

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Approaches to the alleviation of the
burden of learning for Weakly
Supervised Object Localization

(약한 지도학습 기반의 물체 탐지에서의 학습 부담을
줄이기 위한 연구)

2023년 2월

서울대학교 대학원

수 리 과 학 부

구 본 경

Approaches to the alleviation of the
burden of learning for Weakly
Supervised Object Localization

(약한 지도학습 기반의 물체 탐지에서의 학습 부담을
줄이기 위한 연구)

지도교수 강 명 주

이 논문을 이학박사 학위논문으로 제출함

2022년 10월

서울대학교 대학원

수 리 과 학 부

구 본 경

구 본 경의 이학박사 학위논문을 인준함

2022년 12월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Approaches to the alleviation of the
burden of learning for Weakly
Supervised Object Localization

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Bongyeong Koo

Dissertation Director : Professor Myungjoo Kang

Department of Mathematical Sciences
Seoul National University

February 2023

© 2022 Bongyeong Koo

All rights reserved.

Abstract

In this thesis, we propose two models for weakly supervised object localiza-

tion (WSOL). Many existing WSOL models have various burdens of learning,

e.g., the nonnegligible cost of hyperparameter search for loss function. Thus,

we first propose a model called SFPN to reduce the cost of hyperparame-

ter search for loss function. SFPN enhances the information of the feature

maps by exploiting the structure of feature pyramid network. Then these fea-

ture maps are engaged in the prediction of the bounding box. This process

helps us use only cross-entropy loss as well as improving performance. Fur-

thermore, we propose the second model named A2E Net to enjoy a smaller

number of parameters. ‘Spatial attention branch’ and ‘refinement branch’ are

the constituent parts of A2E Net. Spatial attention branch heightens the spa-

tial information using few parameters. Also, refinement branch is composed

of ‘attention module’ and ‘erasing module’, and these modules have no train-

able parameters. With the output feature map of spatial attention branch,

attention module makes the feature map with more accurate information

by using a connection between pixels. Also, the most discriminative region is

concealed by erasing module to make the network take account of the less dis-

criminative region. Moreover, we boost the performance with multiple sizes of

erasing. Finally, we sum up two output feature maps from attention module

and erasing module to utilize information from these two modules. Extensive

experiments on CUB-200-2011 and ILSVRC show the great performance of

SFPN and A2E Net compared to other existing WSOL models.

Key words: Deep Learning, Object Localization, Weakly Supervised Learing

Student Number: 2017-21110

i

Contents

Abstract i

1 Introduction 1

2 Preliminaries 5

2.1 Convolutional Neural Networks 5

2.1.1 Convolution Operation 5

2.1.2 Some Convolutional Neural Networks 7

3 SFPN: Simple Feature Pyramid Network for Weakly Super-

vised Object Localization 12

3.1 Introduction . 12

3.2 Related Works . 14

3.2.1 Some Object Detection Methods 14

3.2.2 Existing Methods for Weakly Supervised Object Local-

ization . 18

3.3 Proposed Method . 23

3.4 Experiment . 26

3.4.1 Datasets . 26

3.4.2 Evaluation Metrics . 27

3.4.3 Implementation Details 28

3.4.4 Result . 28

3.4.5 Ablation Study . 30

4 A2E Net: Aggregation of Attention and Erasing for Weakly

Supervised Object Localization 33

ii

4.1 Introduction . 33

4.2 Related Works . 35

4.2.1 Attention Mechanism 35

4.2.2 Erasing Methods . 40

4.2.3 Existing Methods for Weakly Supervised Object Local-

ization . 43

4.3 Proposed Method . 48

4.3.1 Spatial Attention Branch 48

4.3.2 Refinement Branch . 49

4.4 Experiment . 56

4.4.1 Implementation Details 56

4.4.2 Result . 57

4.4.3 Ablation Study . 60

5 Conclusion 67

The bibliography 70

Abstract (in Korean) 78

iii

List of Figures

2.1 Standard Convolution with H = W = 4, k1 = k2 = 3, and

H ′ = W ′ = 4. 6

2.2 Description of AlexNet. The upper part of a dashed line corre-

sponds to one GPU, and the lower part corresponds to another

GPU. 8

2.3 Comparison between Inception module in GoogleNet and an

example of Inception module in Inception V3. Here, X is the

input feature map and c○ denotes the concatenation. 9

2.4 Comparison between basic block and bottleneck block in ResNet.

X is the input feature map and ⊕ denotes the elementwise ad-

dition. 10

3.1 The flow of CAM. Here, f = [f1, · · · , fL] ∈ RL×H×W is the

output feature map of CNN and W = [wl,t] ∈ RL×T is the

weight of fully connected layer. Also, aggregation means the

operation that extracts the information from f (e.g., global

average pooling). 13

3.2 Comparison between (a) standard CNN and (b) SFPN. I means

the input image, and the sky-blue rectangle denotes the last

feature map for CAM. Also, in (b), the blue block denotes

the operation that combines feature maps, and RB means the

refinement block. 14

iv

3.3 Descriptions of R-CNN object detectors. I means the input

image. Also, the green box and the sky-blue box denote clas-

sification and regression for the bounding box, respectively.

