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A B S T R A C T

We present a novel method, called Dispersion Entropy for Graph Signals, DEG, as a powerful tool for analysing
the irregularity of signals defined on graphs. DEG generalizes the classical dispersion entropy concept for
univariate time series, enabling its application in diverse domains such as image processing, time series
analysis, and network analysis. Furthermore, DEG establishes a theoretical framework that provides insights
into the irregularities observed in graph centrality measures and in the spectra of operators acting on graphs.
We demonstrate the effectiveness of DEG in detecting changes in the dynamics of signals defined on both
synthetic and real-world graphs, by defining a mix process on random geometric graphs or those exhibiting
small-world properties. Our results indicate that DEG effectively captures the irregularity of graph signals
across various network configurations, successfully differentiating between distinct levels of randomness and
connectivity. Consequently, DEG provides a comprehensive framework for entropy analysis of various data
types, enabling new applications of dispersion entropy not previously feasible, and uncovering nonlinear
relationships between graph signals and their graph topology.
1. Introduction

The field of data analysis has significantly benefited from the evo-
lution of entropy-based measures [1], vital tools for assessing irregu-
larities and nonlinear behaviours in data [2,3]. These measures have a
broad spectrum of applications, spanning across various fields such as
finance [4,5], biology [6,7], industrial process [8,9] and even conflicts
and international events [10] to name a few. Among these entropy-
based measures, Dispersion Entropy (DE) has carved a unique space
for itself due to its distinct properties and effectiveness [11] .

Serving as a robust algorithm, DE is specifically designed to capture
intricate dynamics within one-dimensional time series data. Its standout
characteristic is the dual consideration of both the order and amplitude
of data points, offering a comprehensive perspective on the system’s
dynamics [11,12].

DE boasts several distinct advantages. It is capable of identifying
changes in noise bandwidth as well as concurrent shifts in frequency
and amplitude, making it a highly adaptable tool for signal analy-
sis [11]. Its superior performance has been demonstrated in appli-
cations on real-valued signals, where it outperforms other entropy
measures in distinguishing different groups within datasets [13]. Fur-
thermore, it exhibits high computational efficiency, necessitating sig-
nificantly less computation time compared to several other entropic
measures [14]. This property makes it especially suited for processing
large or complex datasets.

∗ Corresponding author.
E-mail address: John.Fabila@ed.ac.uk (J.S. Fabila-Carrasco).

Owing to its versatility and efficiency, DE has been employed
in various domains. These include EEG analysis [13], diagnosis and
monitoring of rotary machines [9], and fault detection in rolling bear-
ings [15]. With the increasing complexity and volume of data, the
utility of DE continues to grow, making it a tool of choice in diverse
applications.

The ongoing expansion of complex data recorded in a distributed
way over networks, including transportation systems [16], social and
web networks [17], has led to growing interest in broadening the scope
of entropy metrics beyond univariate time series to encompass more
general domains. There have been recent advancements in extending
entropy measures to analyse images (2D data) [18] and irregular
domains such as graphs [19]. Despite the improvements made in DE
for 1D and 2D data [12,20], a void remains in its application for data
defined on graphs. Bridging this gap would allow us to analyse the
nonlinear behaviour of real-world systems with graph-based structures,
where the conventional DE was not previously applicable. This would
provide a powerful framework for data analysis across a broad range
of applications in the field of Graph Signal Processing (GSP) [16].

Smoothness is a fundamental property extensively studied in GSP
[16,21,22], typically through the use of the combinatorial Laplacian’s
quadratic form. Intuitively, a graph signal is considered smooth if con-
nected vertices exhibit similar values [21]. Nonetheless, this definition
may not fully capture the complex dynamics of graph signals due to its
vailable online 15 September 2023
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relationship with the spectrum [23]. To address this limitation, here
we propose a novel method, enabled by our new method DEG to assess
rregularity in graph signals, which effectively captures the irregularity
f graph signals, providing critical insights into the underlying graph
tructure and data.

To evaluate our method’s performance, we employ synthetic and
eal-world graphs, including random geometric graphs (used to model
ireless sensor networks [24]) and small-world networks (observed
idely in biological systems [25], social networks [26], and complex

ystems [27]). In our analysis, we generalize the mix process – a
tochastic process combining a sinusoidal signal with random dynamics
ontrolled by the parameter 𝑝 ∈ [0, 1] – to the setting of graph signals.
his process has been employed to assess the performance of various
ntropy metrics in time series [14,28] and images [29]. Moreover,
e analyse centrality measures, which assign ranking values to the
raph’s vertices based on their position or importance within the graph.
entrality measures play a crucial role in social network analysis for
valuating the importance of vertices in communication [30,31].

ontribution

In this paper, we propose a method for defining Dispersion Entropy
or Graph Signals, denoted as DEG. Our approach generalizes the classi-
al univariate definition of DE by incorporating topological information
hrough the adjacency matrix. We demonstrate the effectiveness of DEG
n synthetic and real-world datasets, and characterize the relationship
etween graph topology and signal dynamics. Our results indicate
hat DEG is a promising technique for analysing graph data, holding
otential for numerous applications in fields such as biomedicine and
ocial sciences.

. Background and notation

This section aims to provide the foundational background and set
he notations that are used throughout the remainder of this study. We
lso present a brief overview of the classical Dispersion Entropy method
or univariate time series.

.1. Notation

Let 𝐺 = ( ,  ,𝐀) denote a simple undirected graph, where  denotes
finite set of vertices  = {𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑁}, such that no isolated

ertices exist. The edge set  ⊂ {(𝑣𝑖, 𝑣𝑗 ) | 𝑣𝑖, 𝑣𝑗 ∈ } contains no
ultiple edges or self-loops. The adjacency matrix 𝐀 is a symmetric
× 𝑁 matrix that reflects the topology of the graph, such that 𝐀𝑖𝑗 =

𝐀𝑗𝑖 = 1 if an edge exists between (𝑣𝑖, 𝑣𝑗 ), i.e., if (𝑣𝑖, 𝑣𝑗 ) ∈  and
𝐀𝑖𝑗 = 𝐀𝑗𝑖 = 0 otherwise.

The degree matrix 𝐃 is a diagonal matrix where each diagonal entry
𝐃𝑖𝑖 is the degree of the vertex 𝑣𝑖. The combinatorial Laplacian matrix
of the graph, 𝛥, is defined by 𝛥 = 𝐃−𝐀 and the normalized Laplacian,
𝐋, is defined as 𝐋 = 𝐃−1∕2𝛥𝐃−1∕2. These matrices serve as key tools in
the spectral analysis of graphs [32,33].

In the context of this study, a graph signal is a real mapping 𝐗 ∶
 → R. For computational purposes, it is convenient to represent the
graph signal 𝐗 as an 𝑁-dimensional column vector in R𝑁×1, written as
𝐗 =

[

𝑥1, 𝑥2,… , 𝑥𝑁
]𝑇 , where the indexing corresponds to the vertices.

2.2. Example

Consider the graph 𝐺 shown in the left panel of Fig. 1, composed
of vertices

 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} ;

and edges  as indicated by the connecting lines.
The graph signal 𝐗 ∶  → R maps each vertex 𝑣𝑖 ∈  to a real

[ ]𝑇
2

number 𝑥𝑖 ∈ R, resulting in 𝐗 = 𝑥1, 𝑥2,… , 𝑥8 , an 8 × 1 column
vector. The signal values are visualized using red lines for positive
values and blue lines for negative values as shown in Fig. 1.

