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Abstract

Diophantine Approximation,
Continued Fractions, and Dynamical
Spectrums

Deokwon Sim

Department of Mathematical Sciences
The Graduate School

Seoul National University

Diophantine approximation is a rational approximation to an irrational number,
which has been investigated using continued fractions. In the thesis, we deal with
three topics related to Diophantine approximation and continued fractions.

The first topic is the Markoff and Lagrange spectrum associated with the Hecke
group. The classical Markoff and Lagrange spectrum is associated with the modular
group PSL(2,Z) = Hs, which has been studied using the regular continued fraction.
We consider the Markoff and Lagrange spectrum associated with Hy and Hg. We
use the Romik dynamical system to show that some results on the classical Markoff
and Lagrange spectra appear in the Markoff and Lagrange spectra associated with
the Hecke group.

The second topic is the exponents of repetition of Sturmian words. The exponent
of repetition of a Sturmian word gives the irrationality exponent of the Sturmian
number associated with the Sturmian word. For an irrational number 8, we determine
the minimum of the exponents of repetition of Sturmian words of slope 6. We also
investigate the spectrum of the exponents of repetition of Sturmian words of the
golden ratio.

The last topic is quasi-Sturmian colorings on regular trees. We characterize quasi-
Sturmian colorings of regular trees by its quotient graph and its recurrence function.
We obtain an induction algorithm of quasi-Sturmian colorings which is analogous to

the continued fraction algorithm of Sturmian words.

Keywords: Diophantine approximation, Continued fractions, Lagrange numbers,
Markoff numbers, Sturmian words, Colorings of trees
Student Number: 2014-21196
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Chapter 1

Introduction

I. The Markoff and Lagrange spectra on the Hecke group

Dirichlet showed that for any 6 € R\ Q, the inequality

has infinitely many integral solutions p,q > 0 [25]. Hurwitz improved Dirichlet’s

result by proving that the inequality

'9_ Z' : \/;(P b

has infinitely many integral solutions p, ¢ > 0. Moreover, he proved that v/5 is the
largest constant in the sense that for all irrational 6, the inequality (1.1) has infinitely
many integral solutions [33]. For each irrational €, we can consider improving the
Hurwitz bound /5. This motivates the following definition:

Definition. For any 6 € R\ Q, we define the Lagrange value L(#) by
1
L(0) := sup {c >1: ‘9 — p' < — for infinitely many p € Z,q € N} .
q cq
The Lagrange spectrum .Z is defined to be

Z ={L(6):0 c R\ Q}.

The Markoff value and the Markoff spectrum are defined as follows:
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Definition. For an indefinite binary quadratic form
f(z,y) = az® + bxy + cy?
with a,b,c € R and §(f) := b®> — 4ac > 0, we define the Markoff number M (f) by

6(f)

M”*:m{uuM|

mye%\ww»}
The Markoff spectrum . is

f(z,y) = ax?® + bry+cy? is indefinite with a, b, ¢ € R,
= M(f)
5(f)>0

The study on the geometric structure of . and . is a classical topic, which
began with Markoff [46]:

[ 4
gm(o,3)://m(o,3)={ 9—;:x2+y2+z2:3xyz, z,y <z, x,y,zEZ}.

This means that . and .# below 3 are discrete. After the Markoff’s result, Tornheim

proved that .2 C .# [65]. Perron showed that there exists maximal gaps in .# [53].

Hall found a ray in ¢, which is called Hall’s ray [32]. Freiman determined the
minimum of the Hall’s ray in & [30].

On the other hand, Perron’s formula induces that we can interpret the Markoff
and Lagrange values as the supremum and limit supremum of heights of geodesics into
the cusp of the modular surface [47]. We define the Markoff and Lagrange spectra
associated with the Hecke group by the set of the Markoff and Lagrange values,
respectively, which are the supremum and limit supremum of heights of geodesics

into the cusp of the hyperbolic space which is the quotient space by the Hecke group.

We prove that the Markoff and Lagrange values associated with Hy and Hg are
expressed in terms of doubly-infinite Romik sequences.

Schmidt and Vulakh independently showed that the Markoff and Lagrange spectra
associated with Hy below the first limit point 2v/2 are discrete as an analogy of
Markoff theorem. We prove that the Markoff and Lagrange spectra associated with
H, above 2v/2 have positive Hausdorff dimension. We also show that the Markoff
and Lagrange spectra associated with H4 have similar geometric structure with £
and . as Figure 1.1.
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gap gap ray
2v/2 \/2538 V10 2124\/1§1+74;8\/238 442

Figure 1.1 Gaps and a ray in the Markoff and Lagrange spectra associated with Hy

Schmidt also showed that the Markoff and Lagrange spectra associated with Hg
below the first limit point 4/v/3 are discrete as an analogy of Markoff theorem. We
prove that the Markoff and Lagrange spectra associated with Hg above 4/v/3 have
positive Hausdorff dimension. We also show that the Markoff and Lagrange spectra

associated with Hg have similar geometric structure with .Z and .# as Figure 1.2.

gap gap

4 143 13v/3413V/74+1143
V3 5 V7 26

Figure 1.2 Gaps in the Markoff and Lagrange spectra associated with Hg

II. The exponent of repetition

A word is a sequence of finite or infinite letters. For a word with finite letters, subword
complexity (or factor complexity) is the function assigning n to the number of distinct
subwords of length n appearing in the word. Morse and Hedlund showed that an
infinite word is eventually periodic if and only if its subword complexity is bounded
[50]. Thus, the smallest subword complexity of a non-eventually periodic word is
n + 1. We say a word is Sturmian if the subword complexity of the word is n + 1.
Sturmian words have some characterizations because a Sturmian word can be defined
as a balanced non-periodic word or an irrational mechanical word.

Yann Bugeaud and Dong Han Kim suggested a new complexity function and
characterized Sturmian words and eventually periodic words in terms of the com-
plexity function. They introduced the exponent of repetition of a Sturmian word,
which is defined as the limit infimum of the ratio of the new complexity function and
the length of a subword: For an infinite word x, the exponent of repetition of x is
defined by

(n,x)

rep(x) := linniiolgf TT,
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where r(n,x) is the length of the smallest prefix in which some subword of length n
occurs twice. The exponent of repetition of a Sturmian word gives the irrationality

exponent of the Sturmian word.

Theorem ([15, Theorem 4.5]) For a Sturmian word X = x1x3 ..., an integer b > 2,

and a Sturmian number rx =Y %, the irrationality exponent of ry is given by

rep(x)

p(rx) = W.

In Chapter 5, we study the spectrum of the exponents of repetition. For 6 €

0,1\ Q,
Z(0) := {rep(x) : x is a Sturmian word of slope 6}.

Boris Adamczewski and Yann Bugeaud showed £ (6) = {1} where 6 has unbounded
partial quotients. We determined the minimum of .Z () where 6 has bounded partial

quotients.
Theorem Let 6 = [0;a1,as,...]| have bounded partial quotients. We have
min.Z(0) = lim [1;1+ ak,ag—1,ak—2,.-.,a1].
k—o00

We look into .Z(¢) for ¢ = ‘/52_1 = [0;1]. Let us define

5 — by

Pmax ‘=1 +¢@=1618..., pug:=4p—1=1472... ,u3::7 3:1.440...,
©—
T3p — 42

=———=1434..., in=2—¢@=1381....

HA= 650 — 38 Himin 4
a

. £ 5P 2P N

Hmin 4 3 M2 Hmax

Figure 1.3  pmax, 12, 143, 44, fmin D Z ()

In Section 5.2, we prove that pmax is the maximum of Z(p). Next, we show
that fimax, 2, 3, pa are the four largest points in Z(¢) and py is an accumulation
point of Z (). For p € {ftmax, 12, 143, 144, fmin }, We give the necessary and sufficient

condition for rep(x) = u and the cardinality of the set of Sturmian words x satisfying

rep(x) = p.
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I1I. Quasi-Sturmian colorings on regular trees

Dong Han Kim and Seonhee Lim studied vertex colorings of regular trees which are
maps from the vertex set of a tree to a finite set of letters. They generalized factor
complexity of a word to define factor complexity by(n) of a coloring ¢ where by(n)
is the number of colored balls of radius n up to isomorphisms preserving ¢. They
showed the analogy of Morse-Hedlund theorem and generalized Sturmian words to
Sturmian colorings on regular trees [37]. They also found the induction algorithm of
Sturmian colorings [38].

In Chapter 6, we define quasi-Sturmian colorings of regular trees. We characterize
the quotient graph of a quasi-Sturmian coloring. The n-th factor graph is the graph
whose vertices are the colored n-balls and its edges are pairs of colored n-balls whose
centers are adjacent in the tree. The evolution of the factor graph tells us how the

pattern of the coloring is.

Theorem The quotient graph of a quasi-Sturmian coloring is either the union of

a finite graph and a geodesic ray or a bi-infinite geodesic.

7

For a quasi-Sturmian coloring with no cycle on its factor graph, the factor graph
of the coloring belongs to one of (I), (II), or (III) in Figure 1.4. The factor graphs

evolve as

IH)—-1)—---— 1) —- 1) or (I)— II)—---— (II)— (1) — (I).

° —_— °

D (IT) (IIT)

Figure 1.4 The evolution of the factor graph of a quasi-Sturmian coloring
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This thesis is organized as follows. In Chapter 2, we review some definitions and
properties of the regular continued fraction and recall some results on the Markoff
and Lagrange spectra. In Chapter 3, we deal with the Markoff and Lagrange spectra
on the Hecke group Hy and Hg. We introduce the Romik dynamical system and
use it to define the Markoff and Lagrange values, which are equal to the supremum
and limit supremum of the heights of geodesic on the hyperbolic space which is
the quotient space by the Hecke group. We prove that both spectra have positive
Hausdorff dimension after the first limit point. After the first limit point, we show
that there exist maximal gaps in both spectra. We also prove both spectra contains
a ray which is called Hall’s ray. We follow two papers [22,39], which are the joint
works with Byungchul Cha and Dong Han Kim.

In Chapter 4, we define Sturmian words and review some characterizations of
Sturmian words. We also recall the definition of the exponent of repetition and its
properties. In Chapter 5, we look into the spectrum of the exponents of repetition
of Sturmian words. In Section 5.1, we determine the minimum of the spectrum of
the exponents of repetition of Sturmian words. In Section 5.2, we investigate the
spectrum of the exponents of repetition of Fibonacci words. We follow the paper
[64].

In Chapter 6, we review some definitions of colorings of trees and recall the results
on Sturmian colorings of trees. We characterize quasi-Sturmian colorings of a regular
tree by its quotient graph and its recurrence function. We also look into an induction
algorithm of a quasi-Sturmian coloring. We follow the paper [36], which is the joint

work with Dong Han Kim, Seul Bee Lee, and Seonhee Lim.



Chapter 2

Diophantine approximation

Diophantine approximation is the study on the approximation of an irrational number
by rational numbers. Dirichlet showed the following statement related Diophantine

approximation.

Theorem 2.0.1 (Dirichlet) Given x € R and t > 1, there exist integers p,q such
that )
|q3:—p]§¥, 1<qg<t.

We obtain the following corollary from Dirichlet theorem.

Corollary 2.0.2. For any 6§ € R\ Q, there exist infinitely many integers p,q > 0
such that

Hurwitz determined the best bound for Corollary 2.0.2.

Theorem 2.0.3 For any § € R\ Q, there exist infinitely many integers p,q > 0

such that .

V52

-

ik

The equality holds if and only if § = aptb for some (a
cp

b
d . d) € PSL(2,Z), where

o= 1+2\/5'

Similar to Theorem 2.0.3, we can consider the best bound for each irrational

number. In this chapter, we study the best bound for all irrational numbers which
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are called Lagrange values. We also investigate Markoff value, which is interpreted
similarly to Lagrange value. We look into the regular continued fraction, a method

to obtain Markoff and Lagrange values, and its properties.

2.1 Continued fraction

In this section, we review some definitions and properties of the regular continued
fractions, following [19,26].

A regular continued fraction is a formal expression of the form

1
ot ——7 —

ai + 1
az + —

where a¢ € Z and a, € N for all n € N. We denote a continued fraction as above by

[ao;al,am .. -]-
We also write
[ap; a1, ..., ap]
for a finite fraction
1
ay + . 1
. . +
ap—1+ —

n

2.1.1 Basic properties

Let us start with the crucial lemma for many of the basic properties of the regular

continued fraction.

Lemma 2.1.1. For a sequence (ay)n,>0 with ap € Ny and a,, € N for all n € N, the

rational numbers

Dn
? = [ao;al,ag,.. . ,an]
n
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for n > 0 with coprime numerator p, and denominator g, can be found recursively

from the ralation
_ 1 1 1
n  Pn—1 _ ag ai o Qnp, for n > 0, (2.1)
n  Qn—1 1 0 1 0 1 O
where we set p_1 =1,q_1 =0, pp = ag, and ¢g = 1.

In the above lemma, each a,, is called n-th partial quotient of [ag; a1, as,...]. The
finite fractions p,/qy is called the principal convergent of [ag; a1, az,...]. Lemma

2.1.1 immediately implies a pair of recursive formulas:

Pnt1 = Q1P+ Pn1y  Gn+1l = An41n + Gn-1 (2.2)
for all n > 1. Taking determinants in (2.1), we have
Pn+1Gn — Pndnt+1 = (—1)" (2.3)
and thus, we recursively have

qn dn—1 4n—14n
1 1 1
:a0+7_7+...+(_1)"+17
qoq1 4192 n—19qn
for n > 1. Hence, [ag; a1, as9,...] is not just a formal expression and have a value as

the limit of the principal convergents lim p,/q,. If 6 = lim 22 then we say that
n—oo n—oo 4n
[ap; a1, ag,...] is the continued fraction expansion for . When we want to emphasize
0, we denote a,, and p,/q, by a,(0) and p,(0)/q.(0), respectively.
The principal convergent of an irrational number gives the best approrimants in

the following sense.

Proposition 2.1.2 ([26, Proposition 3.3]). Let § = [ag; a1, a2,...] € R\ Q. For any
n>1andp,qwith0<q§qn,if%;ﬁf]’—:,then

|gn0 — pn| < g8 — p|.

Moreover, pp11,dnt+1 are the solution with minimal ¢ > ¢, such that |¢0 — p| <
|gn® — pnl. See [19,26].
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2.1.2 Gauss map

In the section, we introduce a dynamical system related to the regular continued
fraction.

We define a map 7 : [0,1] \ Q — [0,1] \ Q by

where |z is the greatest integer less than or equal to z. The map T is called Gauss
map or continued fraction map. The Gauss map is piecewise invertible and has

infinitely many branches as Figure 2.1.

1

1 1 1
0 13 3 1

Figure 2.1 Gauss map

By definition, the Gauss map is the left shift map of continued fraction expansion:

T([0;a1,az,...]) =[0;a2,as,...]. (2.4)

For 0§ € (0,1) \ Q, the Gauss map gives the n-th partial quotient a,(6) as a,(0) =
|[(T™1(0))7t] for n € N. Conversely, for a sequence {a,(0)} defined by a,(f) =
[(T"1(0))"Y] for n € N,

0 =[0;a1(0),az2(0),...].

10 A 2-tj] 8

11’
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Using (2.1) and (2.4), we obtain

_ Pn + pn—lTn(e)

0
In + gn—1T™(0)

(2.5)

for 0 = [0;a1,aq2,...] € (0,1)\ Q.
Gauss showed that T preserves the probability measure defined by

1 1

A)=— [ ——
HA) log2 Jo 1+« v

Since

rn- (1 ]

n=1

we obtain u(771([0, s])) = u([0, s]) as follows:

1 & [ 1 1 & n+1 s+n
— de=——=> 1 :
log2z/1 I1+z v 10g2220g n s+n+1l
n=1" s+n n=1
1 O 142 1 o [ 1 1[0
=——>» 1 L) = dx = dx.
1og2nzlog<1+nil> log2n§:1/nill+a: v logQ/O 1tz

2.2 The Markoff and Lagrange spectra

From Theorem 2.0.3, we can define the best bound of each irrational number for

Corollary 2.0.2.

Definition 2.2.1. For any 6§ € R\ Q, we define the Lagrange value L(0) by
L(0) :=sup {c >1:|g0 —p| < clq for infinitely many p € Z, q € N} .
The Lagrange spectrum £ is defined to be
Z ={L():0 € R\ Q}.

The following theorem, called Perron’s formula, tells us that for each irrational
number, its Lagrange value is obtained by the regular continued fraction of the

number [53].

73 " ]
11 :I_E _'-\..-_'l'!. "‘.ll
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Theorem 2.2.2 For any 6 = [a1;a2,a3,...] € R\ Q,

L(#) = limslyp ([O; Uy A1,y - -+, 1) + [Qnt1; Gngo, - ]) .
ne

Proof. Using (2.2), (2.5), and Proposition 2.1.2, we have

L(a) = limsup|g(ga — p)| "
pEZ,qeN

= limsup |gn (gnax — pn)|
neN

Dn +pn—1Tn(a) _ Pn >_1
qn + QR—lTn(a) qn
T (c) >_1

@n(qn + gn1T"())

= lim sup (qi
neN

= lim sup (qz
neN

= lim sup (T”(oz))_1 + dn-1
neN qn
= limsup ([ant1; ant2s--- ]+ [05an, ..., a1]) . O

neN

Let us define the Markoff value and the Markoff spectrum.
Definition 2.2.3. For an indefinite binary quadratic form
f(z,y) = az® + bry + cy?
with a,b,c € R and 6(f) = b*> — 4ac > 0, we define the Markoff number M(f) by

6(f)
(@, y)]

M(f)::sup{ :x,yEZQ\{(O,O)}}.

The Markoff spectrum A is

f(z,y) = az® + bry+cy? is indefinite with a,b, ¢ € R,

= M)
5(f)>0
Let f(x,y) = ax? + bzy + cy? be an indefinite binary quadratic form and 6 € R\ Q.
Compare
-1
0
lim sup <q2 0 — pD and sup (£) .
pEZ,geN q @ay)ez2\{(0,0)} |f(z,9)]

12 X _k':l_ ]-h &]
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Ifa=0,b=1,¢c= -0, then

5H 1,
@)l Jey— 047 (y

)

s f(z,y) = xy — 0y WithGER\Q}.

Remark 2.2.4.

£ = lim sup o)
(z,y)€Z2\Zx {0} |f(z,9)]

Let us write

f(a,y) = az® + bry + ey = (ax — By) (yx — dy)

for some «, 3,7,6 € R. Then,

5(f) = b* — 4ac = (By — ad)? and =

1
For coprime integers x,y, choose M € PSL(2,Z) satisfying M <$> = (()) Let
(Y

v(2)-6) #0)-6)

We have
5 36
det p det ? ~
5(f) _ a 9 _ a
flay)| a 5 5
| | det | * b “det [ * 0 det ! ? - det !
Yy o« Yoy 0 « 0 v
MENII VRV
a A « ~y
Hence,
sup 6(f) — sup M - é - M- 5‘ (2.6)
@yez2\ (00} [f (@9 mepsiez) ! ol

13 'y _C:I_ ]-h =]
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) _8ap gap ray
3 V12 V13 9\/33—65 o

Figure 2.2 The discrete set, gaps, and a ray in .# and £

)
Note that g and 5 are roots of at? + bt + ¢ = (at — B)(yt — ) = 0. Therefore,
M = {M(f) . f = ax® + bry + c¢y? is indefinite with a, b, ¢ € R and §(f) > O}

= sup |[M-x—M-y|l:z,yeR.
MePSL(2,Z)
Remark 2.2.5.

L = { lim sup o)
(zy

)EZ\Z {o}m:ﬂ%w:wy—f)y? WithaeR\Q}
€ X R

= limsup |[M-0—M -7 :0cR\Qp, where S = nol ‘nez
MEePSL(2,2)\S L 0

Hence, the Markoff and Lagrange spectrum can be defined in terms of bi-infinite

or infinite positive integer sequences.

Proposition 2.2.6. The Markoff spectrum . is the set of
M(A) :=sup ([0;an—1,an-2,...] + [an; nt1s--.])
nez

as A:=...,ap_1,0an, Gnt1, ... runs through all of bi-infinite sequences.

The Lagrange spectrum % is the set of

L(B) :=limsup ([0; an—1,an-2,...,a1] + [an; ani1,...])
neN
as B := ay,as,... runs through all of infinite sequences.

Let us recall some results on Markoff and Lagrange spectrum as Figure 2.2.

Markoff showed that both .# and £ below 3 are discrete sets [46].

14 X _k':l_ ]-h -z



CHAPTER 2. DIOPHANTINE APPROXIMATION

Theorem 2.2.7 The Markoff (or Lagrange) spectrum below 3 consists of the
number vV9m? — 4/m, when m is a positive integer such that

m? + m12 + m22 =3mmime, M > mi, Mo

for some m1, mo € N. Given such a triple m, m1, ms, define u to be the least positive

residue of £ my/mg (mod m) and define v by
u? +1 =om.
If we define the quadratic form fp,(x,y) by
fn(x,y) = ma? + (3m — 2u)zy + (v — 3u)y?,
then f,,(z,1) = 0 has a root « such that
L(a) = V/9m2 — 4/m.

Tornheim showed £ C .# [65]. Perron proved that there exist gaps in .# [53].

Theorem 2.2.8 The intervals
(vV12,V/13) and (V13, (9V/3 + 65)/22)

are maximal gaps in A .
Hall showed the existence of a ray in .Z [32].

Theorem 2.2.9 Any real number can be written in the form

a+[0;b1,b2,...]4+[0;c1,¢0,...],

where a is an integer and the partial quotients b; and ¢; do not exceed 4 for all i € N.

15 'y _C:I_ ]-h =]



Chapter 3

The Markoff and Lagrange
spectra associated with the

Hecke group

We extend the classical Lagrange and Markoff spectra into the case when the quotient
group is not the modular group I'. Let G be a subgroup of SLy(R). Then we define

the Markoff spectrum on group G as

N 57 _ 1
A (G) = {meeG|f<M>| 5> 0}’ fo) =] (M (o)) '

Then, by applying (2.6) to G, we deduce that

U1

0
sup (/) = sup YL Ve

vea [f(M)] mea U9 vg | (3.1)

The Markoff spectrum .# (G) is the set of the maximum heights of geodesics in H/G.

We define the Lagrange spectrum on group G as

=< limsu 0(f)
#(@) = {lMeG" Fani | 70> 0} |

16 2]
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0 —1 LA
The Hecke group H, is the group generated by S = Lo ) and T = (O 1‘1) )

where \; = 2008% and ¢ > 3 is an integer. When ¢ = 3, then A3 = 1 and the Hecke
group Hj is the modular group I' = SLy(Z). Thus,

M= H(H), L= L(Hs).

The minimum of Lagrange spectrum, which is called Hurwitz’s constant, for the
Hecke group Hy was studied in [31,42]. In particular, if g is even, then the minimum
of the Lagrange spectrum .2 (H,) is always equal to 2. In this chapter, we deal with
the Lagrange and Markoff spectra on the Hecke group Hy and Hg.

3.1 The Markoff and Lagrange spectra on Hy

3.1.1 The Markoff and Lagrange spectra of the index 2 sublattice

The Markoff spectrum of 2-minimal forms
Let A be an index 2 sublattice of Z2. For an indefinite quadratic form f, we set

. : FAC) I
m = min inf , inf x,
" {(:w)eA\{(o,o)} 2 epeaaa /Y]

and

ma(f)
Let Htp : Q — R be the height function defined as

272, if (p,q) € A,
Ht, (p) _)7/2 it(pa)
q i if (p,q) ¢ A.

My = { o) :0(f) >0}.

For an irrational «, let

La(a) :=limsup (HtA (p>

p/qeQ

and
Ly ={Lx(a) e Rl e R\ Q}.

17 .__:lx_g _'\-:_'l'!
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We claim that .#5 and % do not depend on the choice of the index 2 sublattice A.
There are three index 2 sublattices of Z2. Let

Ao ={(n,m)€Z*|n+m=0 (mod2)}.

Then other sublattices are represented as

1 1 10
AN =2Zx17Z= Ao, No =7 x27 = Ag.
1 (o 1) (b}

For an indefinite quadratic form f, let

f1($,y)=f($+y,y), fQ(may):f($ax+y)

It is straightforward to check that §(f) = 6(f1) = d(f2) and

m/\o(fl) :mA1(f)7 mAO(fQ) :mAz(f)‘

Since the maps f — f; and f — fy are 1 to 1 correspondence from the set of
indefinite quadratic forms to itself, the Markoff spectrum .#5 does not depend on
the choice of the sublattice A. We will show that the Lagrange spectrum % does
not depend on the sublattice A.

Let

dpy(z) _ dps(z) 1
dx (z+1)%’

we have
LAo (a) = LAI (a) = LA2 (Oz)

The Markoff spectrum of the index 2 sublattices

18 -':Ix_ﬂ _'-\.I: o
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We show .#5 coincides with the Markoff spectrum on sublattice of index 2 studied
by Vulakh.
Let A be an index 2 sublattice of Z? and F, be the set of real, indefinite quadratic
forms
f(z,y) = ax® + bzy + cy®, a,b,ceR, §(f) =b*>—4ac>0

satisfying the condition

[f(@,y)] = 2m(f)  for (z,y) € A\{(0,0)}

We set

Note that

We will call a vector v € A is primitive if there is no w € A such that v = kw

for some integer k > 2. By a direct calculation we have the following lemma:

Lemma 3.1.1. The map

1
wr@w%%§®+%x—w

is a bijection from the set of primitive vectors of Ay to the set of primitive vectors
in ZQ \ Ao,

Proof. Any common factor of  + y, x — y is 2 or a factor of z and y. Therefore, if
x, y are coprime, then x + y, * — y have no common factor except for 2.

If (z,y) is a primitive vector in Ag, then x, y are both odd and ¢(z,y) = %(CL‘ +
y,r —y) is a primitive vector in Z2. Since xQﬂ + 5% =2 =1 (mod 2), ¢(x,y) does
not belong to Ag.