Here, in (b), region proposal includes selective search for Fast

R-CNN and includes RPN for Faster R-CNN. 15

3.4 Descriptions of SSD and FPN. I means the input image. . . . 16

3.5 Detail of SFPN. Here, RB with s means the refinement block

with stride s, GAP is global average pooling, and ⊕ denotes

elementwise sum. 24

3.6 An example of intersection and union of two bounding boxes.

For given bounding boxes B1 and B2, (a) shows the intersection

between these bounding boxes, and (b) shows the union of

these bounding boxes. 27

3.7 Comparison with CAM on CUB-200-2011. The ground truth

bounding box is represented by the green bounding box, and

the estimated bounding box is described as the red bounding

box. 31

3.8 Comparison with CAM on ILSVRC. The ground truth bound-

ing box is represented by the green bounding box, and the

estimated bounding box is described as the red bounding box. 32

4.1 The overall architecture of the proposed method. Here, SAB

denotes spatial attention branch and GAP is global average

pooling. Also, ⊕ denotes elementwise sum. 34

4.2 An example of NL-network [53]. In this figure, an operation

that computes connection between pixels is softmax. 35

4.3 Description of Dropout, SpatialDropout, and Dropblock when

the number of channels is 1. The blue denotes the pixel that

is not removed, and the gray denotes the erased pixel. Also, in

(c), the yellow is the center of the rectangle. 42

4.4 Spatial attention branch. CAP means channel average pooling

and ⊗ is elementwise multiplication. 48

4.5 Attention module. CAP means channel average pooling and ⊗
is the matrix multiplication. 49

v

4.6 Comparison of sizes of rectangles. The ground truth bounding

box is represented by the green bounding box, and the esti-

mated bounding box is described as the red bounding box. . . 52

4.7 The procedure of erasing module for training. SAB denotes

spatial attention branch, and S1, S2, and S3 are the candidate

sizes. 53

4.8 Some ADL results correspond to input images. The ground

truth bounding box is represented by the green bounding box,

and the estimated bounding box is described as the red bound-

ing box. 55

4.9 Comparison with CAM on CUB-200-2011. The ground truth

bounding box is represented by the green bounding box, and

the estimated bounding box is described as the red bounding

box. 59

4.10 Comparison with CAM on ILSVRC. The ground truth bound-

ing box is represented by the green bounding box, and the

estimated bounding box is described as the red bounding box. 60

vi

List of Tables

3.1 Stages for ResNet-101 [15]. Here, the input shape is (3, 224, 224)

and the notation for convolution is [kernel× kernel, channels]. 23

3.2 Comparison of WSOL performances for CUB-200-2011. The

best performance is denoted by bold letters. Also, - means the

corresponding paper does not report the result. 29

3.3 Comparison of WSOL performances for ILSVRC. The best per-

formance is denoted by bold letters. Also, - means the corre-

sponding paper does not report the result. 30

3.4 Ablation study. 31

4.1 Comparison of WSOL performances for CUB-200-2011. The

best performance is denoted by bold letters. Also, * is the result

when the corresponding method is applied to ResNet50-SE [17]

and - means the corresponding paper does not report the result. 57

4.2 Comparison of WSOL performances for ILSVRC. The best per-

formance is denoted by bold letters. Also, * is the result when

the corresponding method is applied to ResNet50-SE [17] and

- means the corresponding paper does not report the result. . 58

4.3 Ablation study for spatial attention branch and refinement

branch. Here, SAB means spatial attention branch. 61

4.4 Ablation study for the range of sizes. 62

4.5 Ablation study for combination attention module with erasing

module. SAB denotes spatial attention branch. 63

4.6 Comparison with various attention mechanisms. ‘-’ means that

we do not use any attention mechanisms. 64

vii

4.7 The number of learnable parameters of the attention mecha-

nisms in our ablation study. 65

4.8 Comparison with the previous erasing methods. 65

viii

Chapter 1

Introduction

Various computer vision tasks have benefited from deep learning [14, 15, 39].

These successful applications of deep learning are based on several factors,

including task-specific labeling. For example, we need the bounding boxes as

well as the class labels for object detection. However, making such labels for

a specific task requires quite costly labor.

