, the mean total cost

diverges at a non-zero value of resetting. This results from an exponentially decreasing

tail of the reset displacement competing with an exponentially increasing cost per reset.

This interplay results in a power-law distribution for the cost per reset. The presence

of a power-law distribution suggests that rare events dominate the cost in this regime

and it would be interesting to explore this effect in more detail.

In this study, we have limited ourselves to one spatial dimension. However, it is

relevant to consider higher dimensions as well. In particular, two dimensions may be

relevant to experimental realizations of resetting. The relevant expressions (3) and (4)

generalize in higher dimensions to

F (N, tf , C|x0) =

∫ tf

0

dt1re
−rt1

∫ ∞

0

ddx1G0(x1, t1|x0) (58)

× F (N − 1, tf − t1, C − c1|x0)Θ(C − c1) ,

with

F (0, tf , C|x0) = e−rtfF0(tf |x0)δ(C − 0) . (59)

However for a diffusive process with an absorbing target in dimensions d ≥ 2, one has

to modify the target to have a finite radius a. Relevant details can be found in [7].

Another simple extension would be to calculate the long-time cost to maintain

a nonequilibrium steady state, Pss(x), that is induced by resetting. This involves an

average cost per unit time ⟨C⟩ss, which in the case of a Poissonian resetting process

would simply be

⟨C⟩ss = r

∫ ∞

−∞
dx c(|x− x0|)Pss(x) . (60)

This equation expresses ⟨C⟩ss as the average cost per reset in the steady state times

the resetting rate. As the stationary state for diffusion under Poissonian resetting is

given by an exponential Pss(x) = (α0/2)e
−α0|x−x0|, we obtain

⟨C⟩ss = rα0Lα0{c} , (61)

where Lα0 denotes Laplace transform with Laplace variable α0. As in section 6, there

is a divergence in the case of an exponential cost per reset when r is sufficiently small.
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It would also be of interest to extend the considerations of the cost of resetting

to other propagators than that of diffusion with an absorbing boundary. For example,

anomalous diffusion processes where distance travelled and time scale as

⟨(x− x0)
2⟩ ∼ tµ , (62)

where µ may take values different from unity, have been studied under resetting in

[39,48,49] and it should be possible to extend calculations to the cost of resetting.
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Appendix A. Laplace transform of renewal equation

We start from the definition of the renewal equation (3) and perform a double Laplace

transform with respect to tf and C. The variable conjugate to tf is s and the variable

conjugate to C is p. We then get

F̃ (N, s, p|x0) =

∫ ∞

0

dtf e
−stf

∫ ∞

0

dC e−pC

∫ tf

0

dt1 re
−rt1

∫ ∞

0

dx1G0(x1, t1|x0)

× F (N − 1, tf − t1, C − c1|x0)Θ(C − c1) (A.1)

= r

∫ ∞

0

dC e−pC

∫ ∞

0

dx1

∫ ∞

0

dtf e
−stf

∫ tf

0

dt1e
−rt1G0(x1, t1|x0)

× F (N − 1, tf − t1, C − c1|x0)Θ(C − c1) , (A.2)

where

c1 = c(|x0 − x1|) . (A.3)

The last two integrals in (A.2) constitute the Laplace transform of a convolution integral,

which can be simplified using the convolution theorem for Laplace transforms as∫ ∞

0

dtf e
−stf

∫ tf

0

dt1 e
−rt1G0(x1, t1|x0)F (N − 1, tf − t1, C − c1|x0)

=

[∫ ∞

0

dt1 e
−(r+s)t1G0(x1, t1|x0)

] [∫ ∞

0

dt2 e
−st2F (N − 1, t2, C − c1|x0)

]
= G̃0(x1, r + s|x0)F̂ (N − 1, s, C − c1|x0) . (A.4)
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F̂ (N − 1, s, C − c1|x0) in (A.4) represents the single Laplace transform with respect to

time. Collecting the remaining terms and making a change in variable C ′ = C−c1 gives

F̃ (N, s, p|x0) = r

∫ ∞

0

dx1

∫ ∞

−c1

dC ′ e−p(C′+c1)G̃0(x1, r + s|x0)

× F̂ (N − 1, s, C ′|x0)Θ(C ′) (A.5)

= r

[∫ ∞

0

dx1 e
−pc1G̃0(x1, r + s|x0)

]
×

[∫ ∞

−c1

dC ′ e−pC′
F̂ (N − 1, s, C ′|x0)Θ(C ′)

]
(A.6)

= rW (r + s, p|x0)

[∫ ∞

0

dC ′ e−pC′
F̂ (N − 1, s, C ′|x0)

]
(A.7)

= rW (r + s, p|x0)F̃ (N − 1, s, p|x0) , (A.8)

where we have used (7) to rewrite the integral over x1 as W (r + s, p|x0).