If (x,y) is a primitive vector in Z? \ Ag, then one of x, y is odd and the other is
even. Therefore, x 4+ y, * — y are both odd, thus = + y, + — y are coprime. Hence,

¢ Y (z,y) = (x +y,x — y) is a primitive vector in Ao. O

Theorem 3.1.2 We have
M2 = s

19 :_'i o1l
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Proof. Let
mh(f) = inf z,9y)|, mi(f) = inf z, 7).
(D= e Wl ()= e )
T,y coprime z,y coprime

Then we have

Fa = {f(x,y) |mi(f) > 2m3(f)}

ma(f) = min { ") mi(f)} .

For an indefinite quadratic form f we set

Fey) = f (mj; "’”ﬁy) |

and

Then we have by Lemma 3.1.1

wh(h = nt o (TELEY) = nef(Va) = ),

(@,y)EA V2 V2 ) EZ2\A
z,y coprime z',y’ coprime
7 . T+yYy T—Y . Lo,y mij\(f>
wih = wf (L) o (o) = A
W)EZP\A 2 2 "y EA 2 2
a(vfyyzgprir\ne f f z/ S;’ cho)prime \/>

Therefore, if f ¢ Fa, then mh (f) < 2m§ (f), thus 2mS (f) < mR (f) and f € Fa.

Since

~ mP (F ~ mP
mA<f>—min{ A) mi(f)}—min{mi(f), Azm}—mA(f)

and 6(f) = d(f), we conclude the theorem.

The Markoff spectrum on the Hecke group H,

In [59, page 364], Schmidt considered the Markoff spectrum in the group

A2{<a Z) ‘ad_bczl’bzo (mod 2), a,c,dGZ}
c
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b
é(a d) ’ad—bc:2,a5b5d50 (mod 2), c€Z
c

For any primitive integral vector (z,y) € Z2, there exists

T % e . 1 [z x e
M = € Ay ifrisodd, M=— € A, if z is even.
Yy * V2 Yook

Therefore, we have for A = 2Z x Z

inf | f(M)| = ma(f)

MeA,

and

M (D) = M.

The subgroup Ag of SLy(R) is conjugate to Hy, i.e.,

Vio)

Ay, = UH,U ! where U =

Indeed, we check that

1 2 1 V2), 1 (o =2\ (0 -1\ _,
<o 1>_U<0 1>U’ ﬂ(l 0>U<1 0>U'

They are generators of Ay. The fundamental domain of Aj is given in Figure 3.1.

For an M € A, there exists H € Hy such that M = UHU~!. Therefore for any

§neR,

_ - § U
sup |[M-&—M-n|= sup ([UHU L ¢ —-UHU - ‘:\@sup H — —H —|.
MeAz‘ . g HeH, ¢ 7 HeH, V2 V2

Hence, by (3.1), we have
M (Do) = My = \/i///(H4).

21 1] O
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-1+ 141

-1 0 1

Figure 3.1 The fundamental domain of As.

The Markoff and Lagrange spectra of the unit circle

The Lagrange spectrum % coincides with the Lagrange spectrum for the intrinsic

Diophantine approximation on the unit circle

S'={(z,y) e R? | 2? +y* = 1},

a b

¢
(a,b, c) satisfying a? + b?> = ¢? where a,b € Z and ¢ € N. Define the height function

for z = (%,%

(a,8) € S

A rational point z = (2,%) € S! is denoted by a primitive Pythagorean triple

) in S' as Htgi(z) = c. We define the Lagrange number for a point

1
Lgi(a, ) = limsup
zeSINQ2 Htg1(z) - ||(o, B) — 2|

and the Lagrange spectrum as

2(8") = {Lsi (e, B)| (. ) € S\ @?.

Let ¢ : R — S\ {(0,1)} be the inverse of the stereographic projection given by
2t 2 -1
H=|-—, 00— 1.
o0) <t2+1’t2+1>

22 1_=-' 2 1 =]
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Then, ¢ gives a one-to-one correspondence between the rational number % and the

Pythagorean triple (2pq, p*> — ¢*,p* + ¢*) for (p,q) ¢ A or (pq, PQEQZ’ p242rq2> for
(p,q) € A, where
A={(n,m) e 7?2 |In+m=0 (mod 2)}.

Hence, we have

~1
La(t) = limsup [ Htp (p) ‘t—p‘
p/q€Q q q

o)) s

L =2.2(5Y).

)

= 2limsup (Ht51 (
(a,b,c)

Therefore, we have

See [40] and [21] for the detail.

3.1.2 The Markoff spectrum and the Romik expansion

The Romik’s dynamical system on S! and digit expansions

Let
Q={(z,y) eR*|2® +y* =1l and z,y >0}

be the quarter circle of S!. Recall from [55] that the Romik’s dynamical system
(Q,T) is defined by

12—z —2y| |22z —y|
T = 2
() <3—2x—%ﬂ3—2x—2y (32)
for (z,y) € Q.
To each P = (z,y) € Q, we assign a Romik digit d(P) to be

1 ifd<a<l,
dP)=q2 if2<a<i (3.3)

3 ifo<z<i
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Then the j-th Romik digit of P is defined to be
d; = d(T"1(P)) for j =1,2,....
The sequence {d;}72, will be called the Romik digit expansion of P and we write
P =(z,y) =[dy,da,...]o. (3.4)

The map T shifts digits to the left, so that

k times
k
THP) = (To- o T)(P) = i1, disas - o
For instance,
(J5:25) =122, Joand (3,%%) = [3,1,3,1,...]o.
We denote the infinite successions of 1’s and 3’s by 1°° and 3°° respectively. Since
the points (1,0) and (0, 1) are fixed by 7', we have

(1,0) =[1,1,1,...]o = [1®]o and (0,1) =[3,3,3,...]o = [3¥]0.

All irrational points on Q have a unique Romik digit expansions of the forms
[d1,dz,...]o. In what follows, we identify P € Q with an element in {1,2,3}" using
Romik digit expansion of P. By the infinite Romik sequence, we mean an element of
{1,2,3}N.

The map T originates from an old theorem on trees of primitive Pythagorean
triples, that is, triples (a,b,c) of (pairwise) coprime positive integers a,b,c with
a? + b = ¢, which is often attributed to Berggren [10] and Barning [9]. We define
U, and Us as the reflection by the z-axis and the y-axis respectively on S'. Let H
be the reflection by the line z + y =1 and Us = Uj o U3 = U3 o Uy. Then we have

Ul(%,y) = (‘Ta _y)a UQ(@',Z/) = (—$, _y)7 U3($,y) = (_xay)a
2—x—2y 2-2x—y
H = .
() <3 — 2 -2y’ 3 — 2z — 2y>
Note that the Romik map T is defined as acting H first and applying Uy in order to
Us(H(P)) € Q, ie.,

T(P) = (Ugo H)(P) for dy(P) = d.

24 'y _k':l_ ]-h =]
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For an infinite Romik sequence P = [dy,da,ds,...]o € Q, we define

P*=1...,ds,dy,di]g := H(P) € S*\ Q.

In what follows, we identify P* € S'\ Q with an element in {1,2,3}%<0 using the
Romik digit expansion of P*. We check the idempotent maps U; act on S! as follows

Ud (["'7d2ad17d]Q) :[dlvd%"']Qa Ul(["'ad27dla2]9):["'7d27d1a3]9a (35)
UQ([...,d27dl,3]Q):[-~-,d27d171]Q7 Ug([...,dg,dl,l]g):[...,dg,dl,Q]Q. (36)

Let V : S — S! be the reflection given by (a, 3)¥ = (8, a). Then for a given infinite
Romik sequence P = [dy,ds,...]g, PV =[d{,dy,...]o where

3 ifd=1,
=<2 ifd=2,
1 ifd=3.

Stereographic projection to the extended real line

For P = (a, 3) € S', we define a modified stereographic projection following [21]

1 «
Pl=— —-1]). 3.7
7= 75 (55 1) 7
For an infinite Romik sequence P = [a1, a2, as,...]g € Q, we denote

[P] = [a1,az,a3,...] € [0,00] C RU {oo} =: R.
For P* =[...,b3, by, b1]g € S'\ Q, we write
e b bo,bi] = [P7] = [H(P)] = —[P] = —[by, o, by, .. |

The reflection V : ST — St given by (a, )V = (3, @) induces a map V : R — R given
by

a+p-1\"_atp-1_v21-p)
V2(1-8))  V2(l-a)  atp-1

25 ¥ [, -1 =1
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vi_ 1 0 1 .

Since T'(P) = (Ug o H)(P) for dy(P) = d, we have

Therefore, we have

[d,P] = (HoUgoUyo H)([d,P)) = (HoUy)([P]) ford=1,2,3.

Thus, we deduce that

[P] _ [Pl+v2
V2[P] +1’ [2’P]_\/§[P]+1’

for P € {1,2,3}". Let Ny = HU,. Then

1 0 1 V2 1 V2
v w9 w0 0)

Then, using (3.5) and (3.6) we deduce

[1,P] = 3, P] = V2 + [P] (3.8)

Ny - [dy,da,...] =[d,dy,da,...]

oy d3,do if d=dj, (3.9)
Ng- [ do,di] = | |

[C,dg,dg,,...] ifd;lédl,

where ¢ € {1,2,3} is the digit of ¢ # d and ¢ # d;. In particular we check
LP)=Ni-[Pl, [2P|=N>-[Pl, [3,P|=N; [P
and deduce that

0<[1,P]< <[2,P]<V2,  V2<[3,P]

v e

See [21] for the detail. Some cylinder sets of the Romik expansion are given in

Figure 3.2.

26 ¥ [, -1 =1
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(1,1 [1,2)[1,3] [2,3][2,2] [2,1] [3,1] [3,2] [3,3]
0 _1 1 3 3

Figure 3.2 Cylinder sets on R

By direct calculations using (3.9), we have the following lemma.

Lemma 3.1.3. Let [P*] = [...,a2,a1,a0], [Q] = [b1,b2,...] be two distinct points.

Let M = Ng, ---Ng,,. If dy,—j = aj for 0 < 5 <m — 1, then

M - [P*] = [...,am+2,am+1,am], M - [Q] = [am,l,.. .,ao,bl,bz,...].

If there exists 0 < k < m — 1 such that d,,,—; = a; for 0 < j <k —1 and dy,— # az,
then

M-[P*] =[d1,...,dm—k—1,C aks1,0k42,...], M-[Q] = [d1,... ,dp_k,ak_1,...,a0,b1,b2,...]

where ¢ # ap and ¢ # dy,_.

The action of the Hecke group H, and the Romik map

H:<—1 0)7 U:<—1 —\/§>7 J:<0 1>'
0 1 0 1 10

Let G4 be the group of 2 x 2 matrices generated by reflections H, U, J. We note that

1 _ _
HU:T:< ﬂ) UH:T—1:<1 ﬁ) HJ:JH:S:(O 1)
0 1 0 1 1 0

Let

and the Hecke group Hy is generated by S and T'. It is straightforward to check
that G4, = H4 U HH, and the Hecke group Hy is an index 2 subgroup of Gy4. The

fundamental domain of Gy is given in Figure 3.3.
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U 1 H HU HUH

Figure 3.3 The fundamental domain of the group G, on the upper half space.

Using the fact that (JU)* = I, we have JUJU = UJU.J, thus all elements in G4
generated by J and U are

I, J  U=HN;, JU=HNJ, UJ=HN;J,
JUJ =HNy, UJU=HNyJ, JUJU=UJUJ = HN>.

Since
HJ=JH, N{J=JN3, NyJ=JNy, N3J=JNy,

we establish the following proposition:

Proposition 3.1.4. Any element in Gy is one of the following forms

I, H, Ng ---Ng HNg, ---Ng,, Ng --Ng,H, HNg ---Ng, H,

m ) m

J, HJ, Ny ---Ng.J HNg--NgJ Ng---Ng HJ, HNg Ny HJ.

We remark that the Romik expansion of a point P in S' is related with the even
integer continued fraction ([60], [41]; see also [62]) when P is projected into the real
line by the standard stereographic projection («, ) +— ﬁ instead of the skewed
projection in (3.7). Let [di,da,...] be the Romik digit expansion of P and (k;)i>0

be chosen as the subsequence of dy, # 3 with kg = 0. The even integer continued

28 #;rx_'! _CI:I_ ]-l| '.-f,]_ T_III
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fraction expansion of

o €1

= 2a9 + with a; €N, ¢ € {l,-1}
1- B &2
2a1 +
2a2 +
should satisfy
-1 ifdg, =1,
a; = kip1 — ki, €=
+1 ifdy, =2.

For the relation between Romik map and the even integer continued fraction, consult
[35]. The expansion by the matrices N1, Nao, N3 in Hy enjoys more symmetry than
the expansion by the Rosen continued fraction ([56], [63]; see also [48] for the dual

map).
Expression of the Markoff number using the Romik sequence

For infinite Romik sequences P = (ay)n>1 and Q = (by)n>1, we define a combined

two-sided Romik sequence

. bn, ifn>1,
P |Q = (Cn)nEZa Cp =
A—_n+1, if n Z 1,

which is an element of {1,2,3}%2. We give an equivalent relation (a,) ~ (b,) in

{1,2,3}% if and only if there exists some k € Z such that a, 1 = b, for all n € Z.

Then an equivalent class of {1,2,3}” under the equivalence relation is called a doubly-
infinite Romik sequence. A section of a doubly-infinite Romik sequence is an element
in the equivalent class. For a doubly-infinite Romik sequence T with a section P*|Q,
we define TV and T* as the doubly-infinite Romik sequences with a section (PY)*|Q"
and Q*|P respectively.

For distinct boundary points &, € JH, we define a reduced two-sided Romik
sequence P*|@Q given by

[P*]:f:[...,ag,al], §=[...,a2,a1],
for
[Q]:n:[b17b27"']7 n:[bl,bQ,...L
29 1_=-' _k'.':_]- | &=
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[P*]:Nak"'Nal'fz["'vak-i-Qvak-I—l]v for 52[...,a2,a1],
[Q] - Nak "'Nal ‘= [cvbk+1ubk+27"']7 n= ["'7b27b1]7
[P*]:Nak---Nale:[...,ak+2,ak+1], for §:[a1,a2,...],
[Q] = Nak -"NQIH n = [C, bk+1,bk+2,...], n= [bl,bz,...],

where k is the largest integer satisfying that a; = b; for 1 < j <k —1, a; > by, and
c is the digit of ¢ # b, ¢ # ak.

Proposition 3.1.5. Let £,n € R be two distinct points on the boundary of H and
P*|Q be the reduced two-sided Romik sequence of &, 7. Then we have

Q]+ [Pl =[Q] - [P"] > [n—¢&].
Proof. First, we assume
E=lc1y vy Cho1, Ay Qg1 - -+ ], M= [C1y -y Cl1, bky bg 1, - - - ]
with ay > by, ¢ # ag, ¢ # bg. By (3.8), we have

) Pl [Q
P =10l = | AE s Dnea + D

and

= |[1, P —[1,Q]| = |[2,Q] - [2, P]|

[Pl —1[Q] =[3,P] - [3,Q]
Therefore
s Bt - ] = lans agss- 11 = I = €.

By (3.8) again, we have

[P] [P+ V2

[QH—[LP]:[QH'WZ[Q]+\/§—m=[3aQ]—[27P]a
_ [Pl +v2 P -
QI+ Pl=[Q+ s =@+ V2 mn e =B.Q- [P

Q1+ 3, P] = [Q] - [P*3] > V2> [2,Q] - [, P].
Therefore, we have

(¢, bkt1, Okt2, -]+ (@1, @pr2,s o] > |[bks bty - -] — [ag, agg1, - ]| > n—¢|. O

30 ¥ [, -1 =1
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A geodesic v in H is determined by two end points &, 1 in OH. Therefore, for each
geodesic v, we define the reduced two-sided Romik sequence P*|@ and also associate

a doubly-infinite Romik sequence T' with a section P*|Q.

Proposition 3.1.6. Let v, 7 be geodesics of H with associated doubly-infinite Romik
sequences T, T respectively. There exists M € Gy4 such that v = M -7 if and only if
T e [T, 7, T, (V).

Proof. Let P*|Q, R*|S be the reduced two-sided Romik sequences of geodesics 7, 7.
Then there exist M, My € Gy such that [P*] = M; -€, [Q] = My -1 and [R*] = My -€,
[S] = My - 7} for the endpoints &,7 of v and &, of 7.

If T =T, then P*|Q ~ R*|S. By Lemma 3.1.3, there exists M such that

[P*]=M-[R7], [Q=M-[S].
Then we have
E=M*MMy-¢§ and 5= M MM,-7.
For the case T =T*, T =TV, T = (TV)*, by the same way, we can find M such that
§= MMM -ii,  n=M'MM,-¢E
E=M"MJMy-& 1= M "MJM,-7.
E=M{'\MJIMz 7] n=M;"MJM,-¢,

respectively.
On the other hand, if there exists M € Gy such that £ = M - 5 and, n =M -7,
then
[P*] = MiMM; " - [RY], [Q)=DMMM;"-[S].

By Proposition 3.1.4 and Lemma 3.1.3,M1MM51 isTorNg, ---Ng, ot HNg, ---Ng, H
or J or Ng,---Ng, J or HNg, ---Ng, HJ. If M1]\4J\42_1 is one of I, Ny, ---Ng,,,
HNy, -+ Ny H, then P*|QQ ~ R*|S. Otherwise, P*|Q ~ (R*|S)Y. If there exists
M € Gy such that E =M -7, n =M - é, then by the same way, we deduce that

P*|Q ~ S*|R or P*|Q ~ (S*|R)". O
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Let&,n e R be two distinct points on the boundary of H and T be the associated
doubly-infinite Romik sequence of &, 1. Then Propositions 3.1.5 and 3.1.6 imply that

sup |[M-&—M -1 = maX{Sup (@] = [P*]], sup [[@"] - [(PV)*H}

MeGy P*|Q P*|Q

where P*|@ runs over all sections of T'. Let
L(P*|Q) == [Q] = [P] = [P] + Q.

Using (3.1), Proposition 3.1.5 implies the following proposition.

Theorem 3.1.7 Let T be a doubly-infinite Romik sequence. We define M(T') by

the maximum of two supremum values as follows:

M(T) = Sup max {L(P*|Q), L(PY)"1Q¥)},

where P*|@Q runs over all sections of T'. The Markoff spectrum is the set of the Markoff
numbers taken by M(T') as T runs through all of doubly-infinite Romik sequences.

M (Hy) = {M(T) € R|T is a doubly-infinite Romik sequence}

Theorem 3.1.8 (|21, Corollary 2.17]) Let T be a doubly-infinite Romik sequence.

We define L(T') by the maximum of two limit superior values as follows:

L(T) = limsupmax { L(P*|Q), L((PV)*|Q")} ,
PIQ

where P*|Q runs over all sections of T'. For an infinite Romik sequence P, we define
L(P) := L(*°3P).

The Lagrange spectrum is the set of the Lagrange numbers taken by L(T) as T runs
through all of doubly-infinite Romik sequences.

Z(Hy) ={L(T) € R|T is a doubly-infinite Romik sequence}
= {L(P) € R| P is an infinite Romik sequence}.
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3.1.3 Closedness of the Markoff spectrum

We follow the argument of Bombieri in [12, page 191]. Given the discrete topology
on {1,2,3}, the product space {1,2,3}% is compact due to Tychonoff’s theorem.

Lemma 3.1.9. Let T be a doubly-infinite Romik sequence. If M(T) is finite, then
there exists a doubly-infinite Romik sequence T with a section P*|@Q such that
M(T) = M(T) = L(P*|Q).
Proof. There exists a sequence of sections {P*|Qy }nen of T or TV, say T, satisfying
that lim L(P}|Q,) = M(T). Since the product space {1,2,3}” is compact, there
existsn ;Os.oubsequence { P} |Qn,, }ren which converges to a section P*|Q of a doubly-
infinite Romik sequence T'. By the continuity of L, we have L(P*|Q) = M(T) <
M(T).

If R*|S is another section of T', then R*|S is a limit of {R},, |Sn, tren, which is
a shifted subsequence of {Py |Qy,}. Thus L(R*[S) < M(T), which implies that
M(T) < M(T). O

Theorem 3.1.10 The Markoff spectrum .# (Hy) is closed.

Proof. Choose a convergent sequence {my, }nen in .# (Hy). By Lemma 3.1.9, there
exist a sequence of doubly-infinite Romik sequences {7}, },en with a sequence of
sections of { P¥|Qy }nen such that m,, = L(P}|Q,,) for all n € N. By the compactness
of {1,2,3}%, we have a converging subsequence {P; |Qn, }ren to the limit P*|Q
which is a section of a doubly-infinite Romik sequence 7T'. By the continuity of L, we
have lim m,, = L(P*|Q), thus limm,, < M(T).

Let R*|S be another section of 7. Then R*|S is a limit of finite shifts of subse-
quence of { P}, |Qn, }ren. Therefore L(R*|S) < M(T},) and M(T') < limm,,. Hence,
M(T) = limm,, and we conclude that the Markoff spectrum is closed. O

Theorem 3.1.11 The Lagrange spectrum £ (Hy) is contained in the Markoff

spectrum A (Hy), ie., L (Hy) C A (Hy).

Proof. For a doubly-infinite Romik sequence T', there exists a sequence of sections

{P¥|Qn}nen of T or TV, say T, such that £(T) = lim L(P}|Q,). Since the product
n—oo

space {1,2,3}” is compact, there exists a subsequence { Py, |@n,, }ken which converges

to an element P*|Q € {1,2,3}%, which is a section of a doubly-infinite sequence T.
By the continuity of L, we deduce that £(T) < M(T).
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For another section R*|S of T, we have L(R*|S) < L(T) since R*|S is a limit
of a sequence of sections of 7. Therefore, M(T) < L£(T). Hence, L(T) = M(T) €
A (Hy) O

3.1.4 Hausdorff dimension of the Lagrange spectrum

In this section, we show that the Lagrange spectrum has positive Hausdorff dimension
after the first accumulation point.

Assume that ¢ > 0 is given. Since
[32°] =v2+1, [12%]=+v2-1,
there exists m > 0 such that
[(322mF21)°°] 4 [(122™3)°] < [32°°] + [12°] + ¢ = 2V2 +&. (3.10)
Let A = 32?%21, B = 32?™1. Define

E={Pec{1,2,3N|P=B™A"B™A™ ... forall i, n;,m; € N},
E={Pc{1,2,3\N|P=B™AmB™A™ ... foralli,n;,m;€{1,2}}.

Lemma 3.1.12. We have
dimg ({[P]| P € E}) > 0.
Proof. Let
o= (B2A)<], B:=[(BAY)™].

Then for each P € E, we have
a < [P]<p.

Let

Na:= N3N 2N,

1 ((1 +V2)P 4 (1= V2P (14 v2)Pm S — (1 — \/§)2m+3)
9 (14 V/2)2mH3 — (1 — 2)2mH3 (14 /2)2m+2 4 (1 — /2)2m+2 ’
Np: = N3N N,

1 ((1 + V2P (1= V2)m 2 (14 V/2)P ! — (1 - ﬁ)QmH)

= 5 (1 + \/5)2m+1 _ (1 o \/5)2771-1—1 (1 + \/§)2m 4 (1 _ \/i)Qm
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Then, we have

NiNy-a < [B?AP] < N3N, -, NiN3-a<[B?A?P]| < N:iN3 -3,
NNy -a < [BAP] < NgN,-f, NpN3-a<[BA?P] < NgN3%-p.

Let D = [a, (] be the closed interval in R and define f; : D — D as
filx) = NENa -z, fo(z)= NpNi-z, fs(x)=NpNa-z, fi(x)=NpNj-z.

Then {f1, fa, f3, fa} is a family of contracting functions, which is called an iterated
function system (see e.g. [27]). We check that there are ¢; > 0 for i = 1,2, 3,4 such
that |f;(x) — fi(y)| > cilz — y| for z,y € D. The set

F=A{[P]|Pc E}

satisfies
F=f(F)U f2(F)U f3(F) U fa(F).

By [27, Proposition 9.7], we conclude that
dimg (F) > s,
where s > 0 is the constant satisfying
ci+e+eg+c =1 O

Choose
P=B™MAMB™A™ ... c E,

where n;,m; € {1,2}. Let
Wy =B™MA™MB™2... A"
and
Tp = *BAW, B2 AW, B A3Ws B*A3W, - .- BEAPW, BF P A3 Wy -
Lemma 3.1.13. We have

L(Tp) = [Bloﬂ 43P,
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Proof. Let (RY)*32%|2°1S be a section of Tp. Then we have for k > 1,£ >0

L((RY)*32F|2¢18) = [2¥3RY] + [2/15] < [223%] + [21°°] = 2\3/§ +V2 <2V2

and for k=0
L((RY)*32%2¢18) = L((RY)*|32°19).

Therefore, we have

L(Tp) = limsupmax (L((RY)*|S), L((SY)*|R))
(RY)*|S

1 1
= max } lim sup < + [S]> , lim sup ( + [R]> ,
{(RV)*ls [R] (rV)*|s \[S5]
where (RY)*|S runs over all sections of Tp such that S and R are infinite Romik

sequences of concatenations of A, B. Using the fact that forn >m > 0and Q, R € E,
[A"Q] > [A™R],
we conclude that

[,(Tp) = lim sup L( .. Bk:—lASWk_lBk’A3WkBk+1A3Wk+1 L )

k—o0
= L(®B|A3P) = [(BY)>®] + [A%P] = [Bloﬂ + [A3P). O
Let
K= {[Bloo]Jr[ASPHPeE}.
Then, Lemma 3.1.13 and (3.10) yield that
K C Z(Hy)N (0,22 +¢). (3.11)

Since [P] + [A3P] = N3 - [P] is a bi-Lipschitz function on the closed interval
D = |o, 8], Lemma 3.1.12 implies that dimg(K) > 0 and we obtain the following

statement.