Weakly supervised learning (WSL) has been introduced to relieve this lim-

itation. WSL aims to use ‘weak’ ground truth for learning. For example, WSL

for semantic segmentation uses only the class labels for learning, while fully

supervised methods use class labels and segmentation masks. This example

implies that WSL reduces the burden caused by making the ground truth.

In this thesis, we address weakly supervised object localization (WSOL),

which finds the class and the bounding box of the object by WSL. Namely,

WSOL predicts the class and the bounding box while it uses only the class

label for learning. For WSOL, class activation map (CAM) [63] has been one

of the most commonly used methods. CAM finds the location that is impor-

tant for classification by using the weight of the fully connected layer and

the output feature map of convolutional neural network (CNN). One can ob-

tain CAM if the classification network is trained because the fully connected

layer and CNN are components of the classification network. However, CAM

usually concentrates on the most discriminative region, e.g., the face of the

bird. This may limit the performance of WSOL because object localization

needs the whole region of the object. Thus, there are many WSOL models to

1

overcome this limitation.

Many existing WSOL models [5,21,33,56,60] are based on erasing. Here,

erasing means removing the most discriminative region. Namely, erasing helps

the network be interested in the less discriminative region by restricting

the use of information from the most discriminative region. So. using this,

ACoL [60] and MEIL [33] introduce another path that receives an erased in-

put feature map and outputs corresponding to this input. These models are

trained by using two paths jointly; one is to not use an erased feature map as

input, and the other is the path mentioned above. Also, ADL [5], DGDM [56],

and InCA [21] pick one architecture between attention mechanism and eras-

ing at random.

On the other hand, there are many existing WSOL models that do not

use erasing. For instance, SPG [61] gets the masks to help the learning. Also,

DANet [55] makes groups of classes to extract unseen properties and uses the

orthogonal relationship to see various areas of the object.

However, many existing WSOL models have a limitation that requires the

burden of learning, e.g., the nonnegligible cost of hyperparameter search for

loss function. For example, ACoL and MEIL need two loss terms from two

paths, respectively. Other models [31,34,55,61] also use many hyperparame-

ters for loss function. The hyperparameter search for loss function often relies

on time-consuming methods, e.g., the researcher’s empirical knowledge. In

particular, this point is likely to be a more larger burden when dealing with

a large dataset such as ILSVRC [41].

To relieve the above limitation, we propose a model named “simple fea-

ture pyramid network” (SFPN) [22]. It aims to help the feature map enjoy

more plentiful information. Since CAM depends on the output feature map

of CNN, the feature map with more plentiful information can improve the

performance. For this, we utilize many feature maps from CNN, while CAM

exploits one feature map from CNN.

More precisely, we get feature maps from FPN [27]. These generated

feature maps have high-level semantic information with diverse resolutions.

These feature maps then are input feature maps of new blocks, named refine-

ment blocks, which output the same shape of tensors. Next, the output feature

maps of refinement blocks are concatenated. Finally, this concatenated feature

2

map passes through global average pooling (GAP) and classifier. Using many

feature maps with heightened information helps to obtain improved perfor-

mance using only cross-entropy loss for learning. Indeed, SFPN reveals great

performance via experiments on CUB-200-2011 [50] dataset and ILSVRC [41]

dataset.

A nonnegligible number of learnable weights can also be a burden. In gen-

eral, resources such as the memory of GPUs are more demanding as the num-

ber of learnable weights increases. Indeed, SFPN has a nonnegligible number

of learnable weights, although it helps us to get the improvement of the perfor-

mance. Thus, we propose the second model named “aggregation of attention

and erasing” (A2E Net) [23] to reduce the number of additional learnable

parameters. A2E Net also still uses only cross-entropy loss for learning.

A2E Net introduces spatial attention branch (SAB) and refinement branch.

SAB helps the feature map have heightened spatial information. It uses

a transformation that consists of the neural network to get the pixel-wise

weight. More precisely, it assigns the higher values to more important pixels

for the classification and the lower values to less important pixels. Also, we

use channel average pooling (CAP) for the transformation to benefit from a

small number of learnable parameters. Since CAP returns the feature map

having 1 its number of channels, it is suitable for SAB to accomplish this

goal. Then the output feature map of SAB becomes the input feature map of

refinement branch.

Refinement branch plays two roles with two modules, where they are

named attention module and erasing module, respectively. Attention mod-

ule in refinement branch makes the information of the input feature map

more elaborate by using a connection between pixels. Also, erasing mod-

ule in refinement branch considers the less discriminative region by erasing.