Appendix B. Exact expressions for W (r, p|x0)

The expression for W (r, p|x0) is evaluated by substituting (17) in (7),

W (r, p|x0) =

∫ ∞

0

dx e−pc(|x−x0|) 1

2Dα0

(
e−α0|x−x0| − e−α0|x+x0|

)
, (B.1)

where α0 =
√

r/D, and carrying out the integral wherever possible. In order to obtain

W (r + s, p|x0) one simply replaces α0 with α =
√

(r + s)/D in (B.1) and subsequent

expressions.

In cases, where the calculation of W (r, p|x0) is difficult, we can still obtain the

derivatives of W (r, p|x0) with respect to p easily by switching the order of integration

and differentiation in (7).

Appendix B.1. Linear Cost

In the case of linear cost per reset (23)

c(|x− x0|) =
|x− x0|

V
, (B.2)

we obtain

W (r, p|x0) =
1

2Dα0

(
2

α0 + p̂
+

2p̂

α2
0 − p̂2

e−2α0x0 − 2α0

α2
0 − p̂2

e−(α0+p̂)x0

)
, (B.3)
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where p̂ = p/V , and

∂

∂p
W (r, p|x0)

∣∣∣∣
p→0+

= − 1

V

1

2Dα0

[∫ ∞

0

dx |x− x0| e−α0|x−x0| −
∫ ∞

0

dx |x− x0| e−α0|x+x0|
]

=
1

V

1

D

e−α0x0

α3
0

(α0x0 − 2 sinh(α0x0))

=
x3
0

V D

e−γ

γ3
(γ − 2 sinh(γ)) . (B.4)

Appendix B.2. Quadratic Cost

In the case of quadratic cost per reset (36)

c(|x− x0|) =
|x− x0|2

V
, (B.5)

we obtain

W (r, p|x0) =
1

4Dα0

√
π

p̂
e

α2
0

4p̂

[
erf

(√
p̂x0 +

α0

2
√
p̂

)
− 2 erf

(
α0

2
√
p̂

)

−e−2α0x0 erf

(√
p̂x0 −

α0

2
√
p̂

)
+ 2e−α0x0 sinh (α0x0)

]
, (B.6)

∂

∂p
W (r, p|x0)

∣∣∣∣
p→0+

= − 1

V

1

2Dα0

[∫ ∞

0

dx(x− x0)
2e−α0|x−x0| −

∫ ∞

0

dx(x− x0)
2e−α0|x+x0|

]
=

1

V

1

D

e−α0x0

α4
0

(
−2e−α0x0 + α2

0x
2
0 + 2

)
=

x4
0

V D

e−γ

γ4

(
−2e−γ + γ2 + 2

)
, (B.7)

where p̂ = p/V and α0 =
√

r/D. We have used the usual definition of the error function

given by

erf(x) =
2√
π

∫ x

0

e−t2 dt . (B.8)

Appendix B.3. General power cost

In the case of a power-law cost per reset (43),

c(|x− x0|) =
|x− x0|β

V
, (B.9)

a closed-form computation of W (r, p|x0) is not possible for general β. However, the

derivative with respect to p in the limit p → 0+ can always be obtained. We then get
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the expression

∂

∂p
W (r, p|x0)

∣∣∣∣
p→0+

= − 1

V

1

2Dα0

[∫ ∞

0

dx |x− x0|β e−α0|x−x0| −
∫ ∞

0

dx |x− x0|β e−α0|x+x0|
]

=
1

V

α−β−2
0 e−α0x0

2D

{[
− 2 sinh (α0x0)Γ (β + 1)− eα0x0 + (−1)−β−1 e−α0x0

]
Γ (β + 1) + (−1)−β−1 e−α0x0Γ (β + 1,−α0x0)− eα0x0Γ (β + 1, α0x0)

}

=
xβ+2
0

V D

e−γ

2γβ+2

{[
− 2 sinh (γ)Γ (β + 1)− eγ + (−1)−β−1 e−γ

]
Γ (β + 1)

− (−1)−β−1 e−γΓ (β + 1,−γ) + eγΓ (β + 1, γ)

}
. (B.10)

Appendix B.4. Exponential cost

In the case of an exponential cost per reset (50),

c(|x− x0|) =
1

V
exp

(
|x− x0|

κ

)
, (B.11)

we obtain

W (r + s, p|x0) =
x2
0

D

δ

2γ

{
p̂γδ

[
2Γ (−γδ, p̂)− Γ (−γδ, p̂e

1
δ )− e−2γΓ (−γδ, p̂)