In the middle panel of Fig. 1, we present the adjacency matrix 𝐀 of
the graph 𝐺. This symmetric matrix, with dimensions 𝑁 × 𝑁 (in this
ase, 8 × 8), has entries 𝐀𝑖𝑗 = 𝐀𝑗𝑖 that are set to 1 if an edge exists
etween 𝑣𝑖 and 𝑣𝑗 , and 0 otherwise

.3. The classical dispersion entropy for time series

Dispersion Entropy (DE) is an important tool used for analysing
ime series data [13]. The wide array of applications and the robustness
f the DE method make it an essential technique for time series data
nalysis. More importantly, it has proven to be an effective tool for
andling nonlinear and non-stationary data, which are common in real-
orld applications. We provide a concise step-wise explanation of the
E method here, with a detailed mathematical derivation available in

he Appendix A:

1. The samples of the signal are discretized into different classes
according to the signal values, resulting in a classified signal.

2. The classified signal is scanned looking for patterns, composed
of a series of samples given an embedding dimension and delay
time. Each pattern corresponds to a unique dispersion pattern.

3. The occurrence frequency of each potential dispersion pattern is
calculated, indicating the dominance of certain patterns in the
time series.

4. The DE is computed based on these frequencies using the con-
cept of Shannon entropy, hence offering a measure of the com-
plexity or irregularity in the time series.

. Dispersion Entropy for Graph Signals (𝐃𝐄𝐆)

The Dispersion Entropy for Graph Signals (DEG) extends the clas-
ical method to graph signals, adapting the entropy calculation to
he underlying graph structure, providing unique insights into the
omplexity and interconnectedness of graph-based data.

.1. The algorithm

Let 𝐗 be a graph signal defined on 𝐺, 2 ≤ 𝑚 ∈ N be the embedding
imension, 𝑙 ∈ N be the delay time and 𝑐 ∈ N be the class number. The
EG is defined as follows:

1. The embedding matrix 𝐘 ∈ R𝑁×𝑚 is given by 𝐘 = [𝐲0, 𝐲1,… , 𝐲𝑚−1],
defined by

𝐲𝑘 = 𝐷𝑘𝑙𝐀𝑘𝑙𝐗 ∈ R𝑁×1 , 𝑘 = 0, 1,… , 𝑚 − 1 , (1)

where 𝐷𝑘𝑙 is the diagonal matrix 𝐷𝑘𝑙
𝑖𝑖 = 1∕

∑𝑁
𝑗=1(𝐀

𝑘𝑙)𝑖𝑗 .
2. Map function. Each entry of the embedding matrix 𝐘 is mapped

to an integer number from 1 to 𝑐, called a class. The function
𝐹 ∶R → N𝑐 where N𝑐 = {1, 2,… , 𝑐} is applied element-wise on
the matrix 𝐘, i.e. 𝐹 (𝐘) ∈ N𝑁×𝑚

𝑐 where 𝐹 (𝐘)𝑖𝑗 = 𝐹 (𝑦𝑖𝑗 ).
3. Dispersion patterns. Each vertex of the graph is assigned an
embedding vector and mapped to a unique dispersion pattern.
Formally, the embedding vectors consist of 𝑚 integer numbers
(ranged from 1 to 𝑐) corresponding to each row of the matrix
𝐹 (𝐘), i.e., row𝑖(𝐹 (𝐘)) =

(

𝐹 (𝑦𝑖𝑗 )
)𝑚
𝑗=1 for 𝑖 = 1, 2,… , 𝑁 . The set of

dispersion patterns is 𝛱 = {𝜋𝑢1𝑢2…𝑢𝑚 | 𝑢𝑖 ∈ N𝑐 }. Each embedding
vector (one for each vertex of the graph) is uniquely mapped
to a dispersion pattern, i.e., 𝑣𝑖 → row𝑖(𝐹 (𝐘)) → 𝜋𝑢1𝑢2…𝑢𝑚 where
𝑢1 = 𝐹 (𝑦𝑖1), 𝑢2 = 𝐹 (𝑦𝑖2),… , 𝑢𝑚 = 𝐹 (𝑦𝑖𝑚).

4. Relative frequencies. For each dispersion pattern 𝜋 ∈ 𝛱 , its
relative frequency is obtained as:

𝑝 (𝜋) =
|

{

𝑣𝑖 ∣ 𝑣𝑖 ∈  and 𝑣𝑖 has type 𝜋
}

|

𝑁
, (2)

where || represents cardinality.
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Fig. 1. Representation of a simple undirected graph, its adjacency matrix, and associated graph signal. Left: A simple undirected graph 𝐺, with vertices 𝑣𝑖 linked by edges. The
graph signal 𝐗 is shown by vertical lines, each representing the value of the function 𝐗 at the corresponding vertex. Centre: Adjacency matrix 𝐀, an 𝑁 × 𝑁 symmetric matrix
showcasing the connectivity between vertices. Right: Vectorized form of the graph signal 𝐗, translating the function 𝐗 ∶  → R into an 𝑁-dimensional vector.
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5. The Dispersion Entropy for Graph Signals DEG is computed as
the normalized Shannon’s entropy for the distinct dispersion
patterns as follows:

DEG(𝐗, 𝑚, 𝑙, 𝑐) = − 1
ln(𝑐𝑚)

∑

𝜋∈𝛱
𝑝(𝜋) ln 𝑝(𝜋) . (3)

.2. Properties

The DEG algorithm offers several unique features and properties.
The embedding matrix 𝐘 ∈ R𝑁×𝑚 is a critical component encap-

ulating the intricate topological relationships between the graph and
ignal. Typically, an embedding dimension is chosen within the range
≤ 𝑚 ≤ 7, with the delay time often set to 𝑙 = 1, as suggested in [2].

Eq. (1) plays a pivotal role in the algorithm, not only because it
ntertwines the graph’s topology and the signal’s values, but also due to
he fact that its simple and efficient implementation belies its profound
eometric implications.

Each column vector 𝐲𝑘 is calculated by averaging the signal values
of the neighbouring vertices. The first column of the matrix 𝐘 corre-
sponds to the original graph signal, i.e., 𝐲0 = 𝐗. For 𝑘 = 1, the Eq. (1)
simplifies to 𝐲1 = 𝐷𝐀𝐗, where 𝐷𝑖𝑖 = 1∕

∑𝑁
𝑗=1(𝐀)𝑖𝑗 = 𝑑𝑒𝑔(𝑣𝑖), and 𝑑𝑒𝑔(𝑣𝑖)

denotes the number of edges connected to the vertex 𝑣𝑖. This results in:

(𝐷𝐀𝐗)𝑖 =
1

𝑑𝑒𝑔(𝑣𝑖)
∑

(𝑣𝑖 ,𝑣𝑗 )∈𝐄
𝐗𝑗 , 𝑖 = 1, 2,… , 𝑁 .

his demonstrates that the second column associated with the vertex
𝑖 is the average of the graph signal’s values of the vertices connected
o 𝑣𝑖. Consequently, the second column is related to the normalized
aplacian 𝐿, more specifically, 𝐲1 = 𝐗 − 𝐿𝐗.

In a more general context, for 𝐲𝑘 = 𝐷𝑘𝑙𝐀𝑘𝑙𝐗, a similar interpretation
applies. The exponent of the adjacency matrix 𝐀𝑘𝑙 indicates the number
of 𝑘𝑙-walks between two vertices. That is, the element (𝐀𝑘𝑙)𝑖𝑗 equals
|𝑊𝑘𝑙(𝑣𝑖, 𝑣𝑗 )|, where

𝑊𝑘𝑙(𝑣𝑖, 𝑣𝑗 ) =
{

Walks of length 𝑘𝑙 from vertex 𝑣𝑖 to vertex 𝑣𝑗
}

.