Theorem 3.1.14 For any € > 0, we have

dimp (//(m) N [o, 22 + e)> > dimpy (z(m) N [0, 2V2 + e)> > 0.
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3.1.5 Gaps of the Markoff spectrum

We investigate the existence of gaps in .#(H,) above the first limit point 2v/2 in
this section. In what follows, we say an interval (a,b) is a mazimal gap in .4 (Hy) if
(a,b)N.#(Hy) =0 and a,b € .#(Hy). We denote k consecutive W --- W by W*. We
denote an infinite sequence with period W and a doubly infinite sequence with period
W by W and W, For example, (122)% = 122122122, 132(13)>® = 132131313...,
and *(23)> = ...232323....

Theorem 3.1.15 The interval

21242 + 4823
(o2

>:(3.162...,3.181...)

is a maximal gap in .4 (Hy). Moreover, M(T) = /10 for T = *°(32)*>° and M(U) =
UAVRHSVIE f [ = $*232325 where S = (31321312). Moreover, M(U) is a
limit point of 4 (Hy).

Proof. Let my = %W and I = (v/10,mq). We check that M(*(32)®) =
V10 and M(5*232325) = my for S = (31321312)>. Let us prove that any infinite
Romik sequence does not have its Markoff number in I. Let T be a doubly infinite
Romik sequence. Suppose that M(T') € I.

First, if T or TV, say T, contains 333, then

M(T) > L(P*[333Q) = [P] + [Q] +3V2 > 3V2 > mq

for some infinite Romik sequences P, Q with T' = P*333(Q. Therefore, T and TV do
not contain 333.
Next, assume that T or TV, say T, contains 33. If T’ contains 233, then

. _ 1 L,
M(T)zL(P2|33Q)_[2,P]+[Q]+2\f22\/§+2\/§—\/i> 0

for some infinite Romik sequences P,Q with T'= P*233Q. If T' contains 1331, then
M(T) > L(P*1|331Q) = [1,Q] + [1, P] + 2v2

for some infinite Romik sequences P, Q) with T'= P*1331(Q). Since

Vi3
)

[1,P] > [1,1,2,3,3,2] = > 0.2463. . .
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for any infinite Romik sequence 1P contained in 7', we have

VT-V2

M(T) > 2 5

+ 2\6 > myg.
Hence, T and T do not contain 33. Since

L(P*22Q) = [2, P] + [2,Q] < V2 + V2 < V10,
L(P*12Q) = [1, P] + [2,Q] < <1 ivzevi,

\f
L(P*1|1Q) = [1, P] + [1,Q] < 7 + 7 < V10,
T or TV, say T, contains 3. We note that
L(P*1|31Q) = [1,P] + [1,Q] + V2 < \2 \}§+¢§<m

and
L(P*1]32Q) = [1, P] + [2,Q] + V2

_ 2
<[1,3,2,1,2] +[2,1,2,3,2] + V2 = 2v2 + V2 <10
2+ 7
for any infinite Romik sequences P, Q contained in T'. Hence, T or TV, say T, contains
232. Clearly, T' # °°(32)°°. If T' contains (23)°°, then there exists an infinite Romik
sequence P such that P does not start with 32 and 7' = P*23(23)*°. Thus,

145
V2

M(T) > L(P*2]3(23)™) = [3,2,3] + 2, P] >
_ Vs VI
V2 e T
Thus, each block 232...232 appearing in T has a finite length. If T' = P*1232Q for

some infinite Romik sequences P,Q, then

+1[2,3,1,3,2,1,2]

M(T) > L(P*12|32Q) = [2,1, P] + [2,Q] + V2 > +v2 > my.

2ff

Hence, 1232 and 3212 do not appear in 7. Thus, for P appearing in T, [P] < [S] if
P does not start with 32. If 7' contains 2323232, then there exists an infinite Romik
sequence P such that P does not start with 32 and T' = P*2323232() for some infinite
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Romik sequence (). Hence,
M(T) > L(P*2]323232Q) = [2, P] + [2,3,2,3,2,Q] + V2
> [2,5] 4 [2,3,2,5] + V2 = M(5*232325) =

On the other hand, if T does not contain 23232, then there exist infinite Romik
sequences P, ) such that both P and @) do not start with 32 and T = P*232Q. Thus,

M(T) = L(P*232Q) = [2,Q] + [2, P] + V2 > [2, 5] + [2, 5] + V2
> [2,5] +[2,3,2,5] + V2 = M(5*232325) =
Hence, we obtain T' = P*23232(Q for some infinite Romik sequences P, Q which do

not begin with 32. Since [2, P] + [2, 3,2, P] is decreasing on [P] and [P], [Q] < [S5],

M(T) > =(L (P*2|3232Q)+L(P*232]32Q))

1
2
= (PR32 P) + 5 (2,01 +23,2,Q) + V2
% (12,9 +1[2,3,2,5]) + % (12,8 + [2,3,2,8]) + V2
= (2,58 +[2,3,2,S] + V2 = M(5*232325).

Hence, any doubly infinite Romik sequence does not have its Markoff number in 1.

In other words, I is a maximal gap in .Z(Hy).

Finally, let us show that myg is a limit point of .#Z(Hy). For k > 1, let Uy, :=
§*232325;:3232S where S, := (31321312)¥3132. Since Uy, = Uy*, we have M(Uy) =
13,2,5,3,2,3,2,5] + [2,3,2,5]. Thus, klirgoM(Uk) = mg. Since [P] < [S] for any
infinite Romik sequence P starting with Si, M(Ug) > mg for all k. Hence, mg is a
limit point of .Z (Hy). O

Theorem 3.1.16 The interval

<\/?78,\/E> = (3.085...,3.162...)

is a maximal gap in .# (Hy). Moreover, M(T) = ¥23 for T = >°(31321312)>

Proof. Let I = (@,m) and T be a doubly infinite Romik sequence. From
Theorem 3.1.15, v/10 € .# (Hy). Suppose that M(T) € I. From the proof of Theorem
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3.1.15, both T and TV contain neither 33 nor 232. We assume that 7' does not contain
33,11,212,232.

If T does not contain 2, then 7' = °°(31)> and M(T) = v/6 ¢ I. Thus, 2 appears
in T. Let S = (31321312)*°. For any infinite Romik sequence R appearing in T
[SY] < [R] < [S] if R does not start with 32 or 12. Thus, for infinite Romik sequences
P,Q with T = P*2Q,

L(P*2Q) = [P] + [2,Q] < [S] + [2,87] = M((S")"25).

For infinite Romik sequences P, Q with T'= P*13Q, [Q] < [2, 5] and [3,1, P] < [S].

Thus,
L(P*113Q) = [1,P] + [Q] + V2 < [3,1,P] + [2,5V] < [S] + [2, 8V] = M((SV)*29).

Since each section of T is in the form of P*|2Q, P*2|Q, P*1|3Q, or P*3|1Q, we deduce
that M(T) < M((SV)*2S). Hence, any doubly infinite Romik sequence does not have
its Markoff number in I. It is obvious that M(T) = @ for T = °°(31321312)*.
Thus, [ is a maximal gap in .4 (Hy). O

3.1.6 Hall’s Ray

In this section, we prove the existence of Hall’s ray. Let
F={[P]| Pe{1,2} x {1,2,3}" contains neither 111 nor 333}.

Let S = (332112)°°. Then, the minimum of F' is @ =[SY]=11,1,2,5] and the
maximum of F is v7 — /2 = [2,8V] = [2,1,1,2,S]. For a # b, denote

(a,b) = {t € R| min{a, b} <t < max{a,b}}.

First, let us verify that F' can be obtained by applying the Cantor dissection process

to the interval

Fy:=([SV],[2,8"]) = [‘ﬁ;ﬁ VT — ﬂ] .

Now, let us define six types of intervals as follows. In a dissection process, each type

of interval is divided by the following rules:
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(I) For ap—1 # 1,
([al,...,an,l,Sv], [al,...,an,l,l,SH

is divided into the union of ([as,...,an-1,S"], [a1,...,an-1,1,2,5"]) and
(la,...,ap-1,1,3,8V], [a1,...,an—1,1,5]). Thus, each interval of type (I) is
divided into one interval of type (III) and one interval of type (VI).

(IT) For any an_1,
<[(ll, s 7an7172a5v]5 [Cll,- . 'aan*17235]>

is divided into the union of { [a1,...,an_1,2,5"], [a1,...,an-1,2,2,5V]) and
(la1,...,an-1,2,3,5Y], [a1,...,an—1,2,S]). Thus, each interval of type (II) is
divided into one interval of type (III) and one interval of type (V).

(III) For a,—1 # 3,

<[CL1, cee 7an—17358\/]7 [(11,. . .,an_l,S]>
=(la1,-..,an-1,3,5], [a1, .., an-1,3,3,2,5"])

is divided into the union of ([a1,...,an_1,3,5"], [a1,...,an_1,3,2,S"]) and
(la1,...,an-1,3,3,58V], [a1,...,an-1,3,3,2,5V]). Thus, each interval of type
(ITI) is divided into two intervals of type (V).

(IV) For an—2 # 1,

<[a1, .. .,an,Q,Sv], [al, vy Ap—2, 1, 1,5])
:< [CLl, sy n—2, 17 17278]7 [ala sy n—2, ]-7 175]>

is divided into the union of ([a1,...,an—2,1,1,2,8], [a1,...,an—2,1,1,2,SV])
and ([a1,...,an-2,1,1,3,5Y], [a1,...,an—2,1,1,S]). Thus, each interval of

type (IV) is divided into one interval of type (II) and one interval of type (III).

(V) For a, #1,
(la1,... ,an,Sv], [a1,... ,an,2,SV]>

is divided into the union of

(lat,...,an,S"], [a1,...,an,1,S])U([a1,...,an-1,2,5], [a1,...,an_1,2,S]).
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Thus, each interval of type (V) is divided into one interval of type (I) and one
interval of type (II).

(VI) For a1 # 1,
<[ala--~7an—1)8v]) [a17"')an—1515255v]>

is divided into the union of (la1,...,an—1,5"], [a1,...,an-1,1,1,5]) and
(lat, ... an-1,1,2,5], [a1,...,an—1,1,2,SY]). Thus, each interval of type (VI)
is divided into one interval of type (II) and one interval of type (IV).

We note that Fj is of type (V) and each type of interval is dissected into two
intervals contained in 6 types of intervals. Hence, starting from Fy, the dissection
process can be continued by the above 6 rules. Consequently, we obtain the Cantor
set F' = My Fk.

Lemma 3.1.17. Let Iy be a closed interval of type (I) to type (VI). In the Cantor
dissection process, we have closed intervals Iy, I in Iy satisfying Iy \ J = I; U I for
an open interval J. Then

|I;| > |J| for i=1,2.

Proof. For a, B € F,let a:=[dy,...,dn, P], B:=[d1,...,dn, Q] for P,Q € {1,2,3}.

Let
M = Ng Ny, - Ny, = (Z Z) .
Then
M- [Pl = M- [0l = (C[P]H—i]-g]d)_(c[%]‘—f-d)'
Note that
5) = V7 + V2 5= = 52
1.5} = 4\/§5—ﬁ 3,57] [1,15} = 4\/§5+ﬁ’
2.5 = V2 2,8 = i = VT- V2
[1,2,5] = \% 3,2,5Y] = [1’2175] =7
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For an interval Ij of type (I), we have

_ V1 _ V1| [375\/]_[275\/]
I =|ldi,. .., dn-1,1,2,8"] = [di,...,dp-1,1,3,5]| = B.5] F RS 7d)’
— v - [2,SV] —[1,2,9]
’II| = |[d17" : 7dn—17112aS ] [dla"'7dn—171717275]| - (C[Q,SV] +d)<C[1,2,S] +d)7
5] - 3,58"]

|I2| = |[d17-. . 7dn7171;5] - [d17“ . 7dn*17]‘73’SvH =

(c[S]+d)(¢[3,SV] 4+ d)’

Therefore, we obtain

1] _ (e1,2,8]+d)(3,8Y] — [2,8Y]) _ 3,5V —[2,5Y] _
]~ @B, 5+ (5 -[1,2.8) ~ sV -nzs T Eh
171 (e8] +d)([3, SV]—[Z,SV]) [S](13,8¥] - [2,8"]) _

Bl T (257 + a)([5] - 3,57 ~ 2SI - 38

For an interval Iy of type (II), we have

(3,5Y] —[2,8Y]
(c[3,8V] + d)(c[2,SV] + d)’
[S] - [3, 5]
(c[S]+ d)(c[3,SV]+d)’
2, SV] - [SV]
(c[2,SV] + d)(c[SV] +d)

’J| = I[dla..-7dn—1727378v] - [d17"‘7dn—172727SVH =

L] = |[di, ..., dn-1,2,5] = [di,...,dn-1,2,3,5"]| =

L] = |[d, ..., dn-1,2,2,8"] = [di,...,dp-1,2,5"]| =

Therefore, we obtain

1] (S +d)([3,5Y] = [2,5V]) _ [S]([3,8] = [2,5"]) _
L]~ (2 ST+ (S = 3,57) ~ 2sV([s]| =57 st
1] (e[SYT+d)([3,8V] = [2,8Y])  [3,8Y]—[2,5"] _
Bl T B STraR s - [5) T 2sT-[sv] ot
For an interval Iy of type (III), we have
\% V1| [3’5\/]7[2’5\/]
|| =|ld,...,dn-1,3,3,8] = [di,...,dp-1,3,2,5"]| = B TR ST
\Y, V1| [3’275\/]_[373\/}
| = |[di, ..., dn-1,3,3,2,8"] = [di,...,dn-1,3,3,5]| = 325 F B ST d)
2,5Y] = [SY]

L =|di,...,dw1,3,2,S8Y] = [di,...,dn-1,3,5"]| = )
| 12| |[ Lyeees 1 | —[d 1 H (c[2,8V] + d)(c[SV] + d)
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Therefore, we obtain

Il (€]3,2,8Y] +d)([3,5Y] — [2,8Y]) _ [3,2,5V]([3,8"] - [2,5Y]) _
0]~ C2STHdB.25] - B.57) ~ 2sIB.25] - B.s) oSl
| e[SV +d)(3,8Y] - [2,8"]) _ [3,8V]—[2,8V] _

L]~ (c[3,SV]+d)([2,5V] — [SV]) < 2.9- 5] 0.4354--- < 1.

For an interval Iy of type (IV), we have

[3,5V] —1[2,5Y]
(c[3,SV] +d)(c[2,5V] + d)’

|J| = |[d1, ..., dn2,1,1,3,8Y] = [d1,...,dn—2,1,1,2,5]| =

_ o Vil [S]—[?),Sv]
’I1| - I[dla‘-'vdn—2717178] [dla“'vdn—2717173as ]| - (C[S}—f—d)(C[B,SV]‘i—d)’
V] _
I = |[d1, ..., dn—2,1,1,2,8"] = [d1,...,dn—2,1,1,2,5]| = 2,571 - [, 5]

(c[2, V] + d)(c[2, S|+ d)
Using the condition that d,,—2 # 1 and d,,—; = d,, = 1, the matrix Ny, ... Ny, =
b
(a d) satisfies ¢ < % Therefore,
c

c —

UL _ S 051 - 05) ULST- B gy <,
!|IJ2|| - EZE g]vrj 11()[?[232]{_[2[25;3 < [ESSV]]?/\%/; [?2?3]:[[222] — 0.5760--- < 1
For an interval I of type (V), we have
| = |ld,...,dn,2, 8] — [dy,...,dn,1,5]| = (0[2;]2:;52)_(0[[11’2] —
0] =, 2, 8] = [di, ., dn, 2, S]] = (c[2,;%7]TLi£§,§] —
L] = |[dss- .+ du 1, 1,2,S] = [das ., 1, ]| = S = [57]

(c[1,S]+d)(c[SV] +d)

b
Using the condition that d,, # 1, the matrix Ny, ... Ny, = (a d) satisfies 3§ < V2.
c
Therefore,
I _ (el2,8"+d)([2,8] = [1,S]) _ v2(2,8"]+1 [2,8] - [1, 5]
(L (e[1, ST+ d)([2,5V] = [2,8]) = V21,8 +1 [2,5V] - [2,5]

=0.7403--- <1
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11 _ (c[SV]+d)([2,9] —[1,9]) [2,8]—[1,5] _
’12’ (0[2,5] + d)([l)S] _ [S\/]) < [I,S] — [SV] 0.5893 <1

For an interval Iy of type (VI), we have

|J| = Hdh.--,dn—h 1,2,8] = [dy,. .., dn1,1, 1’SH - (0[2,;]2’4:9]61)(0[[11:6;] +d)’
L] =|ld,...,dn-1,1,2,8"] = [d1,...,dn-1,1,2,5]| = (c[2,5237]s+1i>?![25,§] +d)’
[1,5] —[1,2,5]

L] = |[di, ..., dn-1,1,1,5] = [di,...,dpn-1,1,1,2,8]| = L8]+ el 2s] 1)

b
Using the condition that d,—; # 1 and d,, = 1, the matrix Ny, ... Ny, = (a d>
c

satisfies (91 < 2V/2. Therefore,

Il 28+ d)(2 8 - [LS) _ 2228V +1 28-S .
L]~ @LS+ (2.5 [2.5) ~ 2v2[L, 8 +1 26V 8] o2 <t
I (128 + (2.8 - [1S]) (2.8 [L8] _

L]~ (28 +d(L5] - L2.8) s -[Las Ptst -

Lemma 3.1.18. ([24, Chapter 4, Lemma 3|) Let B be the union of disjoint closed
intervals A, Ag,...,A,. Given an open interval I in Aj, let A,41, Ary2 be the
disjoint closed intervals such that Ay \ I = A,41 U A,49. Let B* be the union
of Ay, Az, ..., Aps1, Apgo. If |Aj| > |I] for i =2,...,7 4+ 2, then

B+ B = B*+ B*.

Lemma 3.1.19. ([24, Chapter 4, Lemma 4]) If C;,C5,... is a sequence of the
bounded closed sets such that C; contains Cjy; for all ¢ > 1, then

ﬂ‘,-’ilCi + ﬂ;’ilCi = ﬂ;’il(ci + CZ)
Now, using Lemmas 3.1.17, 3.1.18 and 3.1.19, let us prove Fy + Fyp = F + F.

Theorem 3.1.20 We have F + F = [2/552%2 9\/7 — 2,/3].

Proof. Recall Fy = [M VT — \f} Now, let us prove that F'+ F = Fy+ Fy. Let

us construct a sequence {F, } ° o satisfying the following four properties:
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1. Each F), is closed and bounded.
2. F,, D Fpyq for all n > 0.

3. (% F = F.

n=0
4. F, +F, = Fyy1 + Fyyq forn > 0.

We already verified that F' is obtained from Fj by removing an infinite number of
disjoint open intervals which belong to 6 types intervals from (I) to (VI). Now, let
us arrange the set of an infinite number of the open intervals in decreasing order of
length. Let us denote the arranged open intervals by Dy, D1,.... For n > 0, we set
Fr+1 = F, \ D,. By the definition of F),, three properties (1), (2), (3) are satisfied.
Thus, it is enough to show that F,, + F,, = F,11 + Fpy1.

Let us use an induction on n. Let A1, As be the disjoint closed intervals such that
Fy\ Dy = A; U Ay. By Lemma 3.1.17, |A4],|A2| > |Do|. Thus, Fy + Fy = F1 + F3
by Lemma 3.1.18. Assume that Fj,_1 + F,,_1 = F,, + F, for some n. Let I be the
closed interval from which D,, is removed and Iy, Is be the disjoint closed intervals
such that I\ D,, = I; U Is. By Lemma 3.1.17, |I;|, |I2| > |Dy|. By the definition of
D,_1 and Lemma 3.1.17, each closed interval in F}, has length equal to or greater
than |D,,_1|. Hence, each closed interval in F,;; has length equal to or greater
than |D,|. By Lemma 3.1.18, F,, + F,, = Fj,41 + Fy+1. Therefore, by Lemma 3.1.19,
F+F = (N2 F) + (N2 F) = M2 (Fi + F;) = Fo + Fo. [

Since the length of Fy + Fy = [M, 2T — 22| is greater than \/5, Theo-

rem 3.1.20 implies the following corollary.

Corollary 3.1.21. Any real number is expressed as v/2n + [P] + [Q] for n € Z,
PQekF.

Hence, we obtain the existence of Hall’s ray.

Theorem 3.1.22 The Lagrange spectrum £ (Hy) contains every real number
greater than 4v/2, i.e. (4v/2,00) C £ (Hy) C .4 (Hy).

Proof. Let o > 4+/2. By Corollary 3.1.21, there exist two Romik sequences Py, Py € F
and n € Z such that o = v/2n + [P1] + [P»]. Since [P1],[P] < V2, n > 2. We set
P, P as d_1,d_o,... and dy,dy,ds,... respectively. We define a doubly-infinite
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Romik sequence T' = (t;);ez with a section Py*|W Py, = ...t_1|to,t1... where W
is a subsequence 33...3 of length n. By definition, 7" contains neither 111 nor

333 except for W. Thus, L(...tp|tme1...) < 4V/2 form < —2 or m > n and

L(.. tmltmy1 ... ) = L(P*IWPRy) = [P1] + [P] +V2n = a > 42 for =1 < m < n.

Since TV contains no 333, L(...tn" [tme1” ...) < 4V/2 for any m € Z. Hence,

M(T) = max{sup L. tmltmat ) sup L.t [tme1” )} = a.

meZ meZ

Hence, .# (H,4) contains every real number greater than 4+/2.
Let us prove that .Z(H,) contains every real number greater than 41/2. By the
definition of t;, tg = t; = 3 and t—1 = d_; € {1,2}. We define a doubly-infinite

Romik sequence A" = (t],)mez with a section

.,t_kQ,...,tlz,t_kl,...,tll|t_k1,...,tll,t_kQ,...,tlQ,...
where k1 < kg < ... and l; <y < ... are increasing sequences,

d_; =2 for all j € {k;}2, if 2 appears infinitely many in P,
d_j =3 for all j € {k;}32, if 2 appears finitely many in P,
and
d; =2 for all j € {l;}32, if 2 appears infinitely many in P,
d;j =1 for all j € {[;}32, if 2 appears finitely many in P.
Hence,

limsup L(... ¢, [ty 1---)
meZ

= lim sup ([to, 1, . - .,tlj,t_kj+l,...] + [t—1,t—a,... ,t_kj,tlj_l,.. )

Jj—0o0

:[Pl] + [PQ] + \/571 = (.

Since (P')Y contains no 333, we have

\Y% \Y% \ \Y% \Y
L(oty [t ) = M bt T gt s> < 4V2
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for any m € Z. Thus,

Y

limsup L(. .. th,  [thyr - ) < a.

mEZ

Therefore, £L(A’) = a and £ (H,) contains every real number greater than 4v/2. [

. gap gap ray
24/2 \/?)38 V10 2124\/1514?;8\/238 44/2

Figure 3.4 Gaps and a ray in .Z(Hy)

3.2 The Markoff and Lagrange spectra on Hg

3.2.1 The Markoff spectrum and the Romik expansion

The Hecke group Hj is defined by the subgroup of SLa(R) generated by

g 0 -1 7 T 1 N ’
1 0 0 1
s
Ag = 2cos | — | .
! <Q>

When g = 3, the Hecke group Hj is the modular group SLy(Z). In this paper we

where

consider the Hecke group Hg for the case of ¢ = 6. In this case, A\¢ = V/3.
We follow the notations in [22]:

1 V3 2 V3 2 V3
Nl:(o 1)’ N2:<\/§ 1>’ N3:<\/§ 2)’
1 V3 1 0
N4_<\/§ 2)’ N5_<\/§ 1)'

For P € {1,2,3,4,5}", we have

[d,P] = N - [P]. (3.12)

3 y 1 ]
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-1 0 -1 —V3 0 1
H = , U= V3 , J = .
0 1 0 1 10
Let Gg be the group of 2 x 2 matrices generated by reflections H, U, J. Note that
(HJ)?> =1 and (UJ)% = I in PSLa(R). See Figure 3.5 for the fundamental domain
of GG-

Since S = HJ and T = HU, the Hecke group Hg is a subgroup of G. Indeed,
using HJ = JH =S, HU =T, UH = T~ !, we have

Let

G¢ = Hs UHgH

and Hg is an index 2 subgroup of Gg.

Note that
Ny = HU, Ns =JNJ=JHUJ =HJUJ,
No=HUJUJ, Ny=JNoJ =JHUJU = HJUJU,
N3 =HUJUJU, N3 =JN3J =HJUJUJUJ.

Since (UJ)® = I, or UJUJUJ = JUJUJU, elements generated by U and J in Gg

are

1, U, J,UJ, Ju, UuJu, JuJ, UJUJ, JUJU,
vJjuoJu, JuJuUJ, UJUJUJ = JUJUJU,

which are represented as

U=uU, UJ=UJ,

JU = UsJ, UJU = Uy,
JUJ = Us, UJUJ = Us,
JUJU = Uy, UJUJU = Us,

JUJUJ = Uy, UJUJUJ = UsJ.

Then,
U;' =U;, Ny= HU,.
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U H

V3. T2 V3B % V3

wfS

0 1 3 2 3 4
1

Figure 3.5 The fundamental domain of the group Gg on the upper half space.

We have HJ = JH and NgJ = JNgv. Therefore, any element M of Gg is one of the

forms

Ng,---Ng,, Ng,---Ng,J, HNg ---Ng, , HNg ---Ng, J,
Ng, -+ Ng,H, HNg, ---Ng, HJ, HNg, ---Ng H, HNg, ---Ng, HJ.

Since U2 = U3 = U2 = I and U3 = U} = I, the group {I,U;,Us, Us, Uy, Us} is

isomorphic to the symmetry group Ss.

b
We consider a matrix M = | > € PSL3(Z). If det(M) = 1, then M - z =
c d
920 4 Get(M) = —1, then M - » = 220
cz+d cz+d
Define
1 ifd=1, 5 ifd=1,
4 ifd=2, 4 ifd=2,
d=<3 ifd=3, and  d'={3 ifd=3,
2 ifd=4, 2 ifd=4,
5 ifd=>5. 1 ifd=5.

\

For an infinite Romik sequence P = (a1, as,as3,...) € {1,2,3,4,5}, we denote

[P] = [a1, a2, a3, ...] € [0,00].
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For Q = (b17b27b37 ..