Further, we add output feature maps from these modules to get information

from attention module and erasing module more effectively. Thus, using these

modules, refinement branch helps the network get a feature map with more

elaborate information and concentrate on the whole region of the object.

These two branches have a small number of learnable parameters. More

precisely, the transformation consumes all trainable weights in SAB, and the

number of such parameters is small. Also, refinement branch has no learnable

3

parameters. Thus, A2E Net is lightweight. Moreover, through experiments

on CUB-200-2011 [50] and ILSVRC [41], A2E Net shows great performance,

which still uses only cross-entropy loss for training.

The rest of this thesis is organized as follows. In Chapter 2, we introduce

convolutional neural networks (CNNs), which is a basic knowledge in this the-

sis. In Chapter 3, we describe SFPN in more detail. In Chapter 4, we explain

A2E Net in more detail, and finally, we conclude this thesis in Chapter 5.

4

Chapter 2

Preliminaries

2.1 Convolutional Neural Networks

Image classification has been the important problem in computer vision. It

is to predict the class given an image. To this problem, convolutional neural

networks (CNNs), which consist of neural networks with convolution opera-

tion, have demonstrated great performance. So, we will discuss some CNNs.

However, before doing this, we need to understand the convolution operation

because the convolution operation is basic for CNNs. Thus, we first see the

definition of the convolution operation and then search for some CNNs.

2.1.1 Convolution Operation

A 2D image can be represented as an element of RC×H×W , where H and W

are the height and the width of the image, respectively, and C is the number

of channels. Here, C is 1 if the image is grayscale and is 3 if the image is

RGB. In general, we deal with the sets RC×H×W , where C, H, and W are

any positive integers. Also, the elements of such sets are called a tensor.

In these conditions, we now introduce the convolution operation. The

convolution operation is used to extract the feature of the input tensor. For

this, it uses the cross-correlation with this input using another tensor called

the kernel [12]. Here, there are several factors of cross-correlation, such as

padding and stride. These factors have various goals, such as getting the

5

Figure 2.1: Standard Convolution with H = W = 4, k1 = k2 = 3, and
H ′ = W ′ = 4.

desired size of the output. Also, the output of the convolution operation is

called the feature map.

With the above discussion, we write the convolution operation. Let F =

[F1, · · · , FCin
] ∈ RCin×H×W be the tensor with Fi ∈ RH×W (1 ≤ i ≤ Cin).

Here, Cin is the number of channels of F . Also, let K = [K1, · · · , KCout] be

the kernel with Kj ∈ RCin×k1×k2 (1 ≤ j ≤ Cout). Here, (k1, k2) is a pair

of the height and the width of K, and Cout is the number of channels of

the output. For the convenience, we write Kj = [K
(1)
j , · · · , K(Cin)

j] for each

j, where each component of Kj has the shape of (k1, k2). Also, we consider

the bias B = [B1, · · · , BCout] ∈ RCout . Under these settings, we define the

convolution operation as follows (see Figure 2.1 for the visual description of

the convolution operation):

Definition 1 (Convolution Operation). The Convolution operation is a

function Conv(F,K,B) : RCin×H×W → RCout×H′×W ′
that maps F ∈ RCin×H×W

6

into F ′ ∈ RCout×H′×W ′
with

F ′
j = Bj +

Cin∑
i=1

K
(i)
j ∗ Fi ∈ RH′×W ′

(2.1)

for each 1 ≤ j ≤ Cout. Here, ∗ is the cross-correlation operation of two

tensors.

Also, there is a modified convolution operation called ‘group convolution’

to enjoy a smaller number of parameters. In group convolution, Cin and Cout

are split into some groups, and the convolution operation is used for each

group independently. In addition, if the number of such groups is equal to

Cin, group convolution for this case is called ‘depthwise convolution’. To write

group convolution, we denote Fi:j as the slice of the given feature map F from

i to j. Then group convolution is defined by

Definition 2 (Group Convolution). Suppose g is a positive integer such that

divides both Cin and Cout. The group convolution is a function Conv(F,K,B, g) :

RCin×H×W → RCout×H′×W ′
that maps F ∈ RCin×H×W into F ′ ∈ RCout×H′×W ′

where each component of F ′ has the shape of (Cout/g,H
′,W ′) and the ith

component of F ′ is computed by

Conv(F(i−1)Cin/g+1 : i · C/g, K(i−1)Cin/g+1 : i · C/g, B(i−1)Cout/g+1 : i · C/g). (2.2)

Note that the computational cost is k1 · k2 ·H ·W · Cin

g
Cout when we use

group convolution while standard convolution uses k1 · k2 ·H ·W · Cin · Cout.