Hence, we have:

(𝐷𝑘𝑙𝐀𝑘𝑙𝐗)𝑖 =
∑𝑁

𝑗=1|𝑊𝑘𝑙(𝑣𝑖, 𝑣𝑗 )|𝐗𝑗
∑𝑁

𝑗=1|𝑊𝑘𝑙(𝑣𝑖, 𝑣𝑗 )|
, 𝑖 = 1, 2,… , 𝑁 .

Here, the numerator is the weighted signal with respect to the number
of walks between the vertices, and the denominator serves as a nor-
malization factor. This factor ensures that computations are properly
balanced and scaled, which is crucial for accurate graph-signal analysis.

Map functions. To address limitations in assigning the signal 𝐗 to
only a limited number of classes, various map functions 𝐹 ∶R → N𝑐
have been proposed [11]. The Normal Cumulative Distribution Func-
tion (NCDF) is commonly utilized [34]. The map 𝐺∶ (0, 1) → N𝑐 is de-
fined as 𝐺(𝑥) = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑥+0.5), where rounding increases or decreases a
3

number to the nearest integer. The map NCDF∶R → (0, 1) is defined as:

NCDF(𝑥) = 1

𝜎
√

2𝜋 ∫

𝑥

−∞
𝑒
−(𝑡−𝜇)2

2𝜎2 d𝑡 , (4)

where 𝜇 and 𝜎 represent the mean and standard deviation of 𝐗,
respectively. Thus, 𝐹 = 𝐺◦NCDF∶R → N𝑐 is the map function used
in our implementation of the DEG algorithm.

Dispersion patterns. The number of possible dispersion patterns that
can be assigned to each embedding vector is 𝑐𝑚. Moreover, the number
of embedding vectors constructed in the DEG algorithm is 𝑁 , one
for each vertex. In contrast, classical DE has a number of embedding
ectors dependent on the parameters 𝑚 and 𝑙, specifically, 𝑛− (𝑚− 1)𝑙.

The normalized Shannon’s entropy provides a measure of irregularity
that can be used to compare signals defined on different graphs. The
value of this normalized entropy ranges from 0 (regular behaviour)
o 1 (irregular behaviour). It is noteworthy to clarify that the usual
hannon’s entropy given by −

∑

𝜋∈𝛱 𝑝(𝜋) ln 𝑝(𝜋) takes values between
to ln(𝑐𝑚), where 𝑐𝑚 represents the number of potential dispersion

patterns. Therefore, by normalizing the Shannon’s entropy with ln(𝑐𝑚),
e ensure that the entropy values are scaled to fall in the interval [0, 1].

Table 1 summarizes the main parameters of the DEG algorithm,
roviding a clear overview of their role in the computation process and
he typical values used.

.3. Example

We exemplify the utilization of DEG with the graph signal 𝐗 and
raph 𝐺 introduced in Section 2.2 (also illustrated in Fig. 1). We
stablish the class number 𝑐 = 3, the embedding dimension 𝑚 = 2, and
he delay time 𝑙 = 1, and undertake the following sequence of steps:
Step 1: We initially compute the embedding matrix 𝐘 ∈ R8×2, as

efined in Eq. (1). The resultant matrix is shown in Fig. 2(a).
Step 2: We apply the map function 𝐹 to each entry of the normalized

atrix, using the Normal Cumulative Distribution Function (NCDF) as
ormulated in Eq. (4), where 𝜇(𝐗) = 0.11 and 𝜎(𝐗) = 0.44. The map
unction 𝐹 transforms the entries into an integer range from 1 to 𝑐 = 3,
esulting in the matrix illustrated in Fig. 2(b).
Step 3: Subsequently, we map each row of 𝐹 (𝐘) to a distinctive

ispersion pattern. Given the parameters 𝑐 and 𝑚, there are 𝑐𝑚 = 32 = 9
ossible dispersion patterns. These patterns are presented in Fig. 2(c).
Step 4: We compute the relative frequencies of each dispersion

attern, utilizing Eq. (2), and display the results in Fig. 2(d).
Step 5: In the final step, we compute DEG using Eq. (3), which yields

he following outcome:

EG(𝐗, 𝑚, 𝑙, 𝑐) = − 1
ln(9)

∑

𝜋∈𝛱
𝑝(𝜋) ln 𝑝(𝜋) = 0.4434 .

The DEG value encapsulates the regularity of the signal propagated
across the graph. As is apparent, the graph is primarily dichotomous:
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Table 1
Summary of parameters used in DEG algorithm.
Category Symbol Description Typical values

or expression
Reference

Notation
𝐺 Simple and finite graph 𝐺 = ( ,  ,𝐀) [16,22,23]
 Set of vertices 𝑁 [16,22,23]
 Set of edges Undirected [16,22,23]

Input of DEG
𝐀 Adjacency matrix 𝑁 ×𝑁 matrix [16,22,23]
𝐗 Graph signal defined on 𝐺 𝑁 × 1 column vector [16,22,23]

Parameters of DEG

𝑚 Embedding dimension 3 ≤ 𝑚 ≤ 7 [2]
𝑙 Delay time 𝑙 = 1 [2]
𝑐 Class number 𝑐𝑚 ≪ 𝑁 [11]

Algorithm steps 𝑌 Embedding matrix 𝑁 × 𝑚 matrix Section 3.1
𝐹 ∶R → N𝑐 Map function NCDF [11]

Algorithm Output DEG(𝐗, 𝑚, 𝑙, 𝑐) Computed DEG value 0 ≤ DEG ≤ 1 Section 3.1

MIX Process
𝑑 Dimension 𝑑 = 1, 2 [7,29,35]
𝑎 Noise amplitude 𝑎 = 3 [7,29,35]
𝑓 Frequency 1

12
≤ 𝑓 ≤ 5 Hz [7,29,35]
Fig. 2. Illustration of the step involved in the DEG algorithm.
Fig. 3. All graphs have the same set of vertices, then we can consider the same graph signal on each 𝐗, but the underlying graph is different.
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the first group consists of vertices with positive values (𝑣1, 𝑣2, 𝑣3, 𝑣4),
all of which are interconnected; the second group contains vertices
with negative values (𝑣5, 𝑣6, 𝑣7, 𝑣8), which also exhibit interconnections.

he only cross-group connection exists between 𝑣4 and 𝑣5, thereby
introducing irregularity into the signal.

Changes on the underlying graph that increases the irregularity of the
signal. Significantly, the removal of this intergroup edge (between 𝑣4
nd 𝑣5) leads to a more regular signal, as reflected by a decreased en-
ropy value (see Fig. 3a). Conversely, introducing more edges between
he two groups intensifies the signal’s irregularity and correspond-
ngly elevates the entropy values, as illustrated in Fig. 3c-e. This
attern elucidates that introducing edges between vertices from dif-
ering classes (thus different values) engenders more irregular signals.
ven if the signal remains unchanged, the underlying topology varies,
shift accurately captured by the DEG algorithm.
Changes on the underlying that preserves the irregularity of the signal.