) €{1,2,3,4,5N we define

[. . .,63782,?)1] = [Q*] = H([bl,bz,bg,...]) = —[bl,bg,bg,. . ]

In what follows, we identify [—oco, 0] with an element in {1, 2, 3,4, 5}<0 using Romik

digit expansion.

Since

we have

Ua([P)) = H([d, P]) = [P*,d]

Thus

Us- [P*,d] = H([P*]) = [P]

[d, P] = Nq - [P] = (HUq) - [P},

and U Y([P)) =

and  Ny-[P*,d] = (HU,) - [P*,d] = [P*].

U(1P)) = [P*.d).

We check the idempotent maps Uy, Us, Us acts on R as follows

1)) =[P,
*,2]) = UsUx([P*,2]) = Us([P]) =
“,4]) = UsUa([P",4]) = Us([P]) =
*,3]) =[P,
", 1)) = UUh ([P, 1]) = Ua([P]) =
",2]) = UsUs([P7,2]) = Us([P]) =
*,5]) =[P,
“, 1)) = UaUr ([P, 1]) = Us([P]) =
", 3]) = UaUs([P7, 3]) = Ua([P]) =

For the maps Us, Uy, we have

*,2]) =[P,

*1]) = UsUs ([P*,1]) = Us([P])

*,3]) = UsUs([P*,3]) = Us([P))

*,5]) = U1 Us([P*,5]) = U ([P]) =

*,4]) = UsUs([P*, 4]) = Ua([P))
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Us([P*,4]) = [P,
Us([P*,1]) = UsUr([P*,1]) = Us([P]) = [P*,5],
Us([P*,3]) = U1Us([P*, 3]) = Un([P]) = [P*,1],
Us([P*,5]) = UsUs([P*, 5]) = Us([P]) = [P*, 3],
Us([P*,2]) = UaUs([P*,2]) = Us([P]) = [P*,4]
Let P*|Q = [...,a_2,a_1,a9|a1,as,...] be the geodesic on H? whose two
endpoint are P* = [... a_2,a_1,a0] and @ = [a1,aq,...]. Then N, acts as a right

shift of the two-sided sequence
Nao[...,a_g,a_l,ag ’al’QQ,...} = [...,a_g,a_l\ag,al,ag,...].

Definition 3.2.1. For two bi-infinite sequence (an)nez, (bn)nez in {1,2,3,4,5}%,
we give an equivalence relation (ay)nez ~ (bn)nez if there exists an integer k € Z
such that a,r = b, for all n € N. We call an equivalence class a bi-infinite Romik
sequence and an element in the equivalence class is called a section of the bi-infinite
Romik sequence. Let A be a bi-infinite Romik sequence. For a section P*|Q of A, we
define

L(P*|Q) = [Q] = [P"] = [Q] + H([F"]) = [Q] + [P].

Definition 3.2.2. We define M(A) by the maximum of two supremum values as

follows:

M(A) = §g|%maX{L(P*!Q)7L((Pv)*le)},

where P*|@ runs over all sections of A. The Markoff spectrum .# (Hg) is defined by
the set of the Markoff numbers taken by M(A) as A runs through all of bi-infinite

Romik sequences.

Definition 3.2.3. We define £(A) by the maximum of two limit superior values as

follows:

L(A) := limsup max{L(P*|Q), L((P)"|Q")},
PrQ

where P*|(@Q runs over all sections of A. The Lagrange spectrum . (Hg) is defined by
the set of the Lagrange numbers taken by £(A) as A runs through all of bi-infinite

Romik sequences.
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3.2.2 Closedness of the Markoff spectrum

Given the discrete topology on {1,2,3,4,5}, the product space {1,2,3,4,5}% is

compact due to Tychonoff’s theorem.

Lemma 3.2.4. Let A be a bi-infinite Romik sequence A with a section (ag)gez. If
M(A) is finite, then there exists a bi-infinite Romik sequence B with a section P*|Q
such that M(A) = M(B) = L(P*|Q).

Proof. By considering A or AV, we may assume that there exists a subsequence
{kn}n>1 such that nan;OL(...akn_1|akn ...) = M(A). Let A, = ...ap,—1|ak, ---
be a section of A. By the compactness of the space {1,2,3,4,5}%, there exists a
subsequence {4, } converging to P*|Q which is a section of a bi-infinite Romik
sequence B. By the continuity of M, we have L(P*|Q) = M(A). O

Theorem 3.2.5 The Markoff spectrum .# (Hg) is closed.

Proof. Choose a convergent sequence {My,},>1 in .#(Hg). By Lemma 3.2.4, there
exist bi-infinite Romik sequences {A4,} with a section P}|Q, such that M, =
L(P}|Qy) for all n € N. By the compactness of the space {1,2,3,4,5}% we have
a subsequence {n;} such that P; |Q,, converges to P*|Q. By the continuity of L,
M, converges to L(P*|Q) < M(B) where B is a bi-infinite Romik sequence with a
section P*|@Q. Hence, lim M,, < M(B) For any section R*|S of B, R*|S is a limit of
finite shifts of P;Z,\Qn:._)fcf‘ohus, L(R*|S) < lim M,,, which implies M(B) < lim M,,.
Hence, the Markoff spectrum is closed. e e O

Theorem 3.2.6 The Lagrange spectrum is contained in the Markoff spectrum:
Z(Hg) C 4 (Hg).

Proof. For any bi-infinite Romik sequence A, there exists a sequence of sections
{P}|Qn} such that L(A) = nll_}HOIO L(P}|Qy,). By the compactness of the space {1,2,3,4,5}%
there exists a subsequence {n;} such that P |Q,, converges to P*|QQ where B is a
bi-infinite Romik sequence with a section P*|Q. By the continuity of L, we deduce
that L(A) = L(P*|Q) < M(B). For any section R*|S of B, R*|S is a limit of finite
shifts of P |Qy,. Thus, L(R*|S) < L(A), which concludes L(A) = M(B). O
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3.2.3 Hausdorff dimension of the Lagrange spectrum

In this section, we show that the Lagrange spectrum has positive Hausdorff dimension
after the first accumulation point.
Let £ > 0. Choose m € N such that

[(22™723)00] + [(34%™)o0] < [2°°] + [34%°] 46 = —= +&. (3.13)

Sl

Let
A = 22mt23 B = 2?73,

Consider

E={Pc{2,3}V|P=B™AMB™A™ ... n; m;c {1,2}},
E={Pc{2,3N|P=B™AMB™A" ... n; m; € N}.

Lemma 3.2.7. We have
dimyg ({[P]| P € E}) > 0.
Proof. Let
o= (B2A)<], B:=[(BAY)™].

Then for each P € E, we have
a < [P] <pB.

From [20, Proposition 38],

Ny := N3™2Ny
_JI3v2m+3 _ N 2m+3
1 1+%/ﬁ/\2m+3 1 ﬁ/ﬁ/\ m+ \/@2 V3 \2m+3 + \/:’E;\/??)\ m+

V13 V(A2 X2m+3) %mvm% B HT\/EXMH
Np := N3"Ns
1 %)\%H _ 1727\/ﬁx2m+1 M}\Qm—&—l n Mxm“
= \/TT), \/§()\2m+1 . X2m+1) FT\/E)QmH B HT\/EX%%H

+5/ﬁ, A= % Then, we have

=
=
@
@
@
>
Il
w

NiNy-a < [B?AP| < N3N4-fB, NiN3-a<[B?A?P]|< NiN3 -5,
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NpNa-a <[BAP] < NgN4-fB, NpN3j-a<[BA?’P]< NgN3-p.
Let D = [a, ] be the closed interval in R and define f; : D — D as

file) = NENa-x, fo(z) = NGNj-@, f3(zr)=NpNa-w, fi(zr)=NpNj- .

A; B . .
Let fi(z) = <C’ D) -x for i =1,2,3,4. Since

() )] = |2 —y] 0d Ci D
‘fz(x) fz(y)’ - (sz+Dz)(Czy+Dz) and CuDz >1

fori =1,2,3,4, { f1, f2, f3, f4} is a family of contracting functions, which is called an
iterated function system (see e.g. [27]). We check that there are ¢; > 0 fori = 1,2,3,4
such that | fi(z) — fi(y)| > ci|lz — y| for z,y € D. By the definition of E and f;’s, the
set

F={[P]|P e E}

satisfies
F=fi(F)U fa(F)U f3(F) U fa(F).

By [27, Proposition 9.7], we conclude that dimg (F) > s, where s > 0 is the constant
satisfying ¢ + ¢35 +c5 + ¢ = 1. ]

Choose
P=B™MAMB™A™ ... c E,

where n;,m; € {1,2}. Let
Wi = B™ A" B™2 ... A"k
and
Tp = °BAW, B2 AW, B3 A3Ws B*A3W, - .- BEASW, BF P A3 Wy - .
Lemma 3.2.8. We have
L(Tp) = [(B*)*] + [4*P].
Proof. Let R*32%|2¢3S be a section of Tp. Then we have

L(R*32F|2¢38) = [4*3R] + [235]
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< [4432°°] 4 [23%] = <131\7/§ 10;?) 2%+ (\2 ?) - [3%]

17 1 (2 1
T 13v/3 507[2%] +200v3  \ V3 3[3%]+ V3

_aT <2 . 1) _4
13v3  \v3 2v3) V3
for k > 1,¢ > 0. Since R begins with 2,
L(R*32%|2¢38) = [3R] + [2°35] > [R] + [32/35] = L(R*|32°39)
for k = 0. Therefore, we have

L(Tp) = limsupmax (L(R*|S), L((R")*|S"))
R*|S

= max {lim sup ([R] + [S]) ,lim sup ([RV] + [SV]) } ,

R*|S R*|S

where R*|S runs over all sections of Tp such that both S and R are concatenations

of A, B. Using the fact that for n >m >0 and Q,R € E,
[A"Q] > [A™R],
we conclude that

L(Tp) = limsup L(- - - By_1 A*Wj,_ B¥| A3W,. B¥ L AWy - )
k—o0

= L(®B|A%P) = [(B*)™] + [A3P]. O

Let
K= {[(B*)OO] +[A3P]|P e E} .

6 \/>

Since [P] = [A3P] = N3 - [P] is a bi-Lipschitz function on D, Lemma 3.2.7 implies

dimpy (K) > 0 and we obtain the following statement.
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Theorem 3.2.9 For any € > 0, we have

dimp (M@ oo+ e)) - dimg (m) oo +e)) 0

3.2.4 Gaps of the Markoff spectrum

We investigate the existence of gaps in . (Hg) N [ Vet 00) in the section. We say an
interval (a,b) is a mazimal gap in A4 (Hg) if (a,b) N 4 (Hg) = 0 and a,b € .4 (Hg).
We denote k consecutive W---W by WF. We denote an infinite sequence with
period W and a bi-infinite sequence with period W by W and *W*°. For example,
(234)3 = 234234234, 153(13)>° = 153131313 ..., and *°(23)> = ... 232323 . ...

Lemma 3.2.10. Let A be a bi-infinite Romik sequence.
(1) If A or AV contains 1, then M(A) > 7\/\{ =2.750... or A ="°(15)>

(2) The sequence A € {2,3,4}% does not contain 24 and 42 if and only if M(A) <
V143
=
(3) If A € {2,3,4}” contains 24 or 42 and does not contain 243, 423, 424, 242, 342,
324, then M(A) > /7. The equality holds for A = °°(2244)>
Proof. (1) Assume that M(A) < 7_—\/‘5’/5 Since

L(P*111Q) = [1P] + [1Q] > 2V3 = 3.464...,
L(P*12Q) = [1P] + [2Q] > 2\/5 =2.886...

for any infinite Romik sequences P, @, A and A" do not contain 11, 12. Since [(53)>°] <
[P] < [(13)°°] for an infinite Romik sequence P in A,

L(P*1]3Q) = [1P] + [3Q] > [1(53)*] + [(35)®°] = V3 + \g =3.023...,
. o, 7T-V5
L(P*1[4Q) = [1P] + [4Q] > [1(53)®] 4 [4(13)>] = =3 =2.750.

Thus, A and AY do not contain 11, 12, 13, and 14. Hence, if A or AV contains 1,
then A is *°(15)>°

T y
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(2) Let A and AV do not contain 24. We have
[P] < [(3234)%], [Q] < [(2343)™]

where P, () are infinite Romik sequences starting with 3,2 in A, respectively. Since

P or @ does not start with 2 for any section P*|Q of Aor A,
L(P*|Q) = [P] + [Q] < [(3234)™] + [(2343)]

for any section P*|@ of A or AV. Hence,

M(A) < [(3234)] + [(2343)] = %

Conversely, if A or AV contains 24, then
L(P*4|2Q) = [2P] + [2Q] > [2(24)%°] + [2(24)>°] = 2.644 . ...

for any section P*4|2Q of A or AY. Hence, M(A) > @.

(3) Let A or AV contain 24. Assume that A and A" do not contain 243, 424, 342.
Hence, [P] > [22(444222)°°] for an infinite Romik sequence P starting with 2 in A
and AV. Since [P] > [2(2343)>] for an infinite Romik sequence P starting with 223
in A and AV,

L(P*4]223Q) = [2P] + [223Q] > [22(444222)>°] + [2(2343)™®] = 2.648 . . .,
L(P*4]222Q) = [2P] + [222Q] > [22(444222)>°] + [2222(444222)] = 2.652. . ..

Thus, if 4223 and 4222 do not appear in A and AV, then 42 is extended to 4224 in A
and AY. Hence, A = °°(4422)> and M(A) = [(2244)>] +[(2244)>] = /7. Therefore,
M(A) > V7. O

Theorem 3.2.11 The interval

<\/1;T37\f7> =(2.391...,2.645...)

is a maximal gap in .# (Hg). Moreover, M(A) = @ for A = °(2343)>°, M(B) =
VT for B = >(2244)> and M(B) is a limit point of ./ (Hg).
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Proof. Let A be a bi-infinite Romik sequence. Assume that M(A) € (@, VT ) If
A or AY contains 1, then by Lemma 3.2.10 (1), A = *°(15)*. Since A is periodic,
M(A) = [(51)*°] + [(15)>°] = /7. Hence, A and A" do not contain 1 and A only
consists of 2, 3, 4. From Lemma 3.2.10 (2), A or AV contains 42. Since [P] < [(24)>°] =
V2 for an infinite Romik sequence P in A,

L(P*4|23Q) = [2P] + [23Q)
L(P*4|24Q) = [2P] + [24Q)

Y

[2(24)%] + [23(24)™] = 2.684.. .,
[2(24)%] + [24(42)®] = 2.726 . ...

v

Thus, A and AV do not contain 423, 424, 342. From Lemma 3.2.10 (3), M(A) > /7.
Therefore, (@, VT ) does not contain any Markoff numbers and is a maximal gap
in ./ (Hg).

On the other hand, we have

[(3234)%3%°] 4 [(2343)™3%°)] —— [(3234)™] + [(2343)>] = M (*°(3432)),

k,m—o0

M(>(3)(2343)F™m3%) > L(°°(3)(2343)%|(2343)™3°°)
— [(3234)"3%] + [(2343)™3]

for all k,m > 1. Since M(%(3)(2343)k+m3) < Y3 — A{(%(3432)) by Lemma
3.2.10 (2), M(*°(3432)*) is a limit point of .# (Hs). O

Theorem 3.2.12 The interval
(\ﬁ 13v/3 4+ 13V7 + 143

= (2.645...,2.648...
> ) ( , )

is a maximal gap in .# (Hg). Moreover, M(°°(4422)(3432)>°) = 13\/§+132\6ﬁ+v 113 js a
limit point of .# (Hg).

Proof. Let A be a bi-infinite Romik sequence. Suppose that M(A) belongs to
(\ﬁ, > (13V3 4+ 13V7 + \/@)) By Lemma 3.2.10 (1), A consists of 2, 3, 4. More-
over, by Lemma 3.2.10 (2), A or AV contains 42, and from the proof of Lemma 3.2.10
(3), A and AV do not contain 342, 424, 423, 4222. Thus, if A or AV contains 4223,
say A, then 4223 is extended to 44223 in A. Then, we have

M(A) > L(P*44|223Q) = [22P] + [223Q)]
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13v/3 + 13v/7 + V143

> [(2244)] + [2(2343)%] = %

for a section P*44]223Q of A or AY. Hence, (f, 26(13\[4— 13v7 ++/143 )) does

not contain any Markoff numbers and is a maximal gap in .Z (Hg).
On the other hand, we have

M(°°(4422)(3432)%3%) > L(°°(2244)]22(3432)%3>)
= [(2244)>] 4 [22(3432)*3],
[(2244)%°] 4 [22(3432)F3%°] —— [(2244)™] + [2(2343)™°] = M (*(4422)(3432)>°)

k—o0
for all kK > 1. Since

7
23...]+[32...] < NoN3 -0+ N3Ns - o—i<\f

we have

M(°°(4422)(3432)k3°°) = [(2244)] + [22(3432)k3°°].
Thus, M (°°(4422)(3432)°°) is a limit point of .# (Hg). O
Theorem 3.2.13 The interval

24/506 2+/2803333
19 1405

) = (2.3678361...,2.3833675...)

is a maximal gap in .4 (Hg). Moreover, M(*°(433233)>) = 229 and M (> (4343223)>) =

2/2803333
1405 -

Proof. Let A be a bi-infinite Romik sequence. Suppose that M(A) € <2‘/ﬁ, 2y 2&%%33 ) .
By Lemma 3.2.10 (1), A consists of 2, 3, 4. Moreover, from Lemma 3.2.10 (2), A and
AV do not contain 42. Since [(2343)>°] + [4(4323)>°] = 2.1232... and 2[(3234)>°] =
2.0452 ..., we have

L(P*4[3Q) = [2P] + [3Q)]
> [2(2343)>°] + [(3432)*°] = 2.3038....
> max {[(2343)°°] + [4(4323)>], 2[(3234)>°] }
> max { L(P"*4]4Q’), L(P"*3]3Q")}
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where P*4|3Q is a section of A or AV, and P*44Q’, P"*33Q" € {2,3,4}* are bi-
infinite Romik sequences which do not contain 24, 42. Then, it is enough to consider
L(...43...), L(...3]2...) for M(A). Assume that A and A" do not contain 234.

For a section P*|@Q of A, we have
[P] < [(332334)%], [Q] < [(233433)]

where infinite Romik sequences P, () start with 3,2, respectively. Thus, we have
2v/506
19

Hence, A or AV contains 234. Suppose that both A and A" do not contain 3234 and
2343. Since

M(A) < [(233433)°°] + [(332334)°] = M (*(433233)°) =

L(P*4|32Q) = [2P] + [32Q] < [(22234443)] + [(32223444)>] = 2.3503.. . .,
L(P*4|33Q) = [2P] 4 [33Q] < [(233433)] + [(332334)] < M (*°(433233)),

N

L(P*4|34Q) = [2P] 4 [34Q)] < [(233433)] + [344(32223444)®] = 2.3463 ... .,

we have M(A) < M(*°(433233)>°). Hence, A or A contains 3432 or 4323. On the
other hand, we can check the following 5 cases.
(1) If 234323 or 343234 appears in A or AV, then

M(A) > L(P*343]234Q) > [323(2343)] + [234(4323)™] = 2.3910352.. ...
(2) If 234322 or 443234 appears in A or AV, then

M(A) > L(P*443]234Q) > [322(3432)™] + [234(4323)>] = 2.3890563 . . ..
(3) If 334322 or 443233 appears in A or A, then

M(A) > L(P*443(233Q) > [322(3432)°°] + [233(2343)>] = 2.3861379. . .
(4) If 434323 or 343232 appears in A or AV, then

M(A) > L(P*343]232Q) > [323(2343)™] + [232(3432)>] = 2.3853441 ... ..
(5) If 334323 or 343233 appears in A or AV, then

M(A) > L(P*343]233Q) > [323(2343)>] + [233(2343)>] = 2.3881168. . ..
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Thus, 3432 and 4323 are extended to 434322 and 443232 in A and AV, respectively,
where awb is an extension with a to the left and b to the right of w. If 4434322 or
4443232 occurs in A or AV, then we have

M(A) > L(P*4434]322Q) > [2322(2343)>] + [322(3432)>] = 2.3836369 . . .,
M(A) > L(P*4443]232Q) > [3222(2343)>] + [232(3432)>] = 2.3835556.. . ..

Hence, 3432 and 4323 are extended to 3434322 and 3443232 in A and AV, respec-
tively. Since 4323 and 3432 appears in 4432323 = (3434322)V* and 4343223 =
(3443232)V*, 3432 and 4323 are extended to 34343223 and 34432323 in A and AV,
respectively. Since 34343223 = (34432323)V*, we assume 34432323 appears in A or
AV If 334432323 or 434432323 or 344323233 or 344323232 appears in A or AV, then

we have

M(A) > L(P*33443|2323Q) > [3223(3432)] + [2323(4323)>] = 2.3833785.. ..,
M(A) > L(P*43443(2323Q) > [32232P] + [2323(4323)>] > 2.3833785.. ..,
M(A) > L(P*3443]23233Q) > [3223(4323)] + [2323(3432)>] = 2.3833843 . ..,
M(A) > L(P*3443(23232Q) > [3223(4323)] + [23232Q)] > 2.3833843.

Thus, 2344323234 occurs in A or AY. Since 3234 is extended to 4323234432 in A and
AV, 2344323234 is extended to 2344323234432 in A and AY. Hence, 2344323234432
occurs in A or AV. If 22344323234432 occurs in A or AV, then we have

M(A) > L(P*223443|23234432Q)
> [322344(4323)] + [23234432(2343)>°] = 2.3833686.. . ..

Hence, (3234432)2 occurs in A or AV. Since 3234 is extended to 4323234432 in A and
AV, 432(3234432)? occurs in A or A. Applying the same argument to A and AV,
(3443232)* occurs in A or AV, and M(A) = 22803333 ience, <2V 206 22803333 )

1405 1405

does not contain any Markoff numbers in .# (Hg). O
gap gap
4 V143 13v/3+13v/74++/143
v VT 2%

Figure 3.6 Gaps in . (Hg)
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Proposition 3.2.14. The gap (—V%‘L?’, ﬁ) is the longest gap in .Z (Hg).

Proof. Let us check some Markoff numbers for £ > 0:

M(>®(2)1F(2)>) = ‘/\/1?+\/§k, M(*®(15142)1%(15142)>°) = NW + 3k,
M(>(2)31F(2)>) = \;% +V/3E, M(>(142)1%(142)®) = V10 + \/§k,
M(*(2343)1F(2343)°) = ‘/1?)’ +V3k, M(®(1452)1F(1452)>) = V11 + V/3k,
M(*(2244)1%(2244)) = VT + V3k, M(>(132)1%(132)>) = ‘/L? + V/3k,
M(>(24)1%(24)°) = V8 + 3k, M(*(14)1%(14)>) = 2\‘%70 +V3k.
First of all, since [2---] < /3, we have
L(P*|Q) <2V3 (3.15)

for infinite Romik sequences P, @ not starting with 1.
1) M(*(2)1%(2)) = ¥ + 3k,
For k =0, M(*(2)%) = [4>°] + [2*°] = 2\f L+ ‘ﬁH = /2. For k > 1, since
5---],[4---] < ¥ and [2---] < V/3, we have
L(P*22Q), L(P*414Q), L(P*5}4Q), L(P*4]5Q) < >X° V3 \/ LN

Thus,
M(=(2)15(2)%) = [4%9] 4 [172°°] = 3k + [4°9] + [2°] = v3k + \E

2) M(*(2)31%(2)>) = % +/3k.
For k = 0, note that

00 _[q00 00 00 0o 00 V13_1 4\/3
L(>212Q) = [47] + [2Q] < [4%] + [232%] < [47] + [235%] < 3 5
* oo\ D oo oo oo [eS) [eS) 4 V13+1
L(P*2|2%°) = [AP] 4 [2%°] < [4434°°] 4 [2%°] < [441°] + [2*°] < 3{ >3
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for infinite Romik sequences P, Q) starting with 2 or 3. Since the above two values

4
are less than 75

M(®(2)3(2)%) = [34%] + [2] = 72\/‘/§ﬁ 41 ;}éﬁ = jg'

For k > 1, by (3.15) and 2v/3 < /3 + %,

M(®(2)31%(2)) = [34%] + [172°°] = V/3k + [34%°] + [2°] = V3k + \%

3) M(°°(2343)1%(2343)) = ¥IB | \/3}.
Theorem 3.2.11 implies the case for & = 0. For k > 1, by (3.15) and 2V/3 <

M(>(2343)1%(2343)%°) = [(3234)>°] + [1¥(2343)>]

=V/3k + [(3234)%°] + [(2343)>] = V3k + \/1?3.

4) M(%°(2244)1%(2244)®) = /T + /3k.
Theorem 3.2.11 implies the case for k = 0. For k& > 1, by (3.15) and 2v/3 <
V3 + VT,

M(%°(2244)1F(2244)%°) = [(2244)°°] + [1%(2244)>°]
=V/3k + [(2244)%°] + [(2244)>°] = V3k + V7.
5) M(®(24)1%(24)) = /8 4+ V/3k.
For k = 0, M(*°(42)®) = [(24)*] + [(24)>] = 2v/2. For k > 1, by (3.15) and
23 <V3+ V8,
M(*(24)17(24)) = [(24)] + [17(24)]
=3k + [(24)>°] + [(24)>] = V3k + 2v/2.

6) M(>°(15142)1%(15142)>) = /104 4 /3.
For k =0, we check

L(®(15245)|(15245)>°) = L(>(52451)|(52451)>) = [(15245)°] + [(52451)>],
L(*(14215)[(14215)>°) = L(*®(51421)|(51421)>)
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= L(*(15142)[(15142)>°) = L(>(42151)|(42151)®) = [(14215)>] + [(51421)>]

and [5---] 4+ [2---],[4---] + [4---] < . Thus,

7
M(®(15142)%) = [(14215)%] + [(51421)%] = 2‘/7@.
For k > 1, since [5---],[4---] < L&, we have
L(P*214Q), L(P*2|15Q), L(P*5|14Q), L(P*5|15Q) < 2V/3. (3.16)

Combining with (3.15) and (3.16),

M(>®(15142)1%(15142)%°) = [(42151)>°] + [1¥(15142)>]

~Vak+ [(42150)%] + (15142)%) = 2% gy,
7) M(*(142)1%(142)®) = /10 + /3k.
For k = 0, since
4 14
B--]+ 2 L[4 ]+[4--] < 7 2[22---] < 33

we have
L(°°(452)](452)%°), L(*°(245)[(245)>°), L(*°(214)](214)>°) < V10.