Thus, group convolution uses a smaller computational cost than standard

convolution. In particular, the computational cost is k1 · k2 ·H ·W · Cout for

depthwise convolution because g = Cin.

2.1.2 Some Convolutional Neural Networks

LeNet [26] conducts image classification by CNN. It uses not only CNN

but also subsampling to get the smaller size of the feature map. After that,

AlexNet [25] having 5 convolution layers and 3 fully connected layers shows

its great performance for ILSVRC dataset [41]. To utilize multiple GPUs,

7

Figure 2.2: Description of AlexNet. The upper part of a dashed line corre-
sponds to one GPU, and the lower part corresponds to another GPU.

AlexNet consists of a parallel structure. Also, AlexNet uses Dropout [45] and

a different activation function from the previous works, called Rectified Linear

Units (ReLUs), which is defined by

ReLU(x) =

{
x, x ≥ 0,

0, x < 0
(2.3)

For the visual description of AlexNet, refer to Figure 2.2.

ZFNet [58] has a similar structure to AlexNet except for the parallel struc-

ture. Here, ZFNet analyzes the feature maps by visualization. Then this anal-

ysis is used to improve the structure of AlexNet. For example, the first con-

volution layer of AlexNet uses the kernel of the size 11 × 11 with stride 4.

However, the size and the stride decrease to 7×7 and 2 in ZFNet, respectively.

VGG [43] improves performance by using a deeper structure with a smaller

size of the kernel. In contrast to the above models, VGG uses multiple 3× 3

convolution layers to have a similar receptive field compared to larger kernel

sizes. This requires a smaller number of learnable weights and makes use of

more ReLU functions compared to using only one layer with a kernel of large

size. Also, VGG shows that performance improves as the depth of the model

is larger.

GoogleNet [46] also has a deeper structure with a more complex module,

8

(a) Inception module in GoogleNet
(b) An example of Inception module in
Inception V3

Figure 2.3: Comparison between Inception module in GoogleNet and an ex-
ample of Inception module in Inception V3. Here, X is the input feature map
and c○ denotes the concatenation.

called “Inception module”. k×k convolution layers (k ∈ {1, 3, 5}) and pooling

layers are used to ingredients of Inception module. Here, 1 × 1 convolution

layer is in front of k×k convolution layer (k ∈ {3, 5}) to decrease the number

of channels. Then Inception module outputs the feature map by gathering

the information from these layers. Moreover, the “auxiliary classifiers” are

introduced to play a role in regularization.

Inception V3 [47] improves GoogleNet by the use of n × 1 convolution

layer and 1 × n convolution layer. In other words, Inception V3 splits the

n× n convolution layer into the n× 1 convolution layer and the 1× n convo-

lution layer to use a smaller number of parameters. With this modification,

Inception V3 constructs various Inception modules. For the visual comparison

between Inception module in GoogleNet and one example of these modified

Inception modules, refer to Figure 2.3.

Also, Inception V3 uses the auxiliary classifier. However, in contrast to

the case in GoogleNet, Inception V3 finds that the auxiliary classifier for the

earlier layer is not important. Thus, Inception V3 allows only one auxiliary

classifier. Furthermore, Inception V3 introduces a regularization called “label

smoothing”. The previous works use one-hot encoding, which assigns 1 for

the index of the ground truth label and 0 for the other indexes. Inception V3

argues that one-hot encoding has two disadvantages due to a large difference

between the ground truth and the others: overfitting and decreasing adapt-

ability. Thus, given y as the ground truth label, label smoothing makes a new

9

(a) Basic Block in ResNet (b) Bottleneck Block in ResNet

Figure 2.4: Comparison between basic block and bottleneck block in ResNet.
X is the input feature map and ⊕ denotes the elementwise addition.

label by

(1− ϵ)δk,y + ϵu(k) (2.4)

where k is the position of the classes, δk,y is the Kronecker delta, and ϵ and

u(k) are the predefined value and distribution, respectively. As seen in Equa-

tion 2.4, the indexes which are not the ground truth are also assigned positive

values to reduce the gap between the ground truth and the others.

ResNet [15] suggests deeper models which alleviate the degradation prob-

lem. The degradation problem means that it is hard for the network to im-

prove further performance as its depth is larger. To preserve the large depth of

the network and improve performance, ResNet uses “shortcut connections”.

Here, shortcut connections mean that when X is the input feature map, the

output feature map is given by

X + fθ(X), (2.5)

where fθ is the neural network with parameter θ. These shortcut connections

help construct the deeper networks such as 50 layers, 101 layers, and 152

layers and improve performance as the depth is larger. Figure 2.4 shows the

visual examples of shortcut connections.

Although the deeper models show great performance, it is not easy to

apply these models to devices that do not support abundant computational

10

resources. MobileNet V1 [16] is an attempt to use CNN in such devices.