n the other hand, if we augment the graph with additional edges that
oin vertices within the same class, the signal irregularity remains sim-
lar, as detected by the DEG algorithm, producing similar or identical
ntropy values. In Fig. 4a-e, we display several underlying graphs with
dentical graph signals, all yielding the same entropy values, further
4

xemplifying this point. s
Same graph but different signals. It is observed that the algorithm
EG is capable of discerning the dynamics of diverse graph signals

hat are embedded within the same graph structure. Let us consider
he graph signal defined in Fig. 1 as our first example. The entropy
omputed by DEG for this configuration is 0.4434. When we alter
he signal on vertex 𝑣3 from 𝐗3 = −0.6 to 𝐗3 = 0.6 (as shown in
ig. 5a), the entropy rises due to increased irregularity in the signal.
urthermore, the level of irregularity is even more pronounced if we
odify the value on vertex 𝑣2 from 𝐗2 = −1.3 to 𝐗2 = 1.3 (refer to

ig. 5c). The reason being, the magnitude of irregularity has grown
ubstantially. This effect is further magnified if we elevate the vertex
ith the lowest signal value, 𝑣1, to a higher value (changing from
1 = −1.5 to 𝐗1 = 1.5, as depicted in Fig. 5d). A sharp increase in
ntropy is also observed when we change the signal values on two
ertices as demonstrated in Fig. 5e. This underscores the sensitivity
f the entropy measure to variations in graph signals. Lastly, Fig. 5b
hows the resultant entropy value when we alter a single signal value
elonging to the red group (positive values). In this case, 𝑣6 is modified
rom 𝐗6 = 0.5 to 𝐗6 = −0.5. The ability of DEG to distinguish
hese modifications and appropriately quantify the increase in entropy
ighlights its effectiveness in tracking changes in the dynamics of graph

ignals, even within the same underlying graph structure.
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Fig. 4. All graphs have the same set of vertices, then we can consider the same graph signal on each 𝐗, but the underlying graph is different, however the dynamical is similar
n all of them (two separated groups, red and blue, joined by one and only one edge.).
Fig. 5. To assess the dynamics of similar graph signals with respect to the underlying graph topology, we maintained the same underlying graph as depicted in Fig. 1 for all
cenarios. We also considered the same signal as that in Fig. 1, which has an entropy DEG = 0.4434, with the only difference being that we altered the sign of some vertices. This
xercise allows us to examine the behaviour of similar signals on the same graph. The original graph signal is illustrated in grey.
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.4. Dispersion entropy for directed graphs

The algorithm DEG provides a tool for analysing undirected graph
ignals, and can be extended to directed graphs with minor modifications
see Appendix B). Additionally, the algorithm can be applied to any
raph signal, but for time series, it produces the same values as the
lassical DE [11]. This is established in Proposition 1

roposition 1 (Equivalence of DE and DEG for Time Series). Let 𝐗 =
𝑥𝑖
}𝑁
𝑖=1 be a time series and ⃖⃖⃗𝐺 = ⃖⃖⃗𝑃 is the directed path on 𝑁 vertices.

hen, for all 𝑚, 𝑐 and 𝑙 the following equality holds:

E(𝑚, 𝑙, 𝑐) = DE ⃖⃗𝑃 (𝑚, 𝑙, 𝑐) .

roof. Please refer to the Appendix C. □

. MIX Process and 𝐃𝐄𝐆

In this section, our objective is to demonstrate the detection of
rregularities, not only in simple graphs as illustrated in Section 3.3,
ut also in more complex structures such as Random Geometric Graphs,
nd when dealing with more complex signals as is the case of the MIX
rocess.

.1. Random geometric graph

A 𝑑-dimensional Random Geometric Graph (RGG) is a graph in which
ach vertex 𝑣𝑖 ∈  is assigned a random 𝑑-dimensional coordinate
𝑖 → 𝐳𝑖 = (𝑧1𝑖 ,… , 𝑧𝑑𝑖 ) ∈ [0, 1]𝑑 . The structure of a RGG is significantly
nfluenced by the proximity parameter 0 ≤ 𝑟. Two vertices 𝑣𝑖, 𝑣𝑗 ∈ 
re connected by an edge if and only if the Euclidean distance between
heir coordinates is less than or equal to 𝑟, i.e., |𝐳𝑖 − 𝐳𝑗 | ≤ 𝑟.

For larger values of 𝑟, more edges will be formed as the condition
𝐳𝑖 − 𝐳𝑗 | ≤ 𝑟 is more likely to be satisfied, leading to a denser and more
onnected graph. On the other hand, smaller values of 𝑟 impose a more
tringent condition for edge creation, resulting in sparser and more
isconnected graphs. Hence, 𝑟 acts as a tunable parameter controlling
5

he sparsity and connectivity of the resulting RGG (see [36]). b
.2. MIX process

We introduce a graph-based stochastic process MIX𝐺 defined on
GGs to assess the performance of DEG in capturing complex signal
ynamics.

First we define MIXR𝑑 ∶R𝑑 → R given by

MIXR𝑑 = (1 − 𝑅)𝑆 + 𝑅𝑊 , (5)

here 𝑅∶ R𝑑 → [0, 1] is a random variable with a probability 𝑝
f taking the value 1 and a probability 1 − 𝑝 of taking the value
, 𝑊 ∶ R𝑑 → [−

√

𝑎,
√

𝑎] is uniformly distributed white noise, and
𝑆(𝐳) = 𝑆(𝑧1𝑖 ,… , 𝑧𝑑𝑖 ) =

∑𝑑
𝑗=1 sin

(

2𝜋𝑓𝑧𝑗𝑖
)

. Observe that the function 𝑆

s determined by the function sin (2𝜋𝑓𝑥) with period 1
𝑓 and frequency

𝑓 . Hence, the MIXR𝑑 is uniquely determined by the dimension 𝑑, the
amplitude of the noise 𝑎 and the frequency 𝑓 .1

The selection of parameters 𝑑 = 1, 𝑓 = 1∕12 Hz, 𝑎 = 3 and
equidistant sampling was proposed by [7] and 𝑓 = 5Hz in [35]. The
choice was made such that the MIX process in time series could not be
differentiated based on their sample means and standard deviations.
The same parameter selection, except that 𝑑 = 2, i.e. for images is
studied in [29].

4.3. MIX process on RGGs

Let 𝐺 be a 𝑑-dimensional RGG with 𝑁 vertices  = {𝑣1, 𝑣2, 𝑣3,… ,
𝑣𝑁}, and 𝑣𝑖 → 𝐳𝑖 = (𝑧1𝑖 ,… , 𝑧𝑑𝑖 ) ∈ [0, 1]𝑑 . The graph signal MIX𝐺 is

1 In this paper, we utilize the term ‘‘frequency’’ to describe the parameter 𝑓
ithin the MIX process. However, it is important to note that 𝑓 is essentially

he frequency of the sine function that constitutes the main component of
he MIX process. Although the MIX process possesses periodic properties with

period of
(

1
𝑓
,… , 1

𝑓

)

, it would be technically incorrect to label 𝑓 as the
requency of the MIX process itself. This convention can be traced back to the
ase when 𝑑 = 1, wherein 𝑓 serves as the frequency of both the sine function

and the MIX process. Moreover, we have adopted the units in the domain as
seconds, thus defining 𝑓 in Hertz, in alignment with the frequency of the sine
function rather than the MIX process. Despite these detailed clarifications, it
is critical to recognize that such convention does not impact the interpretation
of our results. The primary objective remains to employ the MIX process as a

enchmark to validate the effectiveness of DEG in diverse applications.
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Fig. 6. Examples of RGGs with 𝑁 = 1, 500 and values 𝑟 = 0.06 and 𝑟 = 0.10. The graph
signals are generated by the MIX𝐺 process with different parameter values.

defined as the restriction of the MIXR𝑑 (Eq. (5)) to the graph domain,
i.e.,:

MIX𝐺(𝑣𝑖) = ((1 − 𝑅)𝑆 + 𝑅𝑊 ) (𝐳𝑖) for 1 ≤ 𝑖 ≤ 𝑁 . (6)

Similarly to the general process MIXR𝑑 (Section 4.2), the MIX𝐺 is
defined for the graph 𝐺 and determined by probability 𝑝, the noise
amplitude 𝑎, the dimension 𝑑 and the frequency 𝑓 .2

The construction of a 𝑑-dimensional RGG requires selecting two
parameters, 𝑟 and 𝑑. The graph signal generated by the MIX𝐺 process
incorporates random noise (determined by 𝑝) with different amplitudes
(determined by 𝑎) into some values of the sinusoidal signal (determined
by 𝑓 ). Finally, for the algorithm DEG, and according to Table 1, we
employ a fixed embedding dimension of 𝑚 = 3, the number of classes
set at 𝑐 = 3, time delay 𝑙 = 1, and NCDF as the nonlinear map (similar
results are obtained for others nonlinear mappings and values of 𝑚, 𝑐,
and 𝑙).