Hence, M(>(142)*) = [(142)>°] +[(421)*°] = v/10. For k > 1, combining with (3.15)
and (3.16),

M(*(142)14(142)) = [(421)] + [14(142)]
=V/3k + [(421)] + [(142)] = V10 + V3.

8) M(>°(1452)1%(1452)°) = /11 + V/3k.
For k = 0, note that (°°(1452)>°)Y = (5214)*°. Thus,

M(>(1452)%°) =max { L(*°(1452)[(1452)), L(>(5214)|(5214)>) }
=max {[(4521)] + [(1452)>], [(2145)>] + [(5214)>°] }
=[(4521)>°] 4 [(1452)>°] = V/11.
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For k > 1, by (3.15) and (3.16),

M(>®(1452)1%(1452)%°) = [(4521)°°] + [1¥(1452)>]

=V/3k + [(4521)>] + [(1452)] = V11 + V/3k.

9) M(>(132)1#(132)°) = Y435 | (/3.

For k = 0, by (3.15), M((132)®) = [(132)] + [(431)°] = Y335 For k > 1,
since [4---],[3---] < % and [14---],[13---] < %
L(P*2|13Q), L(P*21]3Q) < \;5 < ‘/4? +V3

Hence, by (3.15),

M(>(132)1%(132)%°) = [(431)>°] + [1%(132)*]
=V/3k + [(431)®] 4 [(132)>°] = \/Zéﬁ +V3k.
10) M(%°(14)1F(14)>) = % + V/3k.
For k = 0, M(*(14)%) = [(21)*] + [(14)*] = 240 For k > 1, by (3.15),
L(P*14[14Q), L(P*41]41Q) < 3v3 < 2YI0 4 /3. Hence, by (3.15),

M(*(14)17(14)) = [(21)%] + [1°(14)>]

2f+fk

Therefore, any interval longer than the length of (7%437 VT ) contains at least

=V3k + [(21)™] + [(14)>] =

one point of 10 types for some k, which implies <@, VT ) is the longest gap in
A (Hg). O
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’ Romik Sequences ‘

Markoff numbers

2 (2)1k(2)> 2 4 /3 = 2081+ V/3k
>0(2)1%3(2) 2+ V/3k = 2300 + V3k
(2343)1%(2343)> | Y18 4 /3% = 2.391 ... + v/3k
°(2244)1%(2244)> VT4 V3k =2645--- +/3k

> (24)1%(24)> V8 + 3k =2.828 - + 3k
(15142)1#(15142)° | 2%104 4 /31 — 2,913 .. + /3k
>0(142)1%(142) V10 + 3k = 3.162- - + v/3k
0(1452)1%(1452)> | 11+ v/3k = 3.316--- + 3k
~(132)1F(132)° | VA5 4 /3% = 3.476--- + 3k
°(14)1%(14) 204 3k =3.651 - + 3k

Table 3.1

Markoff numbers in . (
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Chapter 4

Combinatorics on words

In this chapter, we introduce a Sturmian word and investigate its characterizations.
For the next chapter, we define the exponent of repetition and we look into the

exponent of repetition of Sturmian words.

4.1 Sturmian words

Let us consider a finite or countably infinite set A. We call A an alphabet and an
element of A a letter. A word x over A is a finite or infinite sequence of finite letters.
For each integer n > 1, p(n, x) is defined by the number of distinct subwords of length
n appearing in the word x and is called by the subword complezity of x. Morse and
Hedlund showed that an infinite word is eventually periodic if and only if its subword
complexity is bounded [50]. Thus, a non-eventually periodic word x with the smallest

subword complexity satisfies p(n,x) =n+ 1 for all n > 1.

Definition 4.1.1. A Sturmian word is an infinite word x over A = {0, 1} satisfying
p(n,x) =n+1 for all n > 1.

Example 4.1.2. Let f,, be a sequence of finite words such that fy =0, f; =1, and
fr4o =411, for n > 0. Let £ = lim fj,. Then,
k—o0

f =1011010110110....

The sequence f is Sturmian. We call f Fibonacci word.

First, we can characterize a Sturmian word by the coding of an irrational rotation.
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Definition 4.1.3. For 6 € (0,1) and a real number p, let

0 if [(n+1)0+p]—[nb+p| =0,
1 if |[(n+1)0+p]—|n0+p] =1,

Sp =

and
0 if [(n+1)8+p]—[nb+p|=0,

1 if [(n+1)8+p]l—[nl+p]=1

We call s, := (sn) a lower mechanical word and sy, , := (s},) a upper mechanical
word of slope 6 and intercept p, respectively. We say a mechanical word sg , (or 8/9’ p)

is irrational if 0 is irrational.

The next characterization of a Sturmian word is that subwords of the same length
include nearly same number of 1. We define the height h(u) of a finite word u by the

number of 1 in u.

Definition 4.1.4. A finite or infinite word u is a balanced word if
|h(u) —h(v)| <1
for all subword u, v in u with the same length.

Morse and Hedlund characterized Sturmian words [50].

Proposition 4.1.5. For an infinite word x, the following statements are equivalent.

(1) x is Sturmian.
(2) x is balanced and non-periodic.
(3) x is irrational mechanical.

Let 6 € (0,1) \ Q. The rotation of angle 6 is a map Ry from [0, 1) into itself
defined by
Rg(x) = x4+ 6 (mod 1).

The following proposition means that a Sturmian word is a coding of an orbit of a

point on [0, 1) under Ry.
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Proposition 4.1.6. If sy, = (s;,) and sy , = (s,), then

0, if Ry(p) €[0,1—-8), , 0, if Ry(p) € (0,16,
Sn = and s, =

1, if Ri(p)€[1—0,1), 1, if Ri(p) € (1—0,1].

Definition 4.1.7. A characteristic word cg of slope 0 is defined by
Cy :=S0,0 = Sp -

Let 0 := [0; a1, az, ...]. We define a sequence {M},}1>0 in the following way: Let
us define My := 0, My := 0~ '1, and My, := M,?“le,l for k¥ > 1. Then, the
characteristic Sturmian word of slope 6 is obtained by

cp := lim M. (4.1)

k—o0

For a non-empty finite word V', let us denote by V'~ the word V with the last
letter removed. Let k& > 1. Note that MpM_1 and Mj_1M; are identical, except

for the last two letters [43, Proposition 2.2.2]. Let Mk = MM, = My _1M_ .

The last two letters of My Mj_; is 01 (resp., 10) if and only if the last two letters
of My_1Mj, is 10 (resp., 01). We denote by Dy, D). the last two letters such that
MM, = ]\7ka, My, _1 M, = Mkng, respectively.

From now on, let x = x1x5... be a Sturmian word of slope 0. By Lemma 7.2
n [15], for any k > 1, there exists a unique word W, satisfying one of the following

cases
(i) x= WkMkm ..., where W}, is a non-empty suffix of My,
(i) x = WkMk,le]’va ..., where Wy, is a non-empty suffix of My,
(i) x = WkMk]\’Jvk ..., where W}, is a non-empty suffix of Mj_;.

For case (i) and case (ii), there exist gx non-empty suffices of M. For case (iii), there
exist gx_1 non-empty suffices of My_;. Lemma 7.2 in [15] also gives that all the
(2gx + qr—1) cases are mutually exclusive. For each k > 1, we say that x belongs to
case (1), (ii), (iii) at level k if Wy, satisfies case (i), (ii), (iii), respectively. We denote
by C,gi), C,(;i), C,(Ciii) the set of Sturmian words which belong to case (i), (ii), (iii) at

level k, respectively. For each x, we have an infinite sequence of (i), (ii) and (iii)
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for which case x belongs to at level 1,2, ..., called the locating chain of x. In the

locating chain of x, let u? := ww ...y where u is a finite word of (i), (ii),(iii).
d

Example 4.1.8. Let x = c,, i.e. the characteristic Sturmian word of slope ¢ = [0;1].
Since x starts with M1 MMy, = My Mjy,_1 MuMyDy, for any k > 1, x € C}Si) and

Wi, = Mj, for all k > 1. Hence, the locating chain of x is (ii).

Example 4.1.9. Let x = lc,. Since x starts with 1Mo = 1MM,_1M; =
1MkMkD;€ for any k > 1, W;, = 1 for k > 1. Moreover, x € C,(Ci) if k£ is odd, and
X € C,giﬁ) if k is even. Hence, the locating chain of x is (i)(iii).

Example 4.1.10. Let x = 10101M4Ms5 . ... Since x starts with W7 MyM; = 101,
X € C{ii) and Wy = W1 My = 10. Since x starts with WQMQMQ = 10101, x € Céi)
and W3 = Wy = 10. Since x starts with WsMsM, = WsMsMsDs, x € C§ and
W, = W3 = 10. Since x starts with W, Ms MM, x € C{"” and W5 = WMz = 10101.
Moreover, for k > 5, x starts with WkMk,leMk and Wiy = WMy where Wy
is a non-empty suffix of My. Hence, x € C’,Si) for k > 5. Therefore, the locating chain

of x = (i) (i) iii) (i)

4.2 The exponent of repetition

Sturmian words have been studied in many different areas [6, 16, 34, 43]. Various
complexities have been looked into characterize Sturmian words such as Cassaigne’s
versions of the recurrence function [18] or rectangle complexity [11]. In this section,

we focus on a new complexity function r(n,x) suggested by Bugeaud and Kim.

Definition 4.2.1. Given an infinite word x = 123 . .., let r(n, x) denote the length

of the smallest prefix in which some subword of length n occurs twice. More precisely,

r(n,x) :=min{m : 2;zj11 ... Tjtn-1 = Tm-nt1Tm—n+2 - .. T for some 1 < j <m —n}.

The exponent of repetition of x is defined by

r(n,x)‘

rep(x) := linnl>i£f -
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Example 4.2.2. In Example 4.1.2, f = 1011010110110.... By the definition of the
Fibonacci word and (4.1), the slope of f is @ Then,
vh+1

r(1,f) =3, r(2,f) =5, r(3,f) =6, and rep(f) = 5

Remark. By definition, we obtain the following statements.
(1) r(n+1,x) > r(n,x) +1 for n > 1.
(2) rep(cx) = rep(x) for any finite word c.

The exponent of repetition gives another characterization of Sturmian words and

eventually periodic words.

Theorem 4.2.3 ([15, Theorem 2.3 and 2.4]) The following statements hold.

(1) x is eventually periodic if and only if r(n,x) < 2n for all sufficiently large

integers n.

(2) x is a Sturmian word if and only if r(n,x) < 2n+ 1 for all n > 1 and equality

holds for infinitely many n.

We say a real number is a Sturmian number if there exists an integer b > 2 such

that the b-ary expansion of the real number is a Sturmian word over {0,1,...,b—1}.

For a Sturmian word x over {0,1,...,b — 1}, we say 7x := ) 7& is a Sturmian
number associated with x. Recall that the irrationality exponent of a real number «
is defined by

1
a— p' < — for infinitely many p, q} .
q

p(a) == sup {w eR:
q

Then, the exponent of repetition of x gives the irrationality exponent of the Sturmian

number associated with x.

Theorem 4.2.4 ([15, Theorem 4.5]) For a Sturmian word x = x1x2 ..., an integer
b > 2, and a Sturmian number ry = Zk21 i—,’j, the irrationality exponent of ry is

given by
_rep(x)
plre) = rep(x) — 1
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Thus, we look into the spectrum of the exponents of repetition of Sturmian words
at the next chapter. From now on, we call r« a Sturmian number of slope 0 if x is a
Sturmian word of slope 6.

Theorem 2.4 in [15] says that r(n,x) < 2n + 1 for all n > 1 and equality holds

for infinitely many n. Let
A(x):={neN:r(n,x)=2n+1}.

We have A(x) = {n1,na,...} for an increasing sequence {n;};>1. From Lemma 5.3
in [15], 7(n,x) < 2n implies r(n,x) < r(n — 1,x) + 1. Thus,

r(n,x)=r(n—1,x)+1 if n ¢ A(x).

r(n,x . . .
Hence, the sequence { ( )} is decreasing on each interval [n;,n;1 — 1]. It
n>1

n
gives

1—00 Ni+1

rep(x) = lim inf (1 L > :
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Chapter 5

The spectrum of the exponents

of repetition

For any irrational number 6 € (0, 1), let .Z(0) be the set of the exponents of repetition
of Sturmian words of slope 6, i.e.

Z(0) = {rep(x) : x is a Sturmian word of slope 6}.

In this chapter, we mainly investigate .Z(6). We review the historical results of
Z(0) in Section . We determine the minimum of .Z(#) where 6 has bounded partial
quotients. In the last section, we look into .Z () for ¢ := @ = [0;1].

5.1 The exponents of repetition of Sturmian words

Theorem 3.3 in [15] gives £ () = {1} where 6 has unbounded partial quotients.
We find the minimum of .#(#) where 6 has bounded partial quotients. We keep the
notations in Section 4.2.

The following lemma shows that for £ > 1, there is a relation between cases
which x belongs to at level k£ and k + 1.

Lemma 5.1.1. Let £ > 1. The following statements hold.

(1) If x € C,(;) and x € C,Sj_l U C,Eﬁ_s_)l, then Wy, = WkM,f,Mk,l for some 1 <t <

Ap+1 — 1.

(2) If x e C,S) and x € C,gljf)l, then W1 = Wy.
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(3) It x e CtY, then x € €}, UCEY, and Wy i1 = Wi, Mj_1.

(4) Itx e ™, then x € €}, UCH and Wiyt = Wi

Proof. In this proof, for all k£ > 1, let W, be the unique prefix of x defined in which
case x belongs to at level k. Note that Mk is a prefix of M, by definition.

(1) Let x € C’,(;J)rl U C,(i)l. Note that x starts with Wk+1MkMk formthe suffix
Wii1 of Mpyq. If Wiy is a non-empty suffix of My_q, then x € C,(;“). It is a
contradiction. If Wiy = W/ Mj_; for some non-empty suffix W, of M, then x
starts with W,;Mk_leMk. Thus, x € C,gn). It is a contradiction. Hence, ag1q > 1

and Wyi1 = W}/ M{Mj_; for some 1 <t < aj41 — 1 and some non-empty suffix W,/

of Mj,. Consequently, x starts with W, Mkﬂk By the uniqueness of Wy, W, = W'

It gives Wi1 = Wi M{Mj_;.

(2) Let x € C,ilf;)l We have x = Wk+1Mk+1Mk+1 for a non-empty suffix W14
of Mj. Since My 1Mys1 = MyM, [ Dyi1 M, [, x starts with Wiy My Mj. By the
uniqueness of Wi, Wi = Wy.

(3) Let x € C,(;i). Note that x starts with WkMk_leMk for a non-empty suffix

Wi of M. Assume that x € C,E;lf;)l Since x starts with Wk+1Mk+1Mk+1 for the

suffix Wy,1 of My, x starts with WkHMkMk. Hence, x € CIS). It is a contradiction.

Hence, x € C,Sj_l U C](;jr)l. Thus, x starts with Wk+1MkMk for the suffix Wi, of
Mpqq. If Wiy is a non-empty suffix of My_q, then x € C,(Ciii)

If Wit1 = W M{Mj_; for some 1 < ¢ < a1 — 1 and some non-empty suffix W),
of M, then x starts with W,;Mkﬂk Thus, x € C,(Ci). It is a contradiction. Hence,
Wiy1 = W/ Mj_; for some non-empty suffix W, of Mj. By the uniqueness of Wy,

Wit = Wi Mj_y.

(4) Let x € C]Sii). Note that x starts with WkMkMk for the suffix Wy, of Mj_1.

Assume that x € C,g_l)l Since x starts with Wk+1Mk+1Mk+1 for the suffix Wiy
of My, x starts with Wk+1MkMk. Hence, x € C,(ci). It is a contradiction. Hence,
X € C,(Ci_)H U C,(Cii)l. Thus, x starts with WkHMkm for the suffix Wiq of Myyq. If

Wit = W,;M}éMk_l for 0 <t < aj41 —1 and some non-empty suffix W, of My, then

x starts with W,ng,lem or W]:;Mkm Thus, x € C,(Ci) UC,Si). It is a contradiction.

Hence, Wj,11 = W) _, for some non-empty suffix W/_, of Mj_. By the uniqueness
of Wk, Wk+1 = Wk. ]
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k ‘ k+1 ‘ The relation between Wy and Wy
) case (i) case (ii) | Wiy1 = WMt My (1 <t < apyq — 1)
case (i)
case (iii) Wi =Wy
case (ii) | case (i) case (ii) Wip1 = WM
case (iii) | case (i) case (ii) Wit =Wy

Table 5.1 The relation between Wy, and Wy in Sturmian words

Let
U = tqr + qp—1 — 1, vek = Wl +tgp + qr—1 — 1,
Uﬁc:(lkﬂ—l, U/Q;Z |Wk|+Qk+1—1-

The following lemma shows that all of elements in A(x) N [ug,1,00) are expressed in

terms of gx’s and |Wj|’s.
Lemma 5.1.2. Let £ > 1.

1) fxecnct

pi1, then

{vt,ka u?g} for t = Af4+1 — 17
A(x) N [ug g, v g1 — 1) =

{veh Weg1 b Vi1, uy b for t <apqq —1
where ¢ satisfies W41 = Wi Mp! M _;.
(2) Ifx € CIS) N C,(;jr)l, then
A(x) N [ug g, v g1 — 1] = {vek, etk Vo1 k)
where t satisfies W11 = WM My_1.
3) Ifxec net® nel,, then

A(x) N [ug g, urpey2 — 1] = {og, upyq }-

@) Itxec nel™ nel,, then

A(x) N [ug g, ur g2 — 1] = {vg}.
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(5) It x e cV nel)

pt1s then

{uk} for agr1 =1
Ax) N [ugr, urper — 1] = / ’
{ul,ka U1,k uk} for Q41 > 1.

(6) If x € Cliﬁ) N C,Sjr)l, then

A(x)N [Ul,bul,kﬂ -1 = {Ul,k7vl,k}~

Proof. For x = z1x2. .., let ©} := xjziqq ... 5.

(1) Suppose that x € C,(;) nct

jt1- Since My My is primitive, Lemma 7.1 in [15]

implies that for

x = WpMyMj, - -- = Wy MMy My~ = WyMy_ 1My~ DpMy_1 "~ ...,

U2,k

the first ¢ subwords of length u;; are mutually distinct. From wqfl’k = Ty Y1,

r(u1 k,X) = ug k. Note that

X = W1 My i Myyq -+ = Wi My My M+ My My 1 . ..
= WkMkt+1M]€_1__DszakJrl_le_le_H e
Since qujt’k_l = x;];‘;ll’k_l, r(vg—1,%) < vgp—1. The fact that r(n+1,x) > r(n,x)+1
for any n > 1 gives
r(n,x) =n+ g

for uy < n < v — 1. Moreover, we have r(vyx,x) > r(ver — 1,%x) + 2. Hence,
Ut+1,k—1

r(vek,x) = 2vey + 1 by Theorem 2.4 and Lemma 5.3 in [15]. Since z; =

fot;’QkJqu*l*l, we have 7(upy1 5 —1,%) < vgi41 5 +qx—1—1. The fact that r(n+1,x) >

r(n,x) + 1 for any n > 1 gives
r(n.x) =0+ v + 1
for vy, <n < g1 — 1. Note that

X = W1 My 1 My -+ = Wi My, My, M+ My My . ..
= WM My, " DM@+ T My My - -+ = WMy My M My
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It gives 7(wty1k,%X) > (w1, — 1,x) + 2. Thus, we have r(ugy1 5, X) = U1, + 1
by Theorem 2.4 and Lemma 5.3 in [15]. If ¢ = ag11 — 1, then (¢t 4+ 1)gx + qx—1 =
Qk+1- By the argument used at level k, 7(u g1 — 1,%x) = ug 41 — 1. The fact that
r(n+1,x) > r(n,x) + 1 for any n > 1 gives

r(n,x) =n+uj, + 1
for uj, <n < wuj gy — 1. It follows that
A(x) N [ug g, ur g1 — 1] = {vpg, ug
Now, let t < agy1 — 1. Note that

X = Wi 1 My 1 My - - - = Wi My My My, My, My My~
= Wi Mj," My My My, "+ =2 My My, My My 41~
= Wi Mg My ™~ D M+ " MMy ™~ D My~

. v —1 W |4t B R T
Since z,"""* " = L kl+ q§+qk 1+H((E+2)gr+aqp—1—2)
t+1,k+

qk—1 — 1. The fact that r(n +1,x) > r(n,x) + 1 for any n > 1 gives

, we have r(vip1, — 1,%) < vopyor +

r(n,x) =n+ w1k +1
for ug11 1 <n < w1 — 1. Note that

X = Wit 1 My 1 Myt - - - = Wi My My M@+ My My My =~
= Wi M My~ Dy My T M My~ Dl My~
= Wi M My M2 My .. ..

It gives 7(vey1k, X) > r(veg1 6 — 1,%) + 2. Hence, we have r(viq1 5, X) = 204415 + 1
from Theorem 2.4 and Lemma 5.3 in [15]. On the other hand, from

X = Wi 1 My g1 My 1 -+ - = Wi Mt My, My My, My My My 1=~
= WMy My My Myp™+ My~ DMy~ ...,

[Wi|+tae+ae—1+(akt1qx+ar—1—-2) _  |Wi|+(E+Dap+ar—1+(ak+1ak+aK—1—2)
we have x'Wk|+tQk+Qk—1+1 - x|Wk‘+(t+1)qk+Qk71+1
r(uf, —1,%) < (g1 + 1) + (u), — 1). The fact that r(n+1,x) > r(n,x) + 1 for any

. It gives

n > 1 gives
r(n,x) =n+uvy1r+1
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for vi41, < n < uj — 1. Moreover, r(u,x) > r(uj, — 1,x) + 2. From Theorem 2.4
and Lemma 5.3 in [15], r(uj,x) = 2u}, + 1. Note that x € Cl(;J)rl. By the argument
used at level k, r(uy g1 — 1,%X) = ug g1 — 1. The fact that r(n + 1,x) > r(n,x) + 1
for any n > 1 gives

r(n,x) =n+uj +1

for uj, <n < uy gy — 1. It follows that
A(x)N [Ul,ka UL k+1 — 1] = {Ut,ka Ut41,ks Ut—i—l,kau;c} .

(2) Suppose that x € C,(;) N C,iﬁﬁl. Note that

x =Wy My, - = Wi, Mp' My, My - = W M}, ™' My, =~ D), ...
Use the argument used at level k in (1). Since $11}t’k_1 = x;}:j:l’k_l,

r(n,x) =n+q

for uy i <n <wyp — 1. Note that

__ . __
x = Wi i MMg i Myiq - = Wi My" My My M My, 1 Mpyiq ...
= Wi MM My 1=~ D My ™+ M,y M, = Wi Myt My, My, M,
- kiV1E k—1 kiV1E k—14iV1k41 " — kiV1E k—14iV1E k—1:---
. [Wil+ugpr—1 vkt 1tuprn g—1
Since T 41 =T, 12 (g1, —1,%) < vapq1 1 +aqr—1— 1. Moreover,

(vt g, X) > r(vgr — 1,x) + 2. From Theorem 2.4 and Lemma 5.3 in [15], r(vyx, X) =
2v; 1, + 1. The fact that r(n 4+ 1,x) > r(n,x) + 1 for any n > 1 gives

r(n,x) =n-+uv +1

for vy, < n < wppq p — 1. Moreover, r(ui1 g, X) > (g1, — 1, %) +2. From Theorem
2.4 and Lemma 5.3 in [15], r(ts41,%,X) = 2usy1, + 1. On the other hand, note that

x = Wiyt MMy 1 My - ..
= Wy Myt My, My My, My, M, . ..
= Wi, My' My My M@+ M7
= Wi M My~ Dy My M
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. Vi41,k—1 gk tl4vppr g—1
Since x; = Ty 42

that r(n +1,x) > r(n,x) + 1 for any n > 1 gives

, T(Vegr1k — 1,%) < vagqak + qe—1 — 1. The fact

r(n,x) =n+ w1+ 1

for upp1p < n < v — 1. Moreover, r(veyy g, x) > r(vep1r — 1,%) + 2. From

Theorem 2.4 and Lemma 5.3 in [15], 7(v¢41 .k, X) = 20441 % + 1. On the other hand,
note that

X = Wit MMy 1 M1 - - - = Wi Mt My My, M@+ My, M, . ..
= W My My My Mpy»+ MMy~ D) ...