Namely, MobileNet V1 aims to make a network with a small computational

cost. To this end, the convolution layer that consists of depthwise convolution

and 1×1 convolution, which was proposed in [42], is used in MobileNet V1. As

we discussed in Section 2.1.1, depthwise convolution outputs the feature map

with the same number of channels as the input feature map and requires a

smaller computational cost than standard convolution. After using depthwise

convolution, 1 × 1 convolution controls the number of channels. Moreover,

MobileNet V1 uses two factors to determine the number of channels or the

resolution. So, using these factors, one can create a smaller network.

11

Chapter 3

SFPN: Simple Feature Pyramid

Network for Weakly Supervised

Object Localization

3.1 Introduction

Although many existing WSOL methods improve the performance, these

methods use loss functions with many hyperparameters. Thus, these mod-

els need to find suitable hyperparameters of loss functions. This point can in-

crease the time of learning because the hyperparameter search for loss function

often has a wide range of candidates or uses multiple tests to get better per-

formance. Especially when dealing with a large dataset such as ILSVRC [41],

this point can be more nonnegligible.

To avoid this issue, we aim to use a simple loss function. For this, we recall

CAM [63]. CAM is defined as follows.

Let T be the number of classes. Also, suppose that we have the classifica-

tion network composed of CNN (ϕθ), aggregation operation, and a fully con-

nected layer. Here, aggregation operation means the operation that extracts

the information from the output feature map of ϕθ. An example of this opera-

tion is the global average pooling. Then given an image I, we write f = ϕθ(I)

with f = [f1, · · · , fL] ∈ RL×H×W , where fi ∈ RH×W for each 1 ≤ i ≤ n. Also,

we let W = [wl,t] ∈ RL×T and b ∈ RT be the weight and the bias of the fully

12

Figure 3.1: The flow of CAM. Here, f = [f1, · · · , fL] ∈ RL×H×W is the output
feature map of CNN and W = [wl,t] ∈ RL×T is the weight of fully connected
layer. Also, aggregation means the operation that extracts the information
from f (e.g., global average pooling).

connected layer, respectively. Then CAM : RL×H×W × RL×T → RT×H×W is

defined by

CAM(f,W) = [M1, · · · ,MT] ∈ RT×H×W , (3.1)

where Mt =
L∑
l=1

wl,tfl ∈ RH×W for each class 1 ≤ t ≤ T . This process is

visualized in Figure 3.1.

Equation 3.1 for CAM provides the clue for our goal. First, CAM often

uses only cross-entropy loss for learning because the classification network is

only the required condition. Next, CAM uses the ‘last feature map’, which is

f in Equation 3.1. Thus, the last feature map with more plentiful information

can improve the localization, and it may allow still using only cross-entropy

loss for learning.

To this end, we utilize the FPN structure. FPN uses multiple tensors with

reinforced semantic information. Similarly, we first make multiple tensors with

strengthened information and then use these tensors as the last feature map,

while CAM uses only one tensor as the last feature map. In the end, we

propose SFPN [22] that uses this process. Figure 3.2 describes the difference

between the last feature map for standard CNN and the last feature map for

SFPN.

The remainder of this chapter is as follows. First, to explain the back-

13

(a) Standard CNN (b) SFPN

Figure 3.2: Comparison between (a) standard CNN and (b) SFPN. I means
the input image, and the sky-blue rectangle denotes the last feature map for
CAM. Also, in (b), the blue block denotes the operation that combines feature
maps, and RB means the refinement block.

ground for SFPN, we show some object detection models including FPN and

existing WSOL models in Section 3.2. In particular, we observe that many

existing WSOL models use complex loss functions by describing these mod-

els in more detail. Then we show the detail and the results of SFPN in the

remaining parts.

3.2 Related Works

3.2.1 Some Object Detection Methods

Object detection is interested in finding the position and the class of each ob-

ject in an image. Since deep learning has improved the classification, which

finds the class of each object in an image, many attempts have applied deep

learning techniques to object detection.

R-CNN [11] shows the application of deep learning with region proposal.

Here, region proposal plays a role in providing the areas where objects poten-

tially exist. R-CNN uses selective search [49] as region proposal and gets the

candidate bounding boxes from this. These bounding boxes make multiple

14

(a) R-CNN (b) Fast R-CNN / Faster R-CNN

Figure 3.3: Descriptions of R-CNN object detectors. I means the input image.
Also, the green box and the sky-blue box denote classification and regression
for the bounding box, respectively. Here, in (b), region proposal includes
selective search for Fast R-CNN and includes RPN for Faster R-CNN.

images by cropping the input image, and these generated images become new

input of CNNs.