Our algorithm, DEG, detects changes in the frequency of the signal
(increasing 𝑓 ), the presence of white noise (increasing 𝑝), and the graph
connectivity (increasing 𝑟) by increasing the entropy values of DEG,
but it is robust to the amplitude of the noise 𝑎. Fig. 6 illustrates the
effectiveness of DEG in detecting the dynamics of the MIX𝐺 process.

Analysis of the dimension 𝑑. For clarity and simplicity in our discus-
sion, we represent the RGG in a 2-dimensional space, i.e., 𝑑 = 2. Hence,
each 𝑣𝑖 corresponds to 𝐳𝑖 = (𝑧1𝑖 , 𝑧

2
𝑖 ), and 𝑆(𝑣𝑖) = sin

(

2𝜋𝑓𝑧1𝑖
)

+sin
(

2𝜋𝑓𝑧2𝑖
)

for all 1 ≤ 𝑖 ≤ 𝑁 . It is crucial to note that our discussion’s mathematical
principles and results do not depend on this choice of the dimension 𝑑
and the choice was made for better visualization. However, the analysis
is valid for any higher dimension but will require more complex figures.

Impact of the frequency 𝑓 and probability 𝑝 in the construction of the
graph signal MIX𝐺. We analyse the impact of different parameter values
on the irregularity of the graph signal MIX𝐺 by fixing the underlying
RGG with constant 𝑁 = 1500 and 𝑟 = 0.06.

Increasing the frequency 𝑓 of the MIX𝐺 process results in a more
irregular graph signal. The frequency 𝑓 = 1Hz and 𝑓 = 2Hz of the sine
function in Eq. (6) are depicted in Fig. 6(a)-(b). This increase in the
frequency produces more variation in the graph signal values between
neighbouring vertices. Our algorithm DEG detects these dynamics by
increasing the entropy values. Similarly, an increase in the randomness
parameter 𝑝 results in a more random signal. The parameters 𝑝 = 0
and 𝑝 = 0.2 in Eq. (6) are depicted in Fig. 6(a), (c). The DEG algorithm
detects the change in randomness, by increasing the entropy values.

More generally, we compute the entropy values for a range of
frequencies from 3∕4 Hz to 8Hz, as well as for different levels of noise,

2 As with the description in the previous section, the term ‘‘frequency’’ 𝑓
primarily represents the frequency of the sin

(

2𝜋𝑓𝑧𝑗𝑖
)

, that define the MIX𝐺
process and not the frequency of graph signal MIX𝐺. It is worth mentioning
that common terms such as frequency, sampling, filtering, usually associated
with Fourier Transform, lack a universally agreed-upon definition in the Graph
Signal Processing domain.
6

Fig. 7. Entropy values (a) for a fixed graph, increasing the noise and for several
frequencies and (b) the underlying graph is more connected.

with probabilities ranging from 0 to 1. The results of 30 realizations
are depicted in Fig. 7(a), showing the mean and standard deviation.
The DEG algorithm effectively detects the increasing irregularity of the
signal by increasing the entropy values. Moreover, the algorithm can
distinguish between different levels of irregularity in the MIX𝐺 signal
based on the chosen value of 𝑝.

Analysis of the distance 𝑟. By fixing the graph signal, we investigate
the behaviour of the DEG algorithm as the underlying graph changes.
Specifically, we examine the impact of increasing the distance param-
eter 𝑟 from 0.01 to 0.3 used for construct the RGG with 𝑁 = 1, 500
vertices. Entropy values are computed for 20 realizations, and the mean
and standard deviation are depicted in Fig. 7(b) for several values of 𝑚
and 𝑐. As 𝑟 increases, the number of edges increases, connecting more
distant vertices with different values. The resulting patterns are more
irregular, with more changes and a wider distribution, leading to an
increase in the entropy value.

Robustness of the amplitude 𝑎. The performance of the DEG algorithm
is robust to variations in the amplitude 𝑎 of the white noise, as defined
in Eq. (6). This robustness was observed across a variety of experiments
(0 ≤ 𝑎 ≤ 5) and persisted despite changes to the characteristics of
the graph signal dynamics. This robustness can be attributed to the
utilization of a mapping function in step 2 of the DEG algorithm.
Specifically, although the introduction of noise leads to changes in
the values of the embedding matrix, a significant proportion of these
altered values are mapped to the same class number. Consequently,
the overall distributions of permutation patterns and, by extension, the
entropy values remain largely similar. This robustness to changes in
noise amplitude is a key feature of the DEG algorithm’s performance,
and indicates that the graph version, DEG, maintains this property of
the original DE for univariate time series [11] and images [12].

5. The spectrum of the Laplacian and 𝐃𝐄𝑮

Let 𝐗 be a graph signal; the smoothness of 𝐗 is given by 𝐗𝑇 𝛥𝐗 [16].
We examine the relationship between DEG and the spectrum of 𝛥 acting
on an RGGs (similar results are obtained for other random graphs).

Let 𝐺 be a RGG with 𝑁 = 1, 500 vertices. The eigenvalues of 𝛥 and
its corresponding eigenvectors are denoted by 𝜎 = {𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁}
and {𝑓𝑖}𝑁𝑖=1, respectively. The smoothness of each eigenvector is eval-
uated and normalized based on the classical definition, i.e., 𝜆−1𝑁 𝑓𝑇

𝑖 𝛥𝑓𝑖,
and the results are shown in Fig. 8. Each eigenvector 𝑓𝑖 is considered
as a graph signal and DEG is computed for 𝑐 = 2, 3, 4 and 𝑚 = 2. The
results are depicted in Fig. 8. The smoothness definition is an increasing
function, i.e., smaller eigenvalues correspond to smoother eigenvectors
(also known as graph Fourier modes [37]). Such information is limited
especially when eigenfunctions associated with equal eigenvalues (and
equal smoothness) exhibit different levels of irregularity. By applying
the DEG algorithm, we can better understand and analyse the dynamics
of these eigenfunctions.

The dispersion entropy computed for different values of 𝑚 and 𝑐
enables us to capture abrupt changes in entropy values as the dy-
namics of the eigenfunctions change. Fig. 9 depicts six eigenvectors
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Fig. 8. Entropy values of DEG and smoothness based on the Laplacian 𝛥 for the
eigenvalues as graph signals.

Fig. 9. Several eigenfunctions and their entropy values.

{𝑓𝑗}532𝑗=527 corresponding to the eigenvalues {𝜆𝑗}532𝑗=527. The definition
of smoothness of 𝑓𝑗 coincides with the value 𝜆, and the eigenvalue
𝜆528 = 15 has a multiplicity equal to four, and its eigenfunctions
{𝜆𝑗}531𝑗=528 exhibit a regular behaviour, while 𝑓527 and 𝑓532 are more
irregular. Hence, classical definitions are not able to fully capture the
difference in dynamics within the graph signals. In contrast, the DEG
algorithm is capable of detecting them. In particular, the entropy value
of the eigenfunctions is nearly close to 0 if the signal exhibits a more
regular dynamics and close to 1 for the most irregular eigenfunctions.
Thus, DEG detects eigenvalues with high multiplicity, useful for the
construction of isospectral graphs [38].