Ve et 14ay g +1,6—1 Vi1, e tltug, 4161
. , 41+1 o ) k+1t1L
Since x,,, 49 = Ty 42 s r(ui g1 — 1,x) < g — 1+

V1 + 1. The fact that r(n +1,x) > r(n,x) + 1 for any n > 1 gives
r(n,x) =n+uvy1r+1
for vi41 1 <n < wug g4 — 1. Hence,
A(x) N [ur g, wt g1 — 1) = {vek, W1,k Ver1k )

(3) Suppose that x € C,(;) N C,(;jrl)l N C,Siz. Since x € C,S), the argument used at
level k in (1) yields 7(uj x,X) = ug ;. Note that

X = Wi My 1My yq -+ - = WM™+ My My My 1~
= WM™+ MDDy My~ ...
Since z; ¥+ = g AT Lt 1 %) <0 1. The fact that r(n+1,%) >
ince x, =z, , (v, —1,%x) < v +qr—1. The fact that r(n+1,x) >

r(n,x) + 1 for any n > 1 gives
r(n,x) =n-+ q

for uy , < n < v — 1. Moreover, 7(v},x) > r(v;, — 1,x) 4+ 2. From Theorem 2.4 and
Lemma 5.3 in [15], r(v},x) = 2v;, + 1. Note that

. .
X = WisaMiyo Mo = Wy Mg My 1™+ "My My s . ..
— 1/ JE—
— Wi M1 My ™2 My, ™~ Dy M40
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\Wk\'f‘uak k+1—1 [Wi|+ta, 541,641 —1
—+2» _ k+2 s / _ / _
|Wi|+1 = Wil +aqrsa+1 (U —1,%) < [Wl+qr1+ug — 1

The fact that r(n + 1,x) > r(n,x) + 1 for any n > 1 gives

Since x

r(n,x) =n+uvj + 1

for v, <n <y, — 1. Moreover, r(uj 1, %) > r(uj,, —1,%) + 2. From Theorem 2.4
and Lemma 5.3 in [15], r(uj,,X) = 2uj_ ; + 1. Since x € C,(;J)rz, the argument used
at level k in (1) implies r(u1 g42,X) = ug g1o2. The fact that r(n+1,x) > r(n,x) + 1
for any n > 1 gives

r(n,x) =n-+uy +1

/
for uj | <n < wuy k2. Hence,

A(x) N [ug gy utpyo — 1] = {v), upyq )

)1 ne (11)2. Use the same argument with (3). Since

(4) Suppose that x € C,S) N C,g bt

iii
(i) ~ i) i
x €€, NCy .y, we have

r(”a X) =N+ qx

for uy; <n <wp, —1 and r(vy,x) = 20} + 1. On the other hand, note that

X = Wio M1 MyaMioyo -+ = WisMjoy1 My a1 ™2 My My . ..
_ o =1y —
= Wi Moy 1 My ™2 My~ D Mg

\Wk|+uak+2+1,k+1—1 |Wk|+Qk+1+uak+2+1,k+1_1
|Wi |+1 = x|Wk|+Qk+1+1 ’ r(ul,k+2_1ax) < |Wk|+Qk+1+

uq k+2 — 1. The fact that 7(n + 1,x) > r(n,x) + 1 for any n > 1 gives

Since x

r(n,x) =n+uvj + 1
for v, <n < w42 — 1. Hence,
A(x) N [ug g, ur o — 1] = {vi}
(5) Suppose that x € C,(;i) N C,(;J)rl. Note that
x = WpMy_1 MMy, -+ - = WMy MMy My, ...

Since My, M}, is primitive, Lemma 7.1 in [15] implies that the first (u; ;+1) subwords

of length wu; j are mutually distinct. Thus, r(ujx,x) = 2u;, + 1. Since :cll}l’k_l =
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Z:ig::f{l’k*l, r(vig — 1,x) < gk + gr—1 + v1 5 — 1. The fact that r(n + 1,x) >

r(n,x) + 1 for any n > 1 gives
r(n,x) =n+wu,+1

for uy ), < n < wp, — 1. Note that

X = Wi 1 My My - = Wi My M+ My MMy~
Vo K+ qr—1—1 +ah—1+v2 g Fqp_1—1 ..
If agy1 = 1, then acf’k Te—170 — x32+32_1+12’k =172 Tt implies r(vop+qp—1—1,%x) <

v3. ) + 2gx—1 — 1. Since r(n + 1,x) > r(n,x) + 1 for any n > 1,
r(n,x) =n+wu,+1
for ui < n < v + qry1 — 1. Hence,
A(x) N [ug g, wr g1 — 1] = {wr i}

Now, let agy1 > 1. Since x = Wi My MiMpMy_q . . ., r(vl,kx) > T(Ul’k — 1,X) + 2.
From Theorem 2.4 and Lemma 5.3 in [15], 7(v1 %, X) = 2v; 5 + 1. On the other hand,
note that

X = Wis1 Myy1 My - - - = Wi My My, My, M,

ol
-1 A= a ——
= Wi My_1 My M+ Mg M o= WMy My My My Dy My
. Wil+ar—1+ta, 4 k—1 Wel+ar+ae—11ua, 4 k—1 ,
Since T \Wil+ap—1+1 = LW |+ap+ar_1+1 ’ r(uk_l’ x) < [Wil+ae+gr-1+

uj, — 1. The fact that 7(n +1,x) > r(n,x) + 1 for any n > 1 gives
r(n,x) =n+uv;+1

for vy <n < wuj, — 1. Moreover, r(u},x) > r(uj — 1,x) 4+ 2. From Theorem 2.4 and
Lemma 5.3 in [15], r(u},x) = 2u) + 1. Since x € C,Sil, the argument used at level k
in (1) implies (1 g41,%) = ug r+1. The fact that r(n + 1,x) > r(n,x) + 1 for any
n > 1 gives

r(n,x) =n+uj + 1

!/
for u, <n <y gq1. Hence,

A(X) N [ul,k7u1,k+1 - 1} = {Ul,lm U1k, u;}
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(6) Suppose that x € C]Si) OC,(;.JIF)I. Use the same argument with (5). Since x € C]Si),
we have
r(n,x) =n+uy,+1

for uy i, <n <wyp — 1. Note that

x = Wi 1 My My 1 My 41 -+ - = Wi My My My®+ My My My~
= Wi My M M+ My~ Dj My ™~

Since x = W M1 MMMy ..., 7(v1,X) > r(vi—1,%) 4+ 2. From Theorem 2.4

. . [Wil+qe—1+2ay 1 +1,6—1
and Lemma 5.3 in [15], 7(v; g, X) = 2v; +1. Moreover, since ki =

. . [Wi|+qr—1+1 -
V1t Uay 41—
vy, +2 * , r(ur g — 1,x) < Wi + gk + gr—1 + w1 k41 — 1. The fact that

r(n+1,x) > r(n,x)+ 1 for any n > 1 gives

T

r(n,x) =n+uv;+1
for v1 1, <n < wug g1 — 1. Hence,
A(x) N [ur g, ur g1 — 1) = {ur g, vix} O

Remark. When x € C%iii), Lemma 5.1.2 does not determine the elements in A(x) N
[u1,1,u1,2 — 1]. Thus, we should check how the elements of A(x) N [uy 1, u12 — 1] are
expressed in terms of g;’s and |[Wy|’s. If x € Cfﬁi), then x starts with 0%110%~1. Thus,
r(n,x) =n+1 for 1 <n < vj — 1. Moreover, since x € Céi) U Céii), X starts with
091104 or 0%110%1~ 1. Thus, r(v),x) = 2v) + 1. Hence, we can follow the proof of
Lemma 5.1.2 (3) and (4). We have A(x) N [u1,1,u12 — 1] = {vf, u}} for x € CS) and
A(x) N Jugg,ur0 — 1] = {v)} for x € iV,

Fori=1,2,...,6, define
A(x) :={n € A(x) : n appears in (I) of Lemma 5.1.2}.

It is obvious that A;(x)’s are mutually distinct and UJ_; Aj(x) = A(x) N [u1,1, 00).

Now, we find the minimum of .Z(#) where 6 has bounded partial quotients.

Theorem 5.1.3 Let 0 = [0; a1, ag, ...| have bounded partial quotients. We have

min.Z(0) = lim [1;1+ ak,ag—1,ak—2,...,a1].
k—o00
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qk—1

Proof. Let x be a Sturmian word of slope 0. For k > 1, set np = — t; =
qk

|Z€’“‘,ek = i. Note that ¢, < 1, lim €, = 0, and n, > € for k > 1. Set myg :=
lim a;, My := lim a;. Let hmmfmC = [0 by,ba,...].
i—00 i—00

First, assume that a; > 1 for infinitely many 4. Since n, = [0;ag, ag—1,...,a1]
and My > 2, we have by = My, 1iminf77k < % Using Lemma 5.1.2, let us prove
that liminf -~ > liminf [0; 1 4+ ag41, ax, . . .| through the 7 cases below. Note that

nieA(x) it k—oc0
lim inf 7y,

k—o0

liminfrn, > —-2° = liminf —%— = liminf [0; 1 Qs .-
R T iminf o = liminf [0;1 + ax, ax—1, ]
—00

(1) For any n; € A1(x) with n;11 € Aj(x) U Ag(x), - is

7 Mg

tp +t+ M — €k t+14n, — e
t+ldne—e t+ 1+t +m— e

Me+1(E 4+ 1+t + 1k — ) or 1 — €rta

Tt g T Nk — €k

1 — €k

for some k = k(i) and t,t satisfying Wy = WM} My_1, Wit = Wity k+1Mk-

We have

te+t+mne—€ep . . t+1+n— € 1
im inf > >hmlnfn;€7
k—o0 t+1+77k_6k k—oo t4+ 1+t +mr—e  t+1 2

lim inf M(t + 1+t + n — €,) > liminf 25,41 > liminf 7y,
k—oo 1 — €k+1 k—ro0 k—ro0
and
1-— 1
lim inf Cht1 = liminf
k=00 tpp1 +t +Mpg1 — €pp1 k—oo tryr T+ Meg
1

> lim inf ——— = liminf ngyo.

k—oco Qp42 + Met1 k—o0

(2) For any n; € Aa(x), - is

Ni+1

th+t+m—er  t+1+m—e Ornk+1(t+1+tk+nk—€k)
t+14+m—ep t+1+tp+mp —ep 1+ kg1 — €rg1

for some k = k(i) and t satisfying Wiyy1 = WkM}ng_l. From the previous case,

ty +t -+, — . t+14n, — ek 1
lim inf lim inf > — > liminf .
k—o00 t—l—l—i—?]k—Gk k—o00 t+1+tk+7]k_€k 2 k—o00
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We also have

lim inf — n:fjl_ -~ (t+ 1+t — €) = liminf 13?’:;; > lim inf 7.
(3) For any n; € As(x) with n;11 € Aj(x) U Aa(x) U As(x), nﬁl is
L+, — e DML e — ), o 1 — €pt1
L+tp+nr—en 1— € bt tey1 + M1 — €kl
for some k = k(i) and ¢ satisfying Wiyo = Wiy1 M M. We have

1 _
lim inf + 1k Ck > lim inf

1
> — > liminf g,
k—oo 1+t +np — € k—oo 1+t 2 k—o0

lim inf M(l + tk + nk — €;) > liminf ngy g,
k—oo 1 — €k11 k—o0

and

o 1 —€rq1 . 1
lim inf = lim inf
k—oo g1+t + M+1 — €41 k—oo Tgpt1 + 1+ Mkt
1
> liminf ——— = liminf ngyo.
k—oo Qp42 + Nit1 k—o0

(4) For any n; € Ag(x), - is

? nig1

1+ ngp — € or Me+1
T+te+me —e 14+ Mkt1 — €1

(14 tk + i — €x)

for some k = k(7). From the previous case,

1 —
lim inf + T — > liminf ny.
k—oo 1+t +mp — €k k—o0

We also have

. M+1 . Me+1 4. .
lim inf 1+t +np —€r) > liminf ———— liminf (1 + ¢ +
k—oo 14+ Mpy1 — €k+1( Bk k) k—oo 14+ Mgt1 k—oo ( k nk)
liminf ng41
141 f =1 f .
* Titminty,, T BRTW S R
—00
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(5) For any n; € Az(x) with n;41 € Aj(x) U Ag(x) U Ag(x), = is

? Mit1

Mha2 1 — €2
1 —€ry2  t+ipgo+ Mrg2 — €py2

(1 + teMt1 — €xt1)
for some k = k(i) and t satisfying Wi 3 = Wk+2M,’i+2M;€+1. We have

(14 tgenrg1 — €kt1) k42 (1 — €pr1) M2

lim inf > lim inf = liminf ngyo
k—o0 1-— €k12 k—ro0 1-— €k12 k—ro0
and
1-— 1
lim inf €2 = lim inf
koo lpqo + 1+ N2 — €py2 koo tpyo + 1+ Ny
1
> liminf ——— = liminf 7y 3.

k—oo Qp43 + Me+2 k—o0

(6) For any n; € Aj(x) U Az(x) U As(x) with nj41 € Ag(x) U Ag(x), 2= is

? Mg

Nk+1 — €k+1
T+ tenky1 — €kt

for some k = k(i). We have

.. Ne+1 — €k+1 .. Ne+1 ..
lim inf > liminf ————— = liminf [0; 1 + ag11, ag, Ap_1,.-.].
k—oo 1+ tgpnk+1 — €kr1 — k—=oo 14 Mpqa k—o0 | R

(7) For any n; € Ag(x), - is

’ M1

Nk+2
1+ Npgo — €xy2

(L4 tknkt1 — €rt1)
for some k = k(7). We have

1+t —
lim inf M2 (1 + b1 — 1) > liminf M2 liminf [0;1 4+ agyo, agy1, ak, - -
k—00 1+ Nkg2 — €ry2 k—oo 1+ Mi42 k—o00

Hence, from (1)-(7),
rep(x) > liminf [1;1 + ag, ag—1, .. .]
k—o0

where a; > 1 for infinitely many 3.
Now, assume that there exists an integer I > 0 such that a; = 1 for ¢ > I. The

assumptions of Lemma 5.1.1 (1) and (2) are not satisfied for any level £k > I. In
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other words, Aj(x) U Aa(x) is finite. Thus, it is sufficient to consider (3)-(7). Note

that liminf 7, = [0;1] = ¢. Using 1 > t, lim ¢, =0,
k—o0 k—o0

1 4 liminf ny
k—o0

1 _

lim inf + > lim inf + = S

k—oo 1+t +mp — €k k—oo 2+ mg 2—|—h}§nlnfnk
—00

= ¢ = liminf n,

k—o0
(3)-(7) are similarly proved. Hence, rep(x) > [1;2,1] for a Sturmian word x of slope
. Therefore,

rep(x) > liminf [1;1 + ag, ag_1,- . .]
k—o0

for a Sturmian word x of slope 6.

The equality holds in the following setting. Choose the sequence {k;} such that

mk, — liminf g, lim (k41 — k;) = 0o, and kjy1 — k; is odd for all j. Let x € CLV
k—o0 j—0o0 J

for all k; and x € ), , NNy for all 0 < 1 < MHZE=L Thus, Wy 4y =
Wi, My; 1 for all kj and Wiy = Wy for all & # k;. In the proof of (7), we have

lim #;, = 0 and rep(x) = lim [1;1+ ag,ag—_1,ak—2,...]. In conclusion, min £ (6) =
J—00 k—o0

lim [1;1+ ag,agp—1,a5-2,...]. O
k—00

5.2 The spectrum of the exponents of repetition of Fi-

bonacci words

We keep the notations in Section 4.2 with the slope ¢ = [0;1]. In this section, we
investigate .Z(¢). Let us define

5—5
s = 1 = L618..., ppi=dp— 1= 1472, pz =2 2:1.440...,
.
T3p — 42
= P TR 434 e =2 — o = 1.381. ...
HA= 650 — 38 Himin 4
a
) gap &b £ap . .
Hmin Ha 3 M2 Hmax

Figure 5.1  fimax, [42, 143, 44, fmin 0 Z ()

Our first goal is to prove that fipax is the maximum of Z(¢). Next, we show

that fimax, 2, i3, 14 are the four largest points in .Z(¢) and p4 is an accumulation
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k ‘ k+1 \ The relation between Wy and Wy
case (i) case (iii) Wiy =Wy
case (ii) | case (i) case (ii) Wip1 = WMk
case (iii) | case (i) case (ii) Wig1 =Wy

Table 5.2 The relation between Wy and Wy in Fibonacci words

point of £ (). For u € {fimax, 12, 143, L4, fmin }, We give the necessary and sufficient
condition for rep(x) = u and the cardinality of the set of Sturmian words x satisfying
rep(x) = p.

Note that My1 = Mp*+' My_1 = My Mj_ for all kK > 1. The following lemma

is a special case of Lemma 5.1.1.
Lemma 5.2.1. Let £ > 1. The following statements hold.
(1) Ifx e C,S), then x € C,(gljrl)l and Wy = Wy.

(2) If x e C,Si), then x € C,E,i_)H U C,Sj_)l and Wiy, = Wi Mjy_4.

(3) I x e C™, then x € ¢}, UCY and Wit = Wi

Proof. For k > 1, let W be the unique non-empty prefix of x defined in which case
x belongs to at level k.

(1) Since a, = 1 for all k£ > 1, the assumption of (1) in Lemma 5.1.1 cannot be sat-
isfied. Hence, x € C,(;j:)l Since x starts with Wk+1Mk+1Mk+1 = Wk+1MkMkD§€Mk_+_l
for the suffix W11 of My, W1 = Wy by the uniqueness of W.

(2) and (3) are equivalent to (3) and (4) in Lemma 5.1.1 respectively. O

By Lemma 5.2.1, only (iii) should follow (i) in the locating chain of x: x € C,gi)

implies x € C,(Cl_l;)l Hence, if x ¢ C§iii), then the locating chain of x can be expressed

as an infinite sequence of (i)(iii) and (ii). If x € Cfﬁi), then the locating chain of x is
an infinite sequence of (i)(iii) and (ii), except for the first letter (iii). Let us denote
(i)(iii) and (ii) by a and b, respectively.

Since only (iii) should follow (i) in the locating chain of x, the assumptions
of Lemma 5.1.2 (1) and (2) cannot be satisfied. We have the following lemma
corresponding to Lemma 5.1.2. Using qx+1 = qx + qrx—1 for all £ > 1, Lemma 5.1.2

(3)-(6) are equivalent to (1)-(4) of the following lemma, respectively.
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Lemma 5.2.2. Let &k > 1.

(1) Itx et Ny, then A(x) N [ger1 — 1, aers — 2] = gkt + [Wel = 1,qero — 1.
2) Itxec ned,, then A(x) N [ger — 1, gres — 2] = {arrs + Wil — 1.

(3) IfxeC, W C,g}rl, then A(x) N [gr+1 — 1, g2 — 2] = {qr+1 — 1}

(4) xec ned,, then A(x) N [grer — L arso — 2] = {arr1 — L qer + Wil - 1)

For [ =1,2,3,4, define
Aj(x) := {n € A(x) : n appears in (I) of Lemma 5.2.2}.

It is obvious that Aj(x)’s are mutually distinct and Uf_; AJ(x) = A(x)N[g2 — 1, 00) =
A(x). From the definition of Aj(x), Aj(x) = Ajpa(x) for I =1,2,3,4 where the slope
of x is .

+ #L)’S for n; € UL AJ(x). The
following lemma says that it is enough to consider the elements of Aj(x) and A%(x)

Note that rep(x) is the limit infimum of (1

to obtain rep(x).

Lemma 5.2.3. Suppose that both a and b appear infinitely often in the locating
chain of x. Then,

rep(x) =  liminf <1 L )
n EAL (x)UAL (x) Ni41
Proof. First, for each k satisfying x € C(u) N C,(CJ)FI, there exists d(k) > 0 such that
X € C(u) n Cl(cu+)2d(k)+1 and x € C](CJ)er L ﬂC,(;jrl)Qd for 1 < d < d(k). By Lemma

5.2.2, Ji 1= AX) N [qry1 — 1, Qriodqey+2 — 2] € Aj(x) U Aj(x) U Az(x). Note that
Wit1 =+ = Wiyoak)+1 and

g1+ Wi -1 S gj+1 — 1
qj+2 — 1 T gjr2 + Wi -1

for j=k+1,k+3,...,k+ 2d(k) — 1. Since

gj+1 — 1
G2+ W] =1

is increasing for j =k, k+ 1,...,k 4+ 2d(k) —

.o . { Q1 — 1 Qet2d(k) + Whtodky—1] — 1}
min = min ,
ni€Jk Mit1 G2 + (Wi — 1 Q+2d(k)+2 — 1
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2

= oy ml[l;l/ . .
ni€( Q(X)U B(X))ﬂjk N1

Second, for each [ satisfying x € Cl(iii) N Cl(ji)l, there exists d’(I) > 0 such that

X € Cl(iii) N Cl(jr)d'(l)ﬂ and x € Cj(ii) for I +1 < j <1+ d(l). By Lemma 5.2.2,
J =Ax)N[g -1, Qa2 — 2] C Ay(x) U Az(x) U Aj(x). Note that

g+ Wil -1 < Q1 — 1 and gj+1— 1 < g1 —1 ,Qj+1+|Wj’_1
Qa2 — 1 Q42— 1 Gjr2—1 7 g1+ W =1 qj+2 — 1

for j=1+1,...,1+d(l) — 1. Since

g —1
gj+1 — 1

is increasing for j =1+ 1,...,1+ d'(l),

on {q: + [Wia| - 1 Qya@)+1 — 1 }
min —— = min ,
nied; Mit1 Q2 — 1 Qra)+2 + IWiar @41 — 1
. n;
= min .
n; €(AL(x)UAL (x)NT] Ti+1
Since A(x) is the union of J’s and J,’s, rep(x) =  liminf (1 + L) O
(%) Tk J;’s, rep(x) e Rt

Let d be a positive integer. We define an a-chain to be a subword aa - - - a in the
locating chain of x before and after which b appears. For example, if the locating
chain of x = abbaaabaab. .., then a-chains are a,aaa,aa,.... Similarly, a b-chain
is defined as a subword bb---b in the locating chain of x before and after which

a appears. We say that an a-chain or a b-chain is a chain. From the definition

of a chain, a-chains and b-chains alternatively appear in the locating chain of x.

We can choose two sequences {m;(x)}i>1 and {l;j(x)};>1 defined as follows: Let
m;i(x) (resp., [j(x)) be the length of the ith a-chain (resp., the jth b-chain) in the
locating chain of x. Let b1®) follow ¢ In other words, the locating chain of
x is ¢(x)a™ X gm2()p2(x) - for the unique finite word ¢(x). For example,
if the locating chain of x is (iii)bbabbabaabbba . .., then c¢(x) = (iii)bb, mqi(x) = 1,
ma(x) =1, ma(x) =2, l1(x) =2, la(x) =1, [3(x) = 3. Let

s aa...aor bb...bof length greater than or equal to d
d = X
appears infinitely often in the locating chain of x
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In other words, Sy is the set of Sturmian words x such that m;(x) or [;(x) is larger
than or equal to d for infinitely many ¢. By definition, S4y; C Sg. In what follows,
we will write m;(x) and [;(x) simply m; and [;, when no confusion can arise. Now,
let us show that fimax is the maximum of Z (). We give the necessary and sufficient

condition for rep(X) = fimin OF fmax-

Theorem 5.2.4 Let x be a Sturmian word of slope . Then, fipyin < rep(X) < fimax.

Moreover, the locating chain of x is ua or vb for some finite words u, v if and only if

rep(X) = fimax. We have x € Sy for any d > 1 if and only if rep(X) = fimin-

Proof. First, assume that there exists a constant K such that x € C,(cﬁ) for all k > K.
By Lemma 5.2.2, A(x) N [gr+1 —1,00) = {qr — 1, qx +|Wk—-1| —1 : k > K +1}. Since
Wii1 = WMy, for any k > K,

{ q—1 Qk+|Wk—1|_1}
@+ Wi =1 g1 —1

IV qr — 1 @+ W -1\ [
= min ¢ lim inf ,lim inf = .
k>K+1\ gk + [Wi—1| — 1) k>K+1 Qrr1 — 1

Hence, rep(x) = }LHélAl(I}l{f) <1 + n:ljrl) = Umax-

1

lim inf = liminf
n€A(x) Ni41  k2K+1

Second, assume that there exists a constant K such that x € C&? 4ol mcf,?ijgl 4 for
alll > 0. By Lemma 5.2.2, A(x)N[gr+1—1,00) = {gx+2041+|Wkia|—1, g 12042—1 :

[ > 0}. Since |Wy| is constant for k > K,

lim inf
n; €EA(x) M1
W, -1 —1
it { Qk+2141 + Wit 7 qK+21+2 }
1>0 qr 42142 — 1 Qrr2143 + [Whgaipo| — 1

%% -1 -1
=min < lim inf <qk+21+1 + (Wi >,lim inf < 2 > = .
1>0 qrta42 — 1 >1 \ qryar1 + [Wiga| — 1

— Tm ng \ _
Hence, rep(x) = }IllrélAl(l’)l(f; <1 + mH) = Umax-
Now, let both a and b occur infinitely often in the locating chain of x. Since ba
appears infinitely often in the locating chain of x, we can choose an infinite sequence

{ni)}i=1 C A5(x). For each j > 1, Lemma 5.2.2 gives n,(j) = qr1 — L4041 =
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Qr+2+|Wiy1|—1 for some k = k(j). Note that Wyj)11 = W) Mp(j)—1 By definition,

. Ti(j)+1 — 1
rep(x) < liminf { 1 +
( ) J]—00 ( ')+2 + |Wk’(])+1‘ - 1)

hap — 1
< liminf [ 14 — @)L =14 " < fimax.
g0 G)+2 T dr(—1 — 1 I+e

Hence, rep(x) < fimax- In other words, rep(x) = pimax implies that the locating chain
of x is u@ or vb for some finite words u, v.

From Theorem 5.1.3, the minimum of Z(p) is fimin. Let us use Lemma 5.2.3
to determine x satisfying rep(x) = pmin. For n; € AL(x), let n; = qr + [Wi—1| — 1,
Nit1 = Qryo — 1 for some k = k(i). For n; € A4(x), let n; = qury1 — 1, nip1 =
Qi+2 + |Wir41| — 1 for some k' = k/(4). Thus,

rep(x)
n;
=min< lim mf ) lim inf (1 + )
n; €AY (X) nz-i—l n;€A5(x) Tt
)+ W —1 i — 1

=min { lim 1nf | k(i -1l JJiminf | 14 T () +1

i—00 Qr(iy+2 — 1 i—00 A ()2 + (Wil — 1

1 (i -1

>min < lim mf (k) T2 Jiminf | 1+ Tk (i) +1

1—00 k( Y+2 — 1 i—00 Qk’(i)+2 =+ qk/(i)Jrl -1
—min 1+<p 1+L = imin-

p+1

The necessary and sufficient condition for rep(x) = pimin is

Wi — Wi
lim inf 7‘ k() ! =0 or limsup 7| k()ﬂ‘
100 Ak (3) i—oo  Qk/(i)+1

=1.
Hence, arbitrarily long sequence aa...a or bb...b should occur in the locating chain
of x, i.e. x € Sy for any d > 1. O

The following result states that us, 3 are the second and third largest points in
Z(¢). The necessary and sufficient condition for rep(x) = po or ps is determined.