R-CNN uses the huge computational cost because it applies CNN for each

cropped image. Thus, Fast R-CNN [10] does not generate multiple images.

Instead, CNN in Fast R-CNN receives only one input image. Also, selective

search still gives the candidate bounding boxes in Fast R-CNN. However, in

contrast to R-CNN, the bounding boxes from selective search are applied to

the output feature map of CNN by adjusting these bounding boxes, called

“region of interest (RoI) projection”. With RoI projection, the output feature

map of CNN gives multiple feature maps corresponding to projected bound-

ing boxes, called “RoI pooling”. Here, the resulting feature maps have the

same shape because RoI pooling aims to make the input feature map of sub-

sequent fully connected layers.

Fast R-CNN improves the speed by using only one image as the input of

CNN. However, region proposal technique applied to Fast R-CNN uses CPU,

15

(a) SSD (b) FPN

Figure 3.4: Descriptions of SSD and FPN. I means the input image.

which is room for improving speed. Thus, Faster R-CNN [39] replaces CPU-

based region proposal with neural networks, called “region proposal network

(RPN)”. Similar to Fast R-CNN, CNN in Faster R-CNN outputs the feature

map from a given image. Then RPN outputs two feature maps with this fea-

ture map as the input. Here, RPN uses anchor boxes, which are predefined

bounding boxes, for each grid and predicts the bounding box and the pres-

ence of the object per anchor box. With the ground truth bounding boxes

as supervision, these output feature maps are used to train RPN. After that,

RPN provides region proposal, and the remainder is similar to Fast R-CNN.

Models from R-CNN to Faster R-CNN are described in Figure 3.3, and the

model similar to these models is called the two-stage method.

The above models have shown great object detection. However, these mod-

els still have a room for improving speed. To increase the speed, YOLO [38]

outputs the bounding boxes and the classes directly. More precisely, it regards

the input image as a set of cells and infers the bounding boxes and the classes

for each cell. However, the accuracy of YOLO is not high because it has a

limit to detecting small objects.

To make the higher accuracy, SSD [29] uses multiple feature maps hav-

16

ing different shapes. SSD introduces default boxes and assigns these boxes

for each feature map. Here, various sizes of feature maps and diverse aspect

ratios give default boxes with many shapes. Then SSD predicts the bounding

boxes and classes for each default box. Since default boxes have diverse sizes,

SSD can deal with various sizes of objects, and so it improves performance.

Also, it maintains the increased speed because it outputs the results directly,

similar to YOLO.

The model similar to SSD and YOLO is called the one-stage method.

These one-stage methods directly output the bounding boxes and the classes,

while the two-stage methods first produce region proposals and then estimate

the bounding boxes and the classes based on these proposals.

FPN [27] improves the use of multiple feature maps. In CNN, the high-

resolution feature map is one of the keys to recognizing small objects. How-

ever, SSD uses lower-resolution feature maps because low-level information

in the feature map of high-resolution may not help improve object detection.

Thus, FPN resolves this dilemma by injecting semantic information of low-

resolution feature map into high-resolution feature map. More precisely, since

a lower-resolution feature map has better semantic information, FPN gives

the higher-resolution feature maps the information of the lower-resolution fea-

ture maps by the addition. Hence, this process enhances semantic information

of high-resolution feature maps. As a result, the two stage methods, including

Faster R-CNN, with FPN show improved performance. For the comparison

between SSD and FPN, refer to Figure 3.4.

FPN can also be applied to the one-stage method. RetinaNet [28] pro-

duces multiple feature maps from FPN and then outputs the bounding boxes

and the classes for each anchor box. Also, it proposes a modified loss func-

tion from the cross-entropy loss function, called “focal loss”. The focal loss is

designed to mitigate class imbalance. In general, easy examples (e.g., back-

ground) have a larger proportion than hard examples (e.g., foreground) in an

image, and thus, these easy examples can reduce the efficiency of training.

The two-stage methods are more easily to address this problem by filtering

easy examples using region proposal. However, it is hard for the one-stage

methods to deal with this problem because these methods directly predict

the outputs without region proposal. So, the focal loss induces the decrease

17

of the importance of easy examples.

3.2.2 Existing Methods for Weakly Supervised Object

Localization

SPG [61] gets a seed for foreground and background and uses this seed to

guide learning. To this end, SPG first gets the intermediate feature maps, say

Fi (i ∈ {1, 2, 3, 4, 5}), where the lower index indicates the resulting feature

map of the lower layer. Then using thresholding to these feature maps and

interpolation, SPG uses the loss function having the following form:

λLcls(F5, y) + λ1Lbce(F1, F2)) + λ2Lbce(F2, F4)) + λ3Lbce(Fuse(F1, F2), F3),

(3.2)

where y is the target, Lcls is the classification loss function, Lbce is the binary

cross-entropy loss function, “Fuse” denotes the operation for combining two

feature maps, and λ1, λ2, λ3, and λ are hyperparameters. Here, we denote

the second argument of Lbce as a mask generated from thresholding, which

plays a role in supervision.