6. Small-world networks and 𝐃𝐄𝐆

We evaluate the performance of DEG in detecting dynamics on
signals defined on small-world networks, generated by the Watts–
Strogatz model [26], and changing the mean degree 𝑘 and rewiring
probability 𝑝. Let 𝐺 be a small-world network with 𝑁 = 1, 500 and
various graph signals, including a random signal, a recurrence relation
(logistic map [2]), a stochastic process (Wiener process [39]), and a
periodic signal (sine).

Fixing 𝑘, changing 𝑝. By fixing 𝑘 = 1, we analyse the effect of the
parameter 𝑝 (ranging from 0 to 1) in the construction of the network
𝐺𝑝 and the entropy values. We compute DEG for each graph signal for
20 realizations, and the mean and standard deviation are depicted in
Fig. 10(a). For 𝑝 = 0, the underlying graph 𝐺𝑝 is a cycle of 𝑁 vertices.
A path graph is a geometric perturbation of a cycle [40] and due to
Proposition 1, we can consider the values of 𝑝 = 0 to be the classical
DE. The classical DE is able to detect the dynamics of various signals,
but its computation does not involve the topological structure, thus it
only works for the path graph. In contrast, DEG takes into account not
only the signal information but also the graph structure. In this setting,
the dynamics of the random signal is almost constant, because it is
not affected by 𝐺𝑝. The Wiener process and sine signals exhibit lower
entropy values for 𝑝 = 0 (e.g., the cycle), as their dynamics stem from
either periodicity (sine) or stochastic processes (Wiener). However, as 𝑝
increases, the underlying graph becomes more random, and hence the
entropy value also increases. In any case, DE is still able to distinguish
7

G

Fig. 10. Entropy values for different signals defined on a small-world network
generated by the Watts–Strogatz model.

Table 2
Overview of the graph structures used, including the number of vertices
and edges.

Underlying graph || || Reference

Minnesota road network 2,642 3,303 [41]
Social circles: Facebook 3,959 84,243 [42]
Arxiv GR-QC collaboration 5,241 14,484 [43]
The US power grid 4,941 6,594 [25]
Pointcloud (Stanford Bunny) 2,503 13,726 [44]
Sphere 4,000 22,630 [45]

the random signal from the periodic signal and the Wiener process (for
all 𝑝 < 0.8). Two logistic map signals are generated, one with oscillatory
behaviour (𝑟 = 3.3) and one with chaotic behaviour (𝑟 = 3.7). These
characteristics are well detected by DEG for all values of 𝑝.

Fixing 𝑝, changing 𝑘. By fixing 𝑝 = 0.05, the underlying graph 𝐺𝑘
where 𝑘 ranges from 1 to 6, thereby increasing the connectivity. In
Fig. 10(b), we present the entropy values for each graph signal. The
entropy values for the sine and Wiener signals almost remain constant,
independent of 𝐺𝑘, due to their periodicity and stochastic dynamics.
However, the logistic map exhibits a higher degree of variability in
its entropy values as 𝑘 increases. This is because the logistic map is
defined by a recurrence formula, where each value depends only on
the previous sample, and if 𝑘 increases, the underlying 𝐺𝑘 has more
connections between neighbourhoods. This may disrupt the recurrence
relation, generating more irregular signals and resulting in higher
entropy values. Conversely, the random signal shows a reduction in
entropy values as 𝑘 increases, as the creation of more connections leads
to a more robust average value due to the law of large numbers.

7. Graph Centrality Measures and 𝐃𝐄𝐆

Each centrality measure can be considered as a graph signal, allow-
ing the application of the DEG algorithm to assess the irregularity of
centrality measures on real and synthetic graphs (refer to Table 2).

We used six centrality measures as graph signals, namely [30,31]:
Eigenvector centrality, Betweenness, Closeness, Harmonic centrality, Degree
and Pagerank. The DEG algorithm leverages the graph topology to
effectively detect irregularities generated by each centrality measure,
as demonstrated in Fig. 11. In particular, the Eigenvector Centrality
produces smooth signals [21] in most graphs, and this is reflected
in low entropy values. Well-connected vertices tend to appear on the
shortest paths between other vertices. When the graph has only a few
such vertices, the entropy of the Betweenness measure is lower. In cases
where the graph has a more irregular distribution of vertices with this
characteristic (e.g., in the sphere due to its symmetry), the entropy
values are higher. A similar effect occurs when considering the average
length of the shortest path between the vertex and all other vertices,
as detected by the Closeness measure. Finally, the Degree and PageRank
measures produce more irregular graph signals because each signal’s
value defined on the graph depends only on local properties (the degree
or the number and importance of the other vertices connected to it)
rather than global properties (such as average paths between vertices
in the previous measures).
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Fig. 11. The dispersion entropy for various centrality measures.

. Comparing 𝐃𝐄𝐆 and other entropy metrics performance

In Section 3.4, we establish an equivalence between DE and DEG
or directed paths. In this context, we extend our discussion to include

comparison between the performance and computational time of
EG and other entropy metrics. The Permutation Entropy for Graph
ignals, denoted by PEG [19], marked the first entropy metric specif-
cally designed for graph-based data analysis. Both methods rely on
he adjacency matrix, but PEG primarily focuses on the order of am-
litude values (local properties), which might result in the loss of
aluable information regarding the amplitudes (global properties). DEG
ddresses these limitations by providing a more comprehensive way
o characterize the dynamics of graph signals. We conducted the same
revious analysis with PEG (see the Appendix D), and found that DEG
onsistently outperforms PEG in all cases, highlighting the potential of
ur novel method for effectively analysing graph signal irregularities.

.1. Computational cost

The computational cost of DEG was compared to PEG using 𝐺 as a
-dimensional grid graph of size 𝑛 × 𝑛 with a MIX process defined on
. The entropy values were computed for 𝐺 contains 𝑛2 vertices, with
alues varying from 102 to 1502. The results are displayed in Fig. 12.
he computational times for both metrics PEG and DEG (for equals
nderlying graphs) were almost identical, with a minor increase in
EG due to the mapping computation in Step 3 of the DEG algorithm

Section 3.1).
The MIX process signal, defined on a grid, was treated as an image

o apply the Dispersion Entropy for Images (DE2𝐷) presented in [12].
he computational time for this setting was also evaluated (see Fig. 12).
EG was more computationally demanding than DE2𝐷, which was
nticipated due to DEG not making any prior assumptions about the
ignal sample domain structure.

Notably, the computational time of DEG escalates not only with the
mage size (for an image of size 𝑛 × 𝑛, we must calculate the power
f the adjacency matrix of size 𝑛2 × 𝑛2) but also with the graph’s
onnectivity. When a path graph was considered instead of the grid,
he computational time was almost unchanged due to the edge count
ncreasing linearly with the number of vertices (𝑛2). However, for the
×𝑛 vertices in a complete graph, the edge count increases quadratically
ith the number of vertices. Consequently, the number of non-zero
ntries in the adjacency matrix also escalates quadratically, leading to
ncreased computational costs (see Fig. 12).

The DE2𝐷 algorithm does not factor in the underlying graph topol-
gy, therefore yielding identical results for path, grid, or complete
raphs. However, this algorithm is unsuitable for irregular domains.
hus, while DE2𝐷 is faster for regular images or time series, our
lgorithm is applicable to any domain, though similar results are ob-
ained for images. We hypothesize that efficient implementations for
EG could be developed for special types of graphs using the graph’s

ymmetries or when its adjacency matrix is periodic. However, these
8

Fig. 12. Computational time of DEG, PEG, and DE2𝐷 with varying node number for
rid, path, and complete graphs.

ptimizations are beyond this study’s scope, which reports the cost of
he general algorithm for images under various graph settings.