]
− p̂−γδe−2γ

[
Γ (γδ, p̂)− Γ (γδ, p̂e

1
δ )
]}

,

(B.12)

∂

∂p
W (r, p|x0)

∣∣∣∣
p→0+

= − 1

V

1

2Dα0

[∫ ∞

0

dx e
|x−x0|

κ e−α0|x−x0| −
∫ ∞

0

dx e
|x−x0|

κ e−α0|x+x0|
]

=
x2
0

V D

δ

γ
e−γ

−2 sinh(γ)− γδ
(
eγ − e

1
δ

)
γ2δ2 − 1

 when γ >
1

δ
,

(B.13)

where p̂ = p/V and δ = κ/x0.

Appendix C. Simulation algorithm

To circumvent the issue of time-expensive computation of the trajectories, we use

an algorithm that employs inverse transform sampling. This technique requires the

cumulative distribution function of the reset position, which can be computed from the

propagator of a diffusive system with an absorbing boundary. The schematic algorithm

for the simulation of cost is given as follows:
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• Choose the time τ where the next reset happens from the exponential distribution

with mean 1/r.

• Terminate with probability

PA(τ) = 1−
∫ ∞

0

dxP (x, tA > τ) , (C.1)

where P (x, tA > τ) is the propagator given by

P (x, tA > τ) =
1√
4πDt

[
exp

(
−(x− x0)

2

4Dt

)
− exp

(
−(x+ x0)

2

4Dt

)]
. (C.2)

• Sample the position x where the next reset happens from the distribution

R(x; τ) =
P (x, tA > τ)

1− PA(τ)
, (C.3)

where PA(τ) is the probability that the particle has been absorbed at time τ .

Sampling from this distribution is accomplished by using the inversion method for

which we need the cumulative distribution

P (x > X, tA > τ) =

∫ ∞

X

dxP (x, tA > τ) =
1

2

[
erfc

(
X − x0√

4Dτ

)
− erfc

(
X + x0√

4Dτ

)]
,

(C.4)

and the absorption probability

PA(τ) = 1− P (x > 0, tA > τ) = erfc

(
x0√
4Dτ

)
. (C.5)

To summarize, we implement the above scheme with the following algorithm:

• Choose the time τ until the next reset from the exponential distribution with mean

1/r.

• Choose a uniform random variable u ∈ [0, 1).

• Terminate if

u ≥ erf

(
x0√
4Dτ

)
. (C.6)

• Solve the equation

1

2

[
erfc

(
X − x0√

4Dτ

)
− erfc

(
X + x0√

4Dτ

)]
= erf

(
x0√
4Dτ

)
− u (C.7)

for X which is the next reset position. This is solved using a numerical root-finding

algorithm.

• Find the cost, for the function of choice for the given reset.

• Repeat till the process terminates.

We performed the above steps for 10,000 runs, calculated the total cost for each

trajectory till absorption and averaged the total cost over the total number of runs

to generate the plots for the mean total cost of resetting (See Figures 2,3 and 5).
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Appendix D. Power law tail of exponential cost distribution

Here we consider an exponential distribution for the cost per reset and determine

the large C behaviour of the distribution of the total cost. To obtain the large cost

behaviour, we Laplace invert (14) which is the moment generating function for the cost

or the Laplace transform of the cost distribution function for small arguments p. The

branch cut at the origin due to the incomplete gamma function from (B.12) implies a

power-law decay rather than an exponential decay for the large cost behaviour of the

distribution of the cost. We will consider here the case of non-integer γδ. For integer

γδ we expect logarithmic corrections.

We perform small p̂ expansion (B.12) using (47), retain leading non-integer terms

p̂γδ and ignore integer order terms O(p),O(p2) etc to obtain

rW (r, p|x0) ≃ (1− e−γ) +
γδ

2

(
1− e−2γ

)
Γ (−γδ)p̂γδ , (D.1)

where p̂ = p/V . Expanding (14) we obtain

⟨e−pC⟩ = F̃0(r|x0)

1− rW (r, p|x0)
(D.2)

≃ 1 + γδ sinh(γ)Γ (−γδ)p̂γδ , (D.3)

where we have used F̃0(r|x0) = e−γ, and again we have ignored integer order terms.

Formally inverting using the Laplace transform

Lp{Cq} =
Γ (q + 1)

pq+1
, (D.4)

we get the power law tail behaviour as C → ∞ for the total exponential cost function

P (C) ∼ 1

V γδ
γδ sinh(γ)C−(γδ+1) . (D.5)
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