Theorem 5.2.5 The intervals (ua, fimax) , (143, f12) are maximal gaps in Z(p).
Moreover, the locating chain of x is uab for some finite word v if and only if
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rep(x) = po. The locating chain of x is vb%a? for some finite word v if and only

if rep(x) = p3.

Proof. If rep(X) < fimax, then x € S; by Theorem 5.2.4.

First, let x € S; N .S5. Since any chains of length greater than 1 occur at most
finitely often in the locating chain of x, there exists an integer I > 0 satisfying
mj = l; = 1 for j > I. Thus, the locating chain of x is uab for some finite word u.
Using Lemma 5.2.2 and 5.2.3, we obtain rep(x) = uo.

Second, let x € Sy. Using Lemma 5.2.2 and 5.2.3, rep(x) = u3 where the locating
chain of x is va2b? for some finite word v. If m; > 3 for infinitely many j, then there
exists an infinite sequence {k(j)} satisfying x € C,S()j)i6 N C;ii()j), 4N C,(;()j)iz N C](;(i]).) for
all j. By Lemma 5.2.3,

(1 L Bp)-1 t Wi)—6l — 1

) <1+ +¢"
dr()+1 — 1

rep(x) < liminf
]*)OO
where Wy,;) = Wy(j)—¢ for all j. If [; > 3 for infinitely many j, then there exists an
infinite sequence {k(j)} satisfying x € C,(;(lj).)_Q N CIS(IJ).)_I N Clgl(i;) N C,%Hl for all j. By
Lemma 5.2.3,

. Te(j)+1 — 1
rep(x) < liminf (1 + )
) j—00 Tey+2 + Wiyl — 1

v 1
— lim inf <1 + Ikl )
j—o0 Q)2 T Q-1 + Te()—2 + Q)3 + [Wig)—2| — 1

Nap —1
Ak (j)+1 ) — 14+ ' .
+2 + 2qx(j)-1 — 1 1+2¢

< lim inf <1 +
ke (5)

J—00

: 2 7 b
Since 1 4+ ¢* 4+ ¢, 1+ 15253
By definition, there exists an integer I > 0 such that m;,l; <2 for j > I. If [; =1,
mj+1 = 2 for infinitely many 7, then there exists an infinite sequence {k(j)} satisfying

(i) (it) (i) () (if) :
X € Ck(j)77 N Ck(j)ﬂ,) N Ck(j)i4 N Ck(j)72 N Ck(j) for all j. By Lemma 5.2.3,

<1 L )1 + @iy—6 + [Wigy—7l — 1

><1+g02+<,07+<p8
()41 — 1

rep(x) < liminf

J]—00

where Wk(]) = Wk:(j)—4a Wk(j)—B = Wk(j)—% and Wk(j)—4 = Wk(j)—BMk(j)—G for all ]

If m; =1, l; = 2 for infinitely many j, then there exists an infinite sequence {k(j)}
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e (i) () (i) (i) (i) .
satisfying x € Ck(j)_4 N Ck(j)_3 N C,g(j)_1 N Ck(j) N Ck(j)Jrl for all j. By Lemma 5.2.3,

T(+1 — 1 >

rep(x) < lim inf <1 +
di(

j—00 2+ Wiyl =1
=1
= lim inf <1 + Gh)+1 >
j—00 Te(j)+2 T We(i)—1 + Qi)—2 + W)=l — 1
-1
j—e0 r(j)+2 + k() T dr()—5 — 1 prt+es+1

where Wi,;)—1 = Wy)—3 and Wyj)_3 = Wy j)—4Mj ;)5 for all j. Since 1+Q2+¢"+
08,1+ m < p3, rep(x) < p3 where the locating chain of x is not va2b? for
some finite word v. Hence, max{rep(x) : x € Sy} = us. Moreover, rep(x) = 3 if and
only if the locating chain of x is va2b? for some finite word v. Therefore, two intervals
(142, tmax), (13, p2) are maximal gaps in .Z(¢). On the other hand, by Theorem 5.2.4,
rep(x) = fmax if and only if x € S{. In the proof above, rep(x) = ug for x € S; NS5,

and rep(x) < us for x € Sy. Hence, rep(x) = 2 if and only if x € S; N S5. O

In the next theorem, we assert that 4 is the fourth largest point in .Z(¢) and a
limit point of £ (). We give the necessary and sufficient condition for rep(x) = p4.

Theorem 5.2.6 The interval (4, u3) is a maximal gap in £ (). Moreover, rep(x) =
g if and only if x € So N S5 satisfies the following two conditions:

1) The locating chain of x is u(b*a?)®*ba(b*a?)®?ba ... for some finite word u and

integers e; > 1.
2) limsup{e;} = oo.
i>1
Furthermore, py is a limit point of ().

Proof. From Lemma 5.2.2 and 5.2.3, rep(x) = pq if © € Sy N 5§ satisfies the above
two conditions 1) and 2). Assume that a Sturmian word x satisfies rep(x) € (14, i3).
In the proof of Theorem 5.2.5, rep(x) > pg for x € S5, and rep(x) < min{1 + ¢? +
0’1+ 2@;:_ 1} < pg for x € S3. Thus, x € S2 N S§. By definition, there exists
an integer I > 0 such that m;,{; < 2 for all j > I. Moreover, rep(x) < p3 implies
that {j : m; = 1} U {j : [; = 1} is infinite. Hence, {j : m; = 1,1; =2} U {j : |; =

1, mjy1 = 2} is infinite.
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First, if {j : I; = 1,m;41 = 2} is infinite, then rep(x) < 1.432 < p4. Thus,
{7 :1; =1,mj;11 = 2} is finite. In other words, there exists an integer I’ > 0 such
that m; = 2 implies [;_1 = 2 for all j > I'. Since {j : m; = 1,; =2} U{j: l; =
1,mjy1 = 2} is infinite, {j : m; = 1,1; = 2} is infinite. Now, let us show that both
{imj=10L_ =10 =2}and {j: mj_1 =m; = 1,11 = 1,l; = 2} are finite. If

{7 :m; = 1,1 = l; = 2} is infinite, then there exists an infinite sequence {k(j)}

such that x € C(H) 5N C(l(l)) N C(()) N C(l(l)) N C(l(l)) N C(()) for all 7. Hence,
rep(x) < liminf i)+~ 1
j—oo kG2 T W41l — 1
vy — 1
= liminf rG)+
J—00 42 T akG)—1 + Qeg)—2 T qk( V=5 T dk(j)—6 + [ Wii)—s| — 1

1
< liminf | 1 + Ok(j)+1
j—r00 N2 T iG)—-1 + w)—2 + W)—5 + (-6 — 1

< .
TS +<,0 T ol 18

It follows that {j : m; = 1,1;_1 = l; = 2} is finite.

If {j:mj_1 =my; =1,l;_1 = 1,l; = 2} is infinite, then there exists an infinite
sequence {k(j)} such that x € C(()) DC,S()j)iﬁ N C,(;(l)) N C(()]) 3N C(I(IJ)) N C](Cl(lj).) N
C]ii()j)+1 for all j. Hence,

. Qe(j)+1 — 1
rep(x) < liminf [ 1+
() j—o0 ( Wi +2 + IWhi)+1l — 1)

=1
= liminf [ 1+ Ak (j)+1
J—00 Q)42 T Qk()—1 + e()—2 T Qe(j)—5 + ()-8 + [Wi(y—7] — 1

r()+1 — 1
<liminf | 1+
J—00 k()2 T wG)—1 + W()—2 + ()—5 T ()-8 — 1
¥

1_*_9034_904_’_907_’_(’010

< 4.

It follows that {j : mj—1 = m; = 1,1 = 1,1; = 2} is finite. Therefore, both

{7:mj=11L_1=10;=2}and {j : mj_1 =m; =1,l;_1 = 1,1; = 2} are finite.
Next, let us prove that {j : m; = mj;1 = 1} is finite. Suppose that {j : m; =

mj41 = 1} is infinite. Then, {j : m; = mjp1 = 1,[; = 1} U{j : mj = mj;1 =
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1,l; = 2} is infinite. Note that {j : I; = 1,m;j;1 = 2} is finite. In other words,

there exists an integer I” > 0 such that I; = 1 implies mj;1 = 1 for all j > I”.

Thus, if {j : m; = mj;1 = 1,l; = 1} is infinite, then {j : m; = mj1 = 1,1; =
Lilign = 2 U{j: mj = mjp1 = mjpe = 1,l; = lj;1 = 1} is infinite. Since
{j:mj =mjp1 = 1,1; = 1,141 = 2} is finite, {j : mj = mjp1 =m0 = 1, =
lj+1 = 1} is infinite. Thus, {j : mj = mjp1 = mjpe = L,; = ljy1 = L lj12 =
2} U{j : mj = mjp1 = mjqpe = mj3 = 1,15 = 41 = lj42 = 1} is infinite. Since
{7 :mj =mjp =1,1; = 1,1j11 = 2} is finite, {j : mj = mjp1 = mjyo = mjy3 =

1,1; = lj41 = lj42 = 1} is infinite. By the same argument, it follows that the locating

chain of x is uab for some finite word u, which leads a contradiction with = € Ss.

Hence, {j : mj = mj41 = 1,1; = 1} is finite. Similarly, we use the same argument to
induce that {j : m; = m;;1 = 1,1; = 2} is finite. Therefore, {j : m; = m;1 =1} is
finite.

From the above arguments, we have the locating chain of x is
u(b?a®) b a(b?a?)%2b2a . . .

for integers e; > 1, f; = 1 or 2, and some finite word u. Since {j : m; = 1,1;_1 =
l; = 2} is finite, we can assume that f; = 1 for all j. The locating chain of x is
u(b?a?)*1ba(b?a?)®2ba . . .. Moreover, if d = limsup{e;} < oo, then

i>1

6 10

-1
1 @ Q01— b
<1 — < .
rep(x) < +<(p+¢+1_¢6d+3+1_@61_¢6d+3 4

It follows limsup{e;} = oo. However, for a Sturmian word x such that the locating
i>1

chain of x is u(b?a?)ba(b?a?)®ba . .. and limsup{e;} = oo, rep(x) = p4. It implies
i>1

that there does not exist a Sturmian word x satisfying rep(x) € (u4, u3). Hence,

(14, u3) is a maximal gap in Z(p). Furthermore,

—1
- 1 ° I ek
rep(... (b%2a?)%a) = 1 + (SO te+ 1— pbd+3 + 1 — 61 — pbd+3

— g as d — 0.

Hence, 14 is a limit point of £ (). O
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Proposition 5.2.7. For « € {pmax, p2, p3}, there are only countably many Sturmian
words x of slope ¢ satisfying rep(x) = a. For 8 € {14, imin }, there are uncountably

many Sturmian words x of slope ¢ satisfying rep(x) = 5.

Proof. From Theorem 5.2.4, rep(X) = pimax if and only if the locating chain of x is
u@ or vb for some finite words u,v. Thus, x satisfying rep(x) = pmax is completely
determined by the choice of u or v. Hence, there exist only countably many Sturmian
words x of slope ¢ with rep(x) = fimax. Theorem 5.2.4 also implies that rep(x) = fimin
if and only if x € S; for any d > 1. Hence, it is possible to choose 2%0 sequences
{m;} U {l;}. Namely, there exist uncountably many Sturmian words x of slope ¢
with rep(x) = fmin-

On the other hand, Theorem 5.2.5 implies that rep(x) = po if and only if the
locating chain of x is uba for some finite word u. Thus, x satisfying rep(x) = ps is
completely determined by the choice of u. Hence, there exist only countably many
Sturmian words x of slope ¢ with rep(x) = pz. Theorem 5.2.5 also implies that
rep(x) = p3 if and only if the locating chain of x is ub2a? for some finite word w.
Thus, x satisfying rep(x) = ps is completely determined by the choice of u. Hence,
there exist only countably many Sturmian words x of slope ¢ with rep(x) = us.

Finally, Theorem 5.2.6 implies that rep(x) = 4 if and only if the locating chain
of x is u(b?a?)*ba(b*a?)*2ba . .. for some finite word u and integers e; > 1 satisfying

limsup{e;} = co. Hence, it is possible to choose 2% sequences {e;}. Namely, there
i>1
exist uncountably many Sturmian words x of slope ¢ with rep(x) = p4. O
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Chapter 6

Colorings of regular trees

6.1 Sturmian colorings of trees

In this section, we study Sturmian colorings on regular trees. Let us begin by some
notations in graphs and trees, following [61].

A graph G consists of a set of vertices VG and a set of edges EG. The vertex set
VG is defined to be a finite or countably infinite set. The edge set EG is defined by
a subset of ordered pairs of two distinct vertices. The degree of a vertex v is defined
to be the number of edges starting from v. We say that a graph is k-reqular if all
vertices of the graph have the same degree k. A tree is a graph with no cycle.

Let T be a k-regular tree. By a coloring of a regular tree 7, we mean a vertex
coloring with finite alphabet, i.e. a surjective map ¢ : V7 — A from the vertex set
VT to the set A such that |A| < co. For subtrees 7; and 72 of 7, we define a color-
preserving homomorphism f : 71 — 75 of a coloring ¢ as a graph homomorphism
such that ¢(v) = ¢(f(v)) for all v € VT;. We say that two vertices u, v are in the
same class if there is a color-preserving isometry of 7 such that f(u) = v. For a
given coloring ¢, let I'y be the group of color-preserving isometries of 7. Then, I'y
is a subgroup of Aut(7).

For a given coloring ¢, let I' := I'y be the group of color-preserving isometries
of 7. The quotient X = I'\T has a structure of an edge-indexed graph, which is a
graph equipped with an index map 7 : EX — N defined as follows: Let e € EX be
an oriented edge with the initial vertex z € VX and the terminal vertex y € VX.
Let # be a lift of x in 7. The index i(e) is the number of lifts of y among the
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neighboring vertices of Z. We sometimes denote e by [z,y]| and denote i(e) by i(z,y).
We call X = (X,1i) the quotient (edge-indexed) graph of (T,¢). Let m : T — X be
the covering map. There is a coloring ¢g of X such that ¢ = ¢g o .

Dong Han Kim and Seonhee Lim generalized a Sturmian word and its factor
complexity to a Sturmian coloring of a tree [37].

The n-ball By, (u) of center u is defined by the closed ball of radius n and center
u. We say two n-balls B, (u) and B,,(v) are equivalent if there is a color-preserving
isometry f : B,(u) — B,(v). We denote by [B,,(u)] the equivalence class of B, (u)
and call it a colored n-ball. The set of colored n-balls of ¢ is denoted by By(n).

For n > 0, the factor complexity by(n) of a coloring ¢ is defined to be the number
of colored n-balls in (7, ¢). In other words,

bs(n) = By (n)]-

Clearly, by(0) = | A

If by(n + 1) > bg(n), there are at least two distinct n-balls B, (u) and B, (v)
such that [B,(u)] = [Bn(v)] but [Bny1(w)] # [Bpti(v)]. We call such a colored n-ball
[B,,(u)] special. Then, we say that [B,+1(u)] and [B,+1(v)] are extensions of [B,,(u)].

The type set A, of a vertex v € VT is the set of integers n for which [B,,(u)] is
special. A vertex w is said to be of bounded type if A, is a finite set. For a vertex u
of bounded type, the mazimal type 7(u) of u is the maximum of elements in A,. We
say that a coloring ¢ is of bounded type if each vertex (or equivalently a vertex) of
(T, ) is of bounded type. Otherwise, we say that a coloring ¢ is of unbounded type.

We say that a coloring is periodic if its quotient graph I'\7 is a finite graph.
Dong Han Kim and Seonhee Lim showed the analogous theorem of Morse-Hedlund
theorem which is to characterize periodic words and Sturmian words by subword

complexity. They generalized Sturmian words to Sturmian colorings of regular trees
[37].

Theorem 6.1.1 ([37, Theorem 2.7]) The followings are equivalent.
(1) The coloring ¢ is periodic.
(2) The factor complexity satisfies by(n) = by(n + 1) for some n.

(3) The factor complexity by(n) is bounded.
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Suppose that by (n) is not bounded. From Theorem 6.1.1, bg(n) is strictly increas-
ing for all n. Since by(0) > 2, by(n) > n + 2 for all n. In other words, non-periodic

coloring has at least n + 2 factor complexity.

Definition 6.1.2. A Sturmian coloring (T, ¢) is a coloring with factor complexity
b¢(n) =n+2.

They also characterized a Sturmian coloring of a regular tree by its quotient
graph.

Theorem 6.1.3 ([37, Theorem 3.4 and 3.9]) If ¢ is a Sturmian coloring, then its
quotient graph is one of a geodesic ray or a bi-infinite geodesic with possibly attached

loops at each vertex.

Figure 6.1 The quotient graph of a Sturmian coloring

The factor graph G, is defined as the graph whose vertices are the colored n-
balls. Its edges are pairs of colored n-balls appearing in (7, ¢) of distance 1, i.e.
(Dy, Ey) such that [B,(v)] = Dy, [Bn(w)] = E,, for some vertices v,w € VT with
d(v,w) = 1. From the definition of a Sturmian coloring, there exists a unique special
n-ball for each n. We denote by S, C), the special n-ball, the centered colored n-ball
of Sp+1, respectively. The special n-ball S,, has two extension to colored (n+ 1)-balls.
We denote by A1, Bnt1 the colored (n + 1)-ball extensions of S,,. Let us choose
{A,},{B} such that A, contains more A, than B,.

Now, We define the subgraphs g;;‘,gf of G,,. The subgraphs g;;‘,gf consist of
the colored n-balls adjacent to S, in A,+1, Bpt1, respectively. We denote by < the

concatenation of g;;‘ and g,ff as follows: If C), # S,,, then we define

V(GAaGP) =vGruVGE and E(G2 = GP) = EGA U EGP
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where the end vertices C,, in g;? and C), in g,? are identified and the loops at C,, in
Q;? and g,? are identified in Q;? > Qf. If C,, = S, then we define

V(G2 GP) =VGAUVGE and E(GA > GB) = EGA L EGE L {e}

where C,, in g:} and gf remain two distinct vertices in g;j‘ D g;? and e is the edge

connecting with two end vertices C), in gg‘ and gf.

Theorem 6.1.4 ([38, Theorem 1.2]) Let ¢ be a Sturmian coloring.

(1) If ¢ is such that G,, does not have any cycle for all n, then there exists K € [0, 0]
and a sequence (ny),>o such that ny =k for 0 < k < K and

Gl =Gr,, GP=Gligh, if0<n<K,
A~ PA B B ~ oA B
g,,j4 = gz_l > g,;_l, g; = g’;_l [P gn_l, or 0 <n— K7
gn = gn—l D<]gn—l? gn = gn—l’
A~ PA B ~ B .
Gp =G,1, Gy =G, 1, ifn # ng,n > K,

A~ 0A B B ~ B
gn = gnfl > gn717 gn = gnflv or

) " B B ifn=mng,n>K.
gn = gn717 gn = gn717

(2) If ¢ is such that G, has a cycle for some n, then ¢ is of bounded type. The
coloring ¢ is of bounded type if and only if either g;;‘ or GB eventually stabilizes.

6.2 Quasi-Sturmian colorings

In this section, we look into quasi-Sturmian colorings of regular trees. Quasi-Sturmian

coloring is similarly defined with the definition of quasi-Sturmian words.

Definition 6.2.1. We say that a coloring is quasi-Sturmian if there exists a pair of

integers ¢ and Ny such that b(n) =n + ¢ for n > Ny, i.e.
b(n+ 1) — b(n) =1 for each n > Ny. (6.1)

We assume that Ny is the minimal integer satisfying (6.1). From the definition, a

quasi-Sturmian coloring has a unique special n-ball for all n > Ny which we denote

by Sp.
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6.2.1 Quotient graphs of quasi-Sturmian colorings

In this section, we characterize the quotient graphs of quasi-Sturmian colorings. The
quotient graph of a quasi-Sturmian coloring of bounded type is a union of a finite
graph and a geodesic ray. For a quasi-Sturmian coloring of unbounded type, the
quotient graph is a geodesic ray or an infinite geodesic.

For w € VT, 7(u) < m if and only if [By,+1(u)] = [Bm+1(v)] implies that « and v
are in the same class. If two vertices u and v are in the same class, then u and v have
the same maximal type. Kim and Lim proved that the converse is also true in the
case of a Sturmian coloring (see Proposition 3.2 in [37]). We observe that the same
proof holds in quasi-Sturmian colorings as long as b(n + 1) — b(n) = 1. We provide

the proof for completeness.

Lemma 6.2.2. Suppose that b(n) is a strictly increasing function. If b(n+1)—b(n) =

1 and two vertices u and v have maximal type n, then v and v are in the same class.

Proof. Suppose that b(n + 1) — b(n) = 1 and there exist two vertices v and v not in
the same class such that 7(u) = 7(v) = n. Since the alphabet A is finite, there is a
number N such that By (w) contains a special n-ball for each w € VT (see Lemma
2.16 in [37]).

Fix a vertex w and let z be the center of a special n-ball contained in By (w).

Since the special n-ball is unique and it has only two extensions of radius n + 1,
either [By,+1(2)] = [Bryi1(u)] or [Byy1(z)] = [Bryi1(v)], thus z is in the same class of
u or v. Since w € By(z), the tree T is covered by N-balls whose centers are in the
same class of v or v. Thus, the maximal types of vertices of T is bounded by M =

max{7(p) : p € By(u) UBy(v)}. It contradicts that b(n) is strictly increasing. [

Corollary 6.2.3. Let (7, ¢) be a quasi-Sturmian coloring of bounded type with
factor complexity b(n) = n+ ¢ for n > Ny. If two vertices u and v of (7, ¢) have the

same maximal type greater than or equal to Ny, then u and v are in the same class.

Lemma 6.2.4. If a vertex u of a quasi-Sturmian coloring (7, ¢) is of maximal type

m, then the following hold.

(1) If m > Ny, its neighboring vertices are of maximal type m — 1, m, m + 1.
If m = Ng — 1, its neighboring vertices are of maximal type at most Nj.

If m < Ny — 2, its neighboring vertices are of maximal type at most Ny — 1.
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(2) If m > Ny, one of its neighboring vertices is of maximal type m + 1.

(3) If m > Ny is not minimum among maximal types of vertices, one of its neigh-

boring vertices is of maximal type m — 1.

Proof. Let {u;}i=1,.. 4 be the neighboring vertices of u, where d is the degree of T'.

(1) Let 7 = max{7(u;) }i=1,... 4. Choose uy, such that 7(uy) = 7. There is a vertex
v such that [Br(ux)] = [B-(v)] but [Bryi(ug)] # [Bryi(v)]. Let f: Br(ug) — B (v)
be a color-preserving isometry. Let w = f(u). Suppose that 7 > m + 1. Since
Brii(u) C Br(uk), [Bmt1(w)] = [Bm+1(w)]. Thus, v and w are in the same class.

Since d(w,v) = 1, u; and v are in the same class for some j. We have
[Br(uj)] = [Br(v)] = [Br(ur)] and [Bri1(uj)] = [Brs1(v)] # [Brsa(ur)];

thus 7(u;) > 7. By the maximality of 7, 7(u;) = 7. By Corollary 6.2.3, if 7 > Np,
then uy and u; are in the same class. It contradicts [Br41(ug)] # [Br+1(u;)]. Hence,

T < Np.

We conclude that 7 > m + 1 implies 7 < Ng. If m > Ng — 1, then 7 < m + 1.

If m < Ny — 1, then 7 < Ny — 1. In other words, for u,v such that d(u,v)=1, if
|7(u) — 7(v)| > 2, then 7(u),7(v) < Ny — 1. Thus if m > Ny, then 7(u;) > m — 1.

(2) Let m > Ny. Suppose that there is no u; such that 7(u;) = m + 1. By (1),
m —1 < 7(u;) < m for each i. If 7(u;) = m — 1, then there is no vertices on By (u;)
of maximal type greater than m. Even if 7(u;) = m, since u and u; are in the same
class by Corollary 6.2.3, we have the same conclusion. Thus, there is no vertex on
Ba(u) of maximal type greater than m. Inductively, every vertex is of maximal type
less than m + 1. It contradicts the fact that b(n) is strictly increasing.

(3) We can show it by the similar argument of the proof of (2). O
For a quasi-Sturmian coloring of bounded type, we define
N; = max{Ny, min{7(x): 2z € VT}}. (6.2)

For a coloring of bounded type, we define the subgraph G of X as the graph consisting
of the vertices of maximal type less than or equal to N7. The next proposition follows

from Corollary 6.2.3 and Lemma 6.2.4.
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Proposition 6.2.5. For the quotient graph X = (X, ) of a quasi-Sturmian coloring
¢ of bounded type, the quotient graph X is a union of G' and a geodesic ray (see the
following figure).

X

N L

Nz L

‘N1+3 xN 114 Z

‘N1+5

Figure 6.2 Quotient graphs of quasi-Sturmian colorings of bounded type

The quotient graph X is linear from the vertex of maximal type N1 + 1. In the
figure, the vertex labeled by x is of maximal type k.

The quotient graph of a Sturmian coloring of unbounded type is a geodesic ray or
an infinite geodesic (see Theorem 3.8 in [37]). Now, we show that the same property

holds for quasi-Sturmian colorings of unbounded type.

Proposition 6.2.6. For a quasi-Sturmian coloring of unbounded type, the vertices

of a 1-ball have at most three distinct type sets.

Proof. Let us assume that there are three neighboring vertices w1, uo, us of u such
that the type sets of u, u1, us, ug are all distinct. Since each special n-ball is unique
for n > Ny, if there is n € A, N A, such that n > Ny, then [B,(u)] = [Bn(v)]. Thus,
if Ay, N A, is infinite, then A, = A,. Let N = maxA, N A,. Note that A, N A, is
non-empty since every type set contains —1. Choose such N for each pair of vertices
from different classes in Ba(u) and let M be the maximum of such N’s. Then, the
type sets of two non-equivalent vertices in By (u) intersected with {M +1, M +2,---}
are all mutually disjoint.