Simulations were conducted on a PC with an Intel(R) Core(TM) i7
sing MATLAB R2023b.

. Conclusions

We have introduced Dispersion Entropy for Graph Signals (DEG), a
method that enhances the analysis of irregularities in graph signals. Our
approach generalizes classical dispersion entropy, enabling its applica-
tion to a wide array of domains, including real-world graphs, directed,
undirected and weighted graphs, and unveiling novel relationships
between graph signals and graph-theoretic concepts (e.g., eigenvalues
and centrality measures). Notably, DEG allows the application of the
Dispersion Entropy concept not only to univariate time series, but also
to multivariate time series and images. By overcoming the limitations of
the classical smoothness definition, DEG offers a more comprehensive
approach to analysing graph signals and holds significant potential for
further research and practical applications, as it effectively captures the
complex dynamics of signals across diverse topology configurations.
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Appendix A. Classical dispersion entropy for univariate time se-
ries

This appendix provides a concise description of the classical Disper-
sion Entropy (DE) for time series [13]. Consider a univariate signal 𝑥 =
{

𝑥1, 𝑥2,… , 𝑥𝑁
}

of length 𝑁 . The DE calculation proceeds as follows:

1. The signal values 𝑥𝑗 , 𝑗 = 1, 2,… , 𝑁 are classified into 𝑐 classes,
resulting in a classified signal 𝑢𝑗 , 𝑗 = 1, 2,… , 𝑁 . Various mapping
techniques can be applied for this classification.

2. Time series 𝐮𝑚,𝑐𝑖 of embedding dimension 𝑚 and delay 𝑙 are
formed as 𝐮𝑚,𝑐𝑖 =

{

𝑢𝑐𝑖 , 𝑢
𝑐
𝑖+𝑙𝑐 ,… , 𝑢𝑐𝑖+(𝑚−1)𝑙

}

. Each of these time
series is mapped to a dispersion pattern 𝜋𝑣0𝑣1…𝑣𝑚−1 . The total
number of possible dispersion patterns is 𝑐𝑚.

3. The relative frequency of each potential dispersion pattern
𝜋𝑣0…𝑣𝑚−1 is calculated by

𝑝
(

𝜋𝑣0…𝑣𝑚−1

)

=
|

{

𝑖 ∣ 𝑖 ≤ 𝑁 − (𝑚 − 1)𝑙,𝐮𝑚,𝑐𝑖 has type 𝜋𝑣0…𝑣𝑚−1

}

|

𝑁 − (𝑚 − 1)𝑙
,

where || represents cardinality. This frequency represents the
proportion of the time series assigned to each dispersion pattern.

4. Finally, DE is computed following the Shannon entropy defini-
tion as

DE(𝐱, 𝑚, 𝑐, 𝑙) = − 1
ln(𝑐𝑚)

𝑐𝑚
∑

𝜋=1
𝑝
(

𝜋𝑣0…𝑣𝑚−1

)

⋅ ln
(

𝑝
(

𝜋𝑣0…𝑣𝑚−1

))

.

ppendix B. Dispersion entropy for directed graphs

In the paper, we have introduced the Dispersion Entropy for graph
ignals, denoted as DEG, in the context of undirected graphs. To ex-

tend this concept to directed graphs or digraphs, the approach remains
analogous, with the primary distinction being the need to incorpo-
rate specific constraints on the rows of the embedding matrix. These
constraints are imposed by the well-defined vectors 𝐲𝑘.

Let ⃖⃖⃗𝐺 = ( ,  ,𝐀) be a digraph with 𝑁 vertices, where 𝐀 denotes the
adjacency matrix of the directed graph, and 𝐗 =

{

𝑥𝑖
}𝑛
𝑖=1 is a signal

efined on ⃖⃖⃗𝐺. Given an embedding dimension 𝑚 with 2 ≤ 𝑚 ∈ N, a
elay time 𝐿 ∈ N, and a class number 𝑐 ∈ N, the Dispersion Entropy
or Directed Graphs (𝐷𝐸⃖⃗𝐺) is defined as follows:

1. Embedding matrix. Let ∗ ⊂  be the set given by:

𝑉 ∗ = { 𝑖 ∈  |

𝑛
∑

𝑗=1
(𝐀𝑘𝑙)𝑖𝑗 ≠ 0 for all 𝑘 = 0, 1,… , 𝑚 − 1 } .

The embedding matrix 𝐘∗ ∈ R|𝑉 ∗
|×𝑚 is given by:

𝐘∗ = [𝐲∗0 , 𝐲
∗
1 ,… , 𝐲∗𝑚−1] (B.1)

where 𝐲∗𝑘 ∈ R|𝑉 ∗
|×1, given by the restriction of 𝐲𝑘 to the vertices

in 𝑉 ∗, i.e., 𝐲∗𝑘 = 𝐲𝑘|
|𝑉 ∗ .

2. Map function. Each element of the embedding matrix 𝐘∗ is
mapped to an integer number from 1 to 𝑐, called a class, i.e., we
define a function 𝐹 ∶ R → N𝑐 where N𝑐 = {1, 2,… , 𝑐} that
applies element-wise on the matrix 𝐘∗, i.e. 𝐹 (𝐘∗) ∈ N𝑁×𝑚

𝑐 where
𝐹 (𝐘∗) = 𝐹 (𝑦∗ ).
9

𝑖𝑗 𝑖𝑗
3. Dispersion patterns. Each row of the matrix 𝐹 (𝐘∗), called an
embedding vector, is mapped to a unique dispersion pattern.
Formally, the embedding vectors consist of 𝑚 integer numbers
(from 1 to 𝑐) corresponding to each row of the matrix 𝐹 (𝐘∗),
i.e., row𝑖(𝐹 (𝐘∗)) =

(

𝐹 (𝑦∗𝑖𝑗 )
)𝑚

𝑗=1
for 𝑖 = 1, 2,… , 𝑁 . The set of

dispersion patterns is defined as 𝛱 = {𝜋𝑣∗1𝑣∗2…𝑣∗𝑚 | 𝑣∗𝑖 ∈ N𝑐 }.
Each embedding vector is uniquely mapped to a dispersion
pattern, i.e., row𝑖(𝐹 (𝐘∗)) → 𝜋𝑣∗1𝑣∗2…𝑣∗𝑚 where 𝑣1 = 𝐹 (𝑦∗𝑖1), 𝑣2 =
𝐹 (𝑦∗𝑖2),… , 𝑣𝑚 = 𝐹 (𝑦∗𝑖𝑚).

4. Relative frequencies. For each dispersion pattern 𝜋 ∈ 𝛱 , its
relative frequency is obtained as:

𝑝 (𝜋) =
|

{

𝑣𝑖 ∣ 𝑣𝑖 ∈ ∗ and 𝑣𝑖 has type 𝜋
}

|

|∗
|

,

where || represents cardinality.
5. Shannon’s entropy. The dispersion entropy for graph signals 𝐷𝐸⃖⃗𝐺 is

computed as the normalized Shannon’s entropy for the distinct
dispersion patterns as follows:

𝐷𝐸⃖⃗𝐺(𝐗, 𝑚, 𝑙, 𝑐) = − 1
ln(𝑐𝑚)

∑

𝜋∈𝛱
𝑝(𝜋) ln 𝑝(𝜋) .

Properties

The 𝐷𝐸⃖⃗𝐺 algorithm for directed graphs exhibits the following prop-
erties:

The directed graph version of 𝐷𝐸⃖⃗𝐺 serves as a generalization of its
ndirected counterpart. If 𝐺 is an undirected connected (non-trivial)
raph, then ∗ =  , and all the steps remain the same in both the
irected and undirected versions of the algorithm.

The restriction process 𝐲∗𝑘 = 𝐲𝑘|
|𝑉 ∗ is equivalent to the vertex

irtualisation process presented in [40].
Similarly, the 𝐷𝐸⃖⃗𝐺 algorithm can be extended to weighted (directed

r undirected) graphs by restricting the subset to

∗ = { 𝑖 ∈  |

𝑛
∑

𝑗=1
(𝐖𝑘𝑙)𝑖𝑗 ≠ 0 for all 𝑘 = 0, 1,… , 𝑚 − 1 } .

here 𝐖 represents the weighted adjacency matrix. This generalization
llows for a more comprehensive analysis of graph signals in various
ontexts.

ppendix C. Proof of Proposition 1

The classical dispersion entropy for time series was established in
he literature by [11]. In the following proposition, we demonstrate
hat when the DEG is restricted to time series (considering the directed
ath as the underlying graph), the DEG is equivalent to the classical
E.

A directed path on 𝑘 vertices is a directed graph that connects
sequence of distinct vertices with all edges oriented in the same

irection, denoted as ⃖⃖⃗𝑃 . Its vertices are given by  = {𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑘}
nd its arc set is  = {(𝑣𝑖, 𝑣𝑖+1) | 1 ≤ 𝑖 ≤ 𝑁 − 1}.

roposition 1 (Equivalence of DE and DEG for Time Series). Let 𝐗 =
𝑥𝑖
}𝑁
𝑖=1 be a time series and consider ⃖⃖⃗𝐺 = ⃖⃖⃗𝑃 the directed path on 𝑛

ertices, then for all 𝑚, 𝑐 and 𝑙, the following equality holds:

E(𝑚, 𝑙, 𝑐) = DE ⃖⃗𝑃 (𝑚, 𝑙, 𝑐) .

roof. The adjacency matrix for the directed path 𝐀 is given by

𝑖𝑗 =

{

1 if 𝑖 = 1, 2,… , 𝑁 − 1 and 𝑗 = 𝑖 + 1 ,
0 otherwise .

For any 𝑘 ∈ N, the matrix 𝐀𝑘 is given by

𝐀𝑘)
𝑖𝑗 =

{

1 if 𝑖 = 1, 2,… , 𝑁 − 𝑘 and 𝑗 = 𝑖 + 𝑘 ,

0 otherwise ,
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Fig. D.13. Entropy values using PEG (a) for a fixed graph, increasing the noise and
for several frequencies and (b) the underlying graph is more connected.

in particular, for all 𝑘 = 0, 1,… , 𝑚 − 1
𝑁
∑

𝑗=1
(𝐀𝑘𝑙)𝑖𝑗 =

{

1 if 𝑖 = 1,… , 𝑁 − (𝑚 − 1)𝐿 ,
0 otherwise .

Thus, we have
∗
𝑘 = 𝐲𝑘||𝑉 ∗ = 𝐷𝐀𝑘𝑙𝐗||

|𝑉 ∗

= [𝑥1+𝑘𝑙 , 𝑥2+𝑘𝑙 ,… , 𝑥𝑖+𝑘𝑙 ,… , 𝑥𝑁−(𝑚−1)𝑙]𝑇 .

The embedding matrix is given by:

𝐘∗ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1 𝑥1+𝐿 … 𝑥1+(𝑚−1)𝐿
𝑥2 𝑥2+𝐿 … 𝑥2+(𝑚−1)𝐿
⋮ ⋮ ⋱ ⋮

𝑥𝑁−(𝑚−1)𝐿 𝑥𝑁−(𝑚−2)𝐿 … 𝑥𝑁

⎞

⎟

⎟

⎟

⎟

⎠

,

and, given a map function 𝐹 ∶R → N𝑐 defined by 𝐹 = 𝐺◦NCDF∶R →
N𝑐 , the matrix 𝐹 (𝐘∗) is given by:

𝐹 (𝐘∗) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑧1 𝑧1+𝐿 … 𝑧1+(𝑚−1)𝐿
𝑧2 𝑧2+𝐿 … 𝑧2+(𝑚−1)𝐿
⋮ ⋮ ⋱ ⋮

𝑧𝑁−(𝑚−1)𝐿 𝑧𝑁−(𝑚−2)𝐿 … 𝑧𝑁

⎞

⎟

⎟

⎟

⎟

⎠

.

Subsequently, the embedding vectors are represented as row𝑖(𝐹 (𝐘))
=

(

𝑧𝑖, 𝑧𝑖+𝐿,… 𝑧𝑖+(𝑚−1)𝐿
)

. Due to the fact that || = 𝑁 − (𝑚 − 1)𝐿, the
relative frequencies and Shannon’s entropy associated with the graph-
based dispersion entropy (𝐷𝐸⃖⃗𝐺) and the classical dispersion entropy
(DE) are identical. □

Appendix D. Comparing 𝐃𝐄𝐆 and 𝐏𝐄𝐆 Performance

In this section, we demonstrate the superior performance of the Dis-
persion Entropy for Graph Signals (DEG) over the Permutation Entropy
for Graph Signals, denoted by PEG [19]. By applying both algorithms
to all the examples in the manuscript, we consistently observe that DEG
outperforms PEG, highlighting the potential and efficacy of DEG for
analysing graph signal irregularities.

Following the same setting used to produced Figs. 2, 3, 5 and 6 in
the manuscript, we substitute PEG for DEG. The results are depicted in
Fig. D.13, D.14, D.15 and D.16, respectively.

Random graphs and PEG

The PEG algorithm is not able to detect increasing of the signal
irregularity (due to frequency increments) and is unable to differentiate
between distinct levels of irregularity in the MIX𝐺 signal based on
the parameter 𝑝 (Fig. D.13(a)). Similarly, in Fig. D.13(b), as graph
connectivity increases (by raising 𝑟) the algorithm saturates for an
embedding dimension of 𝑚 = 2. To achieve accurate characterizations,
it is necessary to increase 𝑚 > 2 and even that, the behaviour is
not monotonous, whereas DEG performs well with smaller embedding
dimensions.
10
Fig. D.14. Entropy values of PEG and smoothness based on the Laplacian 𝛥 for the
igenvalues as graph signals.

Fig. D.15. Entropy values of PEG for different signals defined on a small-world
network generated by the Watts–Strogatz model.

Fig. D.16. The permutation entropy for various centrality measures.

The spectrum of the Laplacian and PEG

The entropy values of PEG exhibit a highly consistent and regular
behaviour, with minimal variations (Fig. D.14). Despite the varying
degrees of irregularity in the eigenvalues (as shown in Fig. 4 of the
manuscript), the PEG algorithm fails to detect these differences.

Small-world networks and PEG

The stochastic dynamics of the Wiener process are not adequately
characterized by PEG (Fig. D.15(a)), as its entropy values are higher
han those of random behaviour (random signal). Periodic dynamics
re detected only with lower parameter values of 𝑝, and the chaotic
nd oscillation behaviour (Logistic map) are identified by PEG, which

is consistent with the results presented in [19]. However, as the pa-
rameter 𝑘 is increased (Fig. D.15(b)), the performance of PEG remains
similar when the parameter 𝑝 is changed. This is due to PEG considering
the order of the values but not their amplitude.

Graph centrality measures and PEG

Smooth signals produced by the Eigenvector Centrality are not ef-
fectively detected by PEG (with the exception of the Arxiv and Face-
book graphs). The remaining centrality measures yield similar entropy
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(
a

R

values, making it challenging to establish a relationship with PEG
Fig. D.16). This limitation highlights the greater value of DEG for such
nalyses.
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