Now let [ > M + 1 be in the type set A,. Such [ exists since the coloring is of
unbounded type. At least one of uj, ug, us has a type set disjoint from {I —1,1,1+1},
say u;. Since [ € A, there is v such that [B;(u)] = [B;(v)] but [Bi+1(u)] # [Bi+1(v)].
Let f : Bi(u) — Bj(v) be a color-preserving isometry. Then [B;_1(u;)] = [Bj—1(f(u;))].

Let p=min{k >1—1:k € Ay, }. Since p > [+1, [B;—1(u;)] has a unique extension
to [Bp(u;)]. Thus, [By(u;)] and [B,(f(ui))] are equivalent by a color-preserving isome-
try g. Since [By-1(g7(v))] = [By-1(v)] and p—1 > I, [By(g~ ()] = [Bu(v)] = [B(w)
and [Brar(g7 ()] = [Bia(0)] # (B (). Thus, g71(v) # u and A1) 0 Ay
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contains [ > M + 1. However, since d(g~!(v),u) < 2, it contradicts that Ag-1p) N
Ayn{M+1,M+2,---} is empty. O

Let (T, ¢) be a quasi-Sturmian coloring of a tree and X = (X, ) be its quotient
graph. If two vertices u, v have the same type set, they have the same colored n-balls
for every n, i.e. u,v are equivalent (see Lemma 2.4 in [37]). By Proposition 6.2.6,
there are at most 2 adjacent vertices of each vertex x € VX.

For a quasi-Sturmian coloring of unbounded type, we define G as the set of
vertices which have only one adjacent vertex in X. Since factor complexity of ¢ is
unbounded, X is an infinite graph. Since X is connected, G is empty or G has a
single element. Thus, we obtain the following theorem characterizing the quotient

graphs of quasi-Sturmian colorings of trees.

Theorem 6.2.7 If ¢ is a quasi-Sturmian coloring, then its quotient graph is one

of the following graphs.

Figure 6.3 Quotient graphs of quasi-Sturmian colorings
More precisely, the quotient graph of a coloring of bounded type is the first graph,
where as the quotient graph of a coloring of unbounded type is a geodesic ray or a

bi-infinite geodesic.

6.2.2 Evolution of factor graphs

In this section, we look into quasi-Sturmian colorings of unbounded type in details.

Let us begin by explaining an induction algorithm for quasi-Sturmian colorings of
bounded type. As in [38], for n > Ny, S, denotes a unique special n-ball, C), denotes
a centered n-ball of S,,41, and A, 41, Bph+1 denote two types of extensions of S,,. For
a class of n-balls B = [B,(z)], denote the class of [B,1(x)] by B and the class of
[Bn—1(z)] by B. Note that if B is not special, then B is well-defined.
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Recall from the introduction that for a given quasi-Sturmian coloring ¢, for
n > No+ 1, the factor graph G, has Bg(n) as its vertex set. There is an edge
between two colored n-balls D, F if there exist n-balls centered at x, y in the classes

D, E, respectively, such that d(z,y)=

. Q\) )

A B B A AB

Figure 6.4 The evolution of Rauzy graphs of a quasi-Sturmian word (above) and
the evolution of G, of a quasi-Sturmian coloring on a tree (below)

Cyclic quasi-Sturmian colorings

Now, we gather preliminaries of cyclic quasi-Sturmian colorings.

Definition 6.2.8. We say that D is weakly adjacent to E if there exist v,w € VT
such that d(v,w) =1 and [B,(v)] = D and [B,,(w)] = E for some n,m.

We also say that D is strongly adjacent to E if for any B, (x) in the class D, there
exists a vertex y such that B,,(y) € F and d(z,y) = 1. If D is strongly adjacent to

F and vice versa, then we say that D and E are strongly adjacent.

We remark the following fact. If [B,,+1(u)] = [Bpt1(v)] and [Bpta(uw)] # [Bpt2(v)],
then there exist neighboring vertices v’ and v’ of u and v, respectively, such that
[B(u")] = [Bn(v")] and [Bp41(u')] # [Bnt1(v')] (see Lemma 2.11 in [37] for details).
Thus, S, is strongly adjacent to S, for n > Ng.

Lemma 6.2.9. Let (7, ¢) be a quasi-Sturmian coloring and n > Nj.

(1) We can choose {Ap}n>No+1, {Bntn>No+1 s0 that Ap41, By are strongly adja-
cent to A,, By, respectively. Moreover, A, 1, B,11 are uniquely determined if
we give the condition that A, 41 contains more balls of the class A,, than B,

does.
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(2) For each vertex xz in T — G and n > Ny + 1, the n-balls with centers adjacent
to = belong to at most two classes of n-balls apart from [B,,(x)]. Thus, for any
class D # S, of n-balls with centers in T — é, each vertex of G, has degree at

most 2.

(3) If A,, # S, (respectively B,, # S,,), then A,, (respectively B,,) is strongly adjacent
to Sp.

(4) The two classes Sy, Cy, are strongly adjacent.

We will specify the choice of An,11 from the two extensions of Sy, for acyclic

quasi-Sturmian colorings later.

Lemma 6.2.10. Let ¢ be a quasi-Sturmian coloring and n be greater than Ng. Let
D be a colored n-ball other than A,, B,, and S,. Assume that S, and D are weakly

adjacent. Then, we have that
(1) the special ball S,, and D are strongly adjacent, and
(2) if D # Cy, then S, # C,,.

Proposition 6.2.11. If there are two vertices of degree at least three in G,, for some

n > Ny, then the quasi-Sturmian coloring (7, ¢) is of bounded type.

Proof. If ¢ is of unbounded type, S, is the unique vertex adjacent to distinct three
classes of n-balls in G, by Lemma 6.2.9 (2). Thus, there is at most one vertex of

degree at least three in G,. O

Definition 6.2.12. A quasi-Sturmian coloring is cyclic if there is a cycle containing

S, in G, for some n > Ny. If not, we say that a quasi-Sturmian coloring is acyclic.

Lemma 6.2.13. Suppose that G, has a cycle whose lift in X is not contained in G
for some n > Ny + 1. The following statements hold.

(1) The special ball S, is in the cycle.
(2) If D # Ay, By, Cp, Sy, then D is not weakly adjacent to S,.
Lemma 6.2.14. For n > Ny, suppose that G, has a cycle whose lift in X is not

contained in G.
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(1) If C, is not contained in the cycle, then G, ; has a cycle containing C,,; for

some [ > 1.
(2) If C,, = Sy, then G, 11 has a cycle containing Cp,+1 and Cpy1 # Spt1-

Proposition 6.2.15. (1) Let n > Ny + 1. If there is a ball D which is weakly
adjacent to S, and different from A,, B,,Cy,and S, then G,; has a cycle

containing D.

(2) Any cyclic quasi-Sturmian coloring is of bounded type.

Acyclic quasi-Sturmian colorings

Lemma 6.2.16. Let ¢ be an acyclic quasi-Sturmian coloring. If Ay = Sy = Cy
for some N > Ny + 1, then A, =5, = C, for all Ng+1<n < N.

We choose A,, as S,, = C,, = A,, if there exists n > Ny such that S,, = C,, is
identical to A,, or B,,. Define

K =min{n > Ny : A, Sp, Cp, are not all identical}

as in [38]. Note that K may be infinity.
For an acyclic quasi-Sturmian coloring, for each n > K, neither A,, S,, C,, nor
By, Sn, C, are identical. Therefore, the colored n-balls S,,, A, By, C), satisfy one of

the following conditions.
(I) Sy, C,, are distinct, but one of S, C), is identical to A,, or B,.
(IT) Sy, An, By, Cy, are all distinct.
(IIT) S, Ay, By, are distinct, but S,, = C,,.
Case (I) is divided into three subcases:
(I-a) A,, Byp, Sy are distinct and C,, = A,, or By,
(I-b) A,, By, C, are distinct and S,, = A,, or By,

(I-.c) A, = Sp, By, = C, are distinct,
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By Lemma 6.2.13 and Lemma 6.2.15, we deduce that 5, is a vertex of degree
3 in G, for Case (II), but for Case (I) and (III), G, is a linear graph and S, is of
degree 1 or 2.

Proposition 6.2.17. Suppose that G,, corresponds to Case (I). Then S, is a vertex
of degree 2 or 1 in G,. Thus G, is a linear graph. Let m be the number of vertices
connected to S, through C,,. Note that m > 1 since C,, is not identical to .S,,. Then
we have G, belongs to Case (II) for all 0 < & < m and either G,,, belongs to
Case (I) or Gp4m belongs to Case (III) and G, 4m+1 belongs to Case (I).

Proof. 1f S, and C,, are distinct, then G,, belongs to Case (I) or (II). We deduce
that Sp+1, Ant1, Br+1 are distinet. If C, is of degree 2, then there exists D neigh-
boring C,, which is not S,,. Thus D is weakly adjacent to S, but different from
Sn+1, Ant1, Bni1, which implies that D = C,,41, which corresponds Case (II). In
this case, the number of vertices connected to S,+1 through C),+; decreases by 1.

If C, is of degree 1, then m = 1. In this case, Sp4+1 is connected to only two
extensions A, 41, Bpy1 of Sy, in G141, which implies that C,41 = Sp41, i.e. Case (III)
or Cpi1 = Apyq1 or By, ie. Case (I-a).

If G, belongs to Case (III), then S,, = C),, thus we have either S,,+1 = A,4+1 or
Sn+1 = Bn+1, say Sp+1 = Apy1. Since A, is weakly adjacent to Ap+1 = Sp+1 and
A,, cannot be A, 1 nor B, 1, we deduce that C,,; = A,,. Therefore, G, belongs
to the Case (I-b).

We remark that Case (I-¢) can happen only for n = K. O
Snk an
Onp+2 PN ;‘i‘o&— — o
Snk+2
gnkl - . .— O e e - ..— & & ——..— 0O
B S”k+1 an+1

Figure 6.5 The evolution of G,, along the path (I) — (II) — --- — (II) — (I)
where the vertex o represents either S,, or the extensions of S,
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We denote by (nj) the subsequence for which Gy, is of Case (I). The evolution of
Gy, from n = nj to n = ng4q is shown in Figure 6.5. Compare with Sturmian words
(see Figure 6.4): there are infinitely many n’s such that the Rauzy graph has disjoint
two cycles starting from a common bi-special word (see e.g. [2]). It corresponds to

the factor graph G, belongs to Case (I).

6.2.3 Quasi-Sturmian colorings of bounded type

In this section, we investigate a necessary and sufficient condition for a quotient
graph to be a quotient graph of a quasi-Sturmian coloring of bounded type.

Let = be a vertex of the quotient graph X. For the two lifts Z and Z’ of z,
[Bn(Z)] = [Bn(&")] for all n. Then, 7(Z) = 7(Z’). By abuse of notation, define [B,,(z)]
as a class [B,,(Z)]. Define the maximal type 7(x) of x as 7(Z).

Recall the examples in Section 6.2.1. Let X = (X, i) be the quotient graph for
each of them. We obtain a periodic edge-indexed subgraph X’ of X by removing a
finite subgraph G in Proposition 6.2.5. Then, a lift of (X’,i|gx/) can be extended to
a periodic coloring of a tree. It is natural to guess that the property holds for every
quasi-Sturmian coloring.

From now on, let (7,¢) be a quasi-Sturmian coloring of bounded type. By
Proposition 6.2.5, the quotient graph X of (7, ¢) is the graph in Figure 6.2. Let G be

the union of lifts of G. A connected component of 7 — G is a lift of (X —=Gilpx-a))-

Thus, all connected components of T — G are equivalent to each other. Let Y be a

connected component of T — G.

Lemma 6.2.18. If u,v are vertices of Y with [By, (u)] = [Bn, (v)], where Ny is as
in (6.2), then we have [By,+1(u)] = [Bn,+1(v)].

Proof. 1t suffices to consider the case of [By, (u)] = Sn,. Every vertex of maximal
type Nj is the center of either Ay, 1 or By, 41, say An,+1. Since vertices of X — G
are of maximal type bigger than Ny, if u is a vertex of Y and [Bn, (u)] = Sn,, then

[Bny+1(u)] = By 41 O

We define an edge-indexed graph Z = (Z,iz) as follows : the vertices of Z are of
the form [By, (u)] for a vertex u in Y or X — G, and any two vertices D, E of Z are
adjacent if D and E are weakly adjacent. The index iz (D, E) is the number of E

which are adjacent to D. The indices are well-defined by Lemma 6.2.18. Since any
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vertex in X — G is adjacent to at most two vertices besides itself, the graph Z is a

line segment or a cycle.

Lemma 6.2.19. A restriction of ¢ on any connected component of 7 — G has a

periodic extension to 7.

Proof. Let u be the vertex of Y. Define a coloring 1y on By (u) with the alphabet
VZ = {[Bn,(v)]|v € Y} recursively: Put 1g(u) = [By, (u)] € VZ. Define ¢p41(v) =
Yi(v) for v € By(u). Choose w € VT with d(u, w) = k and let w, (a =0,...d — 1)

be the neighboring vertices of w with d(u,w,) = k+1 for « > 1 and d(u, wy) = k—1.

We define 954 1(w,) for @ > 1 in the following ways.

Ifw¢Y, then wy ¢ Y for all @« > 1. Let Dy = 1,(wp) and D; be a colored
Ni-ball satisfying iz (g (w), D;j) > 0 with j =0,1,2 or j =0, 1. We assign ¢p41(wq)
as Dy for 1 < a < iz(¢r(w), Do) and, for £ # 0,

-1 ¢
Vi1 (wa) = Dy for Y iz(Yn(w),Dj) < a <Y iz(gr(w), D) — 1.
=0 =0
Then we have
iz(Yp1(w), D) = #{0 < a < d| Y41 (wa) = D} (6.3)

for each D e VZ.

If w € Y, then we put ¢11(wa) = [By, (we)] for all & > 1. Using the fact that Y
is an infinite subgraph of 7', Lemma 6.2.18 implies that there exists a vertex v such
that By, +1(v) C Y and [By,+1(v)] = [Bny+1(w)], thus ¢gi1(we) = [By, (wa)] € VZ
and (6.3) is satisfied.

Since Yyelp, () = Yk for £ > 1, the coloring ¢ = limy o ¢ on T with alphabet
VZ exists. By (6.3), we deduce that Z is the quotient graph of . Since (u) =
[Bn, ()] on Y, by the coloring which gives the color of the center of 1)(u), we complete
the proof. O

Theorem 6.2.20 (Quotient graphs of colorings of bounded type) Let X = (X, 1)
be the quotient graph of a coloring (T, ¢). The following statements are equivalent.

(1) The coloring ¢ is a quasi-Sturmian coloring of bounded type.
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(2) There is a finite connected subgraph G of the quotient graph X such that
X — G is a connected infinite ray and any connected component of T — G has

a periodic extension to 7 where G is the union of lifts of G.

Proof. By Lemma 6.2.18 and Lemma 6.2.19, (1) implies (2). Now we assume (2)
holds. Let A be the alphabet of ¢. Let Z be a lift of x € VX. Define a new coloring
1) with an alphabet AU VG as

T if v = 2 for some x € VG,
P(v) =
¢(v)  otherwise.
Denote by [B,,(u)]y a 1-colored n-ball. As ever [B,,(u)] means a ¢-colored n-ball. A
map By (n) — By(n) which defined by [B,(x)]y + [Bn(z)] is surjective. It implies
by(n) < by(n). Since X is not a finite graph, by(n) is strictly increasing. Thus, it is
enough to show that by, is linear.

Let us denote by d(z,G) = min{d(z,g) : ¢ € VG} for z € VX. Fix a positive
integer n. If d(x, G) < n, then [B,(z)]y # [Bn(y)]y for any other y e VX. If z is a
vertex such that d(z,G) > n + 1, then [Byy1(2)]y = [Buyi(z)]. Thus, [B,(x)] has a
unique extension to a colored (n + 1)-ball. Since X is not finite, 1) has at least one
special n-ball for each n. Thus, for  such that d(z,G) = n+1, [B,(x)] is the unique
special n-ball and it has exactly two extensions to colored (n + 1)-balls. It means
that by(n) = n+ |A| + |[VG| for all n. O

6.2.4 Recurrence functions of colorings of trees

In this section, we will extend the notion of recurrence functions R(n), R”(n) for words
to colorings of trees. We will show that the quasi-Sturmian colorings of trees satisfy
a certain inequality between R”(n) and b(n). We also explain that the existence of
R(n) is related to unboundedness of the quasi-Sturmian colorings of trees.

Let us briefly recall recurrence functions of words (see Section 10.9 in [7] for defi-
nitions and details). Recurrence functions are important objects related to symbolic
dynamics. Let ¥ be a finite alphabet. Let X* be the set of finite words over ¥ and
YN be the set of infinite words over ¥. For u € £* U XN, we denote by Fj,(u) the set
of factors of length n of u.

A recurrence function Ry(n) is defined as the smallest integer m > 1 such that

every factor of length m contains all factors of length n. It is known that such an
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integer Ry(n) exists for all n if and only if the word is uniformly recurrent, i.e. any
subword of the word infinitely occurs with bounded gaps. Another recurrence function
R!(n) is defined by

RI(n) = min{m € N | F,,(u) = F,(w) for some w € F,,(u)},
i.e. it is the length of the smallest factor of u that contains all factors of length n of
u. From the definition, the following fact immediately holds.
Remark. For all n > 0, Rl\(n) > pu(n) + n — 1 for any word u.

Recall that a word u is said to have grouped factors if, for all n > 0, it satisfies
R!(n) = pu(n) +n — 1. If there is ny such that the equality holds for all n > ng, we
say that u has ultimately grouped factors. Cassaigne suggested some conditions that

guarantee the equality.

Theorem 6.2.21 ([18]) A word u is Sturmian if and only if Rl\(n) = 2n for every
n > 0. A uniformly recurrent word on a binary alphabet has ultimately grouped

factors if and only if it is periodic or quasi-Sturmian.

We want analogous results for quasi-Sturmian colorings of trees. Let (7, ¢) be

a quasi-Sturmian coloring of a tree and X = (X, i) be the quotient graph of (7, ¢).

We define Ry(n) as the smallest radius m such that every colored n-ball of ¢ occurs
in (B, (z)] for all z € V'T. We define R(n) as the smallest radius m such that every

colored n-ball of ¢ occurs in [B,,(z)] for some x € VT.

Definition 6.2.22. A coloring of a tree (T, ¢) is said to be recurrent if, for any
compact subtree 77, every colored ball appears in 7 — T'. A coloring of a tree is said

to be uniformly recurrent if Ry(n) < oo for all n.

Proposition 6.2.23. Let (7, ¢) be a quasi-Sturmian coloring of a tree. The following

conditions are equivalent.
(1) (T,¢) is of unbounded type.
(2) (T,¢) is uniformly recurrent.

(3) For any colored ball, it appears in 7 — 7~1(S) for any finite set S C X.
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Proof. (1) implies (2) : Suppose (7, ¢) is of unbounded type. Let n > Ny. For each
colored n-ball E = [B,,(w)], we define mg to be the smallest element of A, N {n,n +
1,...} which is not empty since A,, is infinite. Note that mpg depends only on E and

not on w.
Choose a vertex v € VT and a colored n-ball E which is distinct from [B,,(v)].
Let m = mp. Denote F! = [B,,(v)] which is not S,,. Let [F! — F2 —... — Fl — S, ]

be the shortest path from F' to S, in G,,. For arbitrary colored m-balls F' and F”, if
F # S,,, then F has the unique extension. Thus, if F' is weakly adjacent to F’, then
F is strongly adjacent to F’. Therefore, there is a path [v — vy —vg — -+ — vy — W]
in 7 such that [B,,(v;)] = F%, i =2,---,1, and [Bp,(w')] = Sp.

Since S,, occurs in [B,4;(v)], E occurs in [By,1;(v)]. Since | < [V G| = m + ¢,
E occurs in [Bpim4c(v)]. Every colored n-ball occurs in [By4ar4c(v)] where M =
max{mpg : E € By(n)}. Thus, Ry(n) <n+ M +c.

(2) implies (3) : Suppose that Ry(n) exists for all n. Since the quotient graph X
is infinite, for any finite S C X, there is z such that Bg,,(z) C T — 71(9).

(3) implies (1) : Assume that (7,¢) is of bounded type. Let v be a vertex of
maximal type Ni. By Proposition 6.2.5, all vertices in X — G are of maximal type

larger than Nj. Therefore, [By,+1(v)] does not appear in T — 77 1(G). O

Recall that we denote by Z the quotient graph of T — G with respect to the
coloring ¢. By abuse of notation, let d be the metric on X or G,, induced by d on
T. Let us denote by

r(z,d) = max{d(z,y) : y € VG}.

Proposition 6.2.24. Let (T, ¢) be a quasi-Sturmian coloring.

(1) Let ¢ be of unbounded type. As in Proposition 6.2.17, the factor graph G, is

of Case (I) on n = ng. Then, we have

b
R;ﬁ(n) =n+ [¢(2nk)J for np_1 <n < ny.

(2) Let ¢ be of bounded type. Let z,, be the vertex of X which is of maximal type
Nj.

(a) If Z is acyclic, then we have

1
Ry(n) =n+ b(bqg(nk) — VG| +r(xy,,G) + 1)J for ng_1 <n < ng.
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(b) If Z is cyclic, then we have
1
RY(n) =n+ [Q(%(n) — VG| +r(z,, G) + 1)J for all n > N

Proof. (1) In the case of a quasi-Sturmian coloring of unbounded type, the evolution
of the factor graph follows Proposition 6.2.17. Let D and E be ng-balls which are
weakly adjacent. If D # S, or if D=S,,, E=C),, then D and E are strongly
adjacent by Lemma 6.2.9 (3), (4). If D = S,,, and E # C),, then there exist vertices
v, w and w in T with d(v,u) = d(v,w) = 1 such that D = [B,, (v)], E = [By, (u)]
and Cp, = [Bp, (w)]. Therefore, we can take a path with length bg(ny) — 1 consisting
of centers of all the colored ng-balls in 7. Thus, we have

balte)

Ri(ni) < me+ |22

Let Dy, , E,, be the colored n;-balls which are the end points of the graph G,, . The

distance between D,, and E,, in G, is by(ni) — 1, thus for any vertices z, 7z in

T such that [B,,(2)] = Dy, and [B,,(%')] = E,,, we have d(z,2) > bg(ng) — 1.

Therefore, it follows that

Rl (ng) = ng + {b‘f’g"“)J

Now, let us consider the case ny_1 < n < ng, then G, is of Case (II) or Case (III).

We define D,,, E, and F,, as the colored n-balls which are the vertices of degree 1
and connected to S, through A,, B,, C, in G,, respectively. Note that if S,, = C,,,
then we define F,, = C,,. Any vertex of the center of special ball S,, in T is adjacent
to either centers of A,, and C,, or centers of B,, and C},. Thus, the distance between
the centers of D,, and E,, in T is at least d(D,, F},) + d(E,, Fy,).

If G, is of Case (II) for all ng—1 < n < ng, then d(Dy,, F,)+d(Enp, Fy,) = by(ng)—1.

Otherwise, G, is of Case (III) for n = ny — 1 and G, is of Case (II) for nx_; <n <
ny — 1. Then, d(Dy, F,,) + d(Ey, Fy,) = by(ni, — 1) — 1. However, on T, a path from
a center of D,, to a center of F,, has at least two vertices which are centers of F,
where they are extended to two distinct colored ng-balls Cy,, and Sy, . It means that
the length of the path is at least by(ny — 1) — 1+ 1 = bgy(ng) — 1. Thus,

b
R;g(n) >n+ L(ﬁ(;k)J for ni_1 < n < ng.
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On the other hand, since each n-ball is the restriction of an ng-ball, there exists a

path with length by(ny) — 1 consisting of centers of all the colored ny-balls in 7.

Thus we have the conclusion.

(2)-(a) If Z is acyclic and n > Ny, then the evolution of the factor graph G,, also
follows Proposition 6.2.17. Hence, we apply the argument similar to the argument
in (1). The difference between (1) and (2)-(a) is the existence of the compact part
G of the quotient graph X. Take a finite graph G’ in G, isomorphic to G. Since
every vertex in G,, — G’ has at most degree 2, the maximal distance between any
two vertices in Gy, is by(ng) — [V G| +r(zy,, G). Thus, by the similar argument with

(1), we have for ny_1 <n < ny
R/ =n-+ *1 b — VG| + G)+1
¢>(n) n L2( ¢(nk) ‘ ‘ I‘(le, ) )J :

(2)-(b) Let Z be cyclic and assume that n > N;. Let G’ be the subgraph of
Gn, which is isomorphic to G. Then G,, — G’ consists of a cyclic graph isomorphic to
Z and a finite linear graph with a common vertex S,, which is the unique vertex of
degree 3 in G, — G’. We may assume that A,, belong to the cycle in G,, — G’. Consider
the path P=1[A4, —---—Cp— S, — By, — -+ — [Bn(:IENl)H in G, where a vertex Ty, 1s
a lifting of Ty, in 7. Since a vertex in T which is the center of B, 41 is a center of S,
and adjacent to centers of By, C,, (Lemma 6.2.9), there exists a lifting of a path P in
T. Since the length of the path P is bg(n) — [V G|, the maximal distance between any
two vertices in Gy, is also by(n) — [V G| + r(z,, G). By the similar argument before,

we have the third assertion. O

We note that the converse of the proposition does not hold. Consider a sequence

of words
aLkaLkbLka, if k is Odd,

bLiyaLibLib, if k is even,

where Ly is given by L1 = ¢, the empty word and Ly41 = LiyaLy for odd k, Ly =

LibL; for even k recursively. Then Lj is a palindrome and we get
X1 = aaba, X5 = baaabab, X3 = aabaaabababaa,

Since X}, is a factor of Xy, we have a coloring ¢ of a 2-regular tree by the limit

of Xj. Let ny = |LyaxLi| = 2% — 1. Then we can check that for ngy_; < n < ny, we

116 ] L1



CHAPTER 6. COLORINGS OF REGULAR TREES

have X,
k
Rym) —n =57
and
by (i) = [ Xkl
Thus, we have
by (nk)
1" o p\Tlk <
R¢(n) =n+ L > J for np_1 <n < ny.
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