Peca-Net [31] is inspired from Piotr et al. [7]. Piotr et al. [7] aim to gen-

erate a high-quality saliency map by considering the region related to image

classification. More explicitly, they consider two regions; one is the small-

est region that makes it possible to categorize the classes properly, and the

other is the smallest region that is hard for the network to conduct suitable

classification. To this end, for the input image X and the generated mask

M from U-Net [40] structure, they make two new images by combining X

with M , called ϕ(X,M) and ϕ(X, 1−M), respectively. Then they maximize

the probability of ϕ(X,M) for the class while minimizing the probability of

ϕ(X, 1 −M) for the class. In addition, removing artifacts in M can further

improve performance. So, they use the following loss function to reflect this

process:

λ1TV (M) + λ2AV (M)− log fc(ϕ(X,M)) + λ3fc(ϕ(X, 1−M))λ4 , (3.3)

18

where TV (M) =
∑
i,j

(Mi,j −Mi,j+1)
2+
∑
i,j

(Mi,j −Mi+1,j)
2 makes M smoother,

fc is the probability for the class c given an image, and AV (M) is the mean

of M .

Similarly, Peca-Net makes a mask M from U-Net structure, adding class

attention module in the encoder. Then it uses the following loss function to

get a more accurate mask:

λ1lD(1−M,X)− λ2lP (M,X) + λ3lTV(M) + λ4lA(M), (3.4)

where

lD(1−M,X) = log p(y = c | ϕ(X, 1−M)), (3.5)

lP (M,X) = log p(y = c | ϕ(X,M)), (3.6)

lTV(M) =

√∑
x,y

(Mx,y −Mx,y+1)2 +
∑
x,y

(Mx,y −Mx+1,y)2, (3.7)

lA(M) =
1

HW

H∑
x=1

W∑
y=1

M(x, y)2, (3.8)

and λ1, λ2, λ3, and λ4 are hyperparameters.

DANet [55] groups classes to extract unseen properties. Also, it sees vari-

ous areas of the object by inducing the orthogonal relationship. More explic-

itly, DANet first needs the hierarchical classes Croot, Cparent, and Cchild. Then

it generates the intermediate feature maps from CNN. Here, each generated

feature map corresponds to the hierarchical classes, say Froot, Fparent, and

Fchild. These feature maps are used to predict the corresponding hierarchical

class by the average operation and are exploited to compute cosine loss. Thus,

the resulting loss function is

λ1Lcls(Froot, yCroot) + λ2Lcls(Fparent, yCparent) + λ3Lcls(Fchild, yCchild
) + λ cosF,

(3.9)

where yCroot , yCparent , and yCchild
are targets corresponding to Croot, Cparent,

and Cchild, respectively, Lcls is the loss function for image classification, F

comes from the concatenation of Froot, Fparent, and Fchild, and λ1, λ2, λ3,

19

and λ are hyperparameters of the loss function. Since 90◦ produces the zero

value of cosine function, cosF induces the orthogonal relationship between

the channels of the input feature map F .

CSTN [34] uses multiple feature maps from FPN and applies STN [20]

in a convolution manner. First, multiple feature maps from FPN help to

handle various scales. Also, since STN is suitable for dealing with various

geometric versions involving translation, rotation, and scale, it gives more

flexible operations. More explicitly, for the input feature map f , convolutional

STN gives the parameters of transform θl ∈ R2×3 for each location l of f . Also,

to reduce overfitting, CSTN uses two regularization terms: Lθ and Lscale.

Lθ aims to reduce the perturbation from θref. Thus, it has the form of

Lθ =
∑
s∈S

hs×ws∑
i=1

∥θref − θi∥2, (3.10)

where S is a set of pyramid levels of FPN, and hs and ws are the height and the

width of the feature map corresponding to the pyramid level s, respectively.

Also, Lscale is used to encourage the higher-resolution feature map of the

network to have a larger value when treating a large object. So, it is of

Lscale(x) = max{0,max
l

p(s = s1, l, c = c∗|x)−max
l

p(s = s2, l, c = c∗|x)},

(3.11)

where s1, s2 ∈ S and CSTN finally uses

Lcls(x, y) + λLθ + αLscale(x), (3.12)

where λ and α are the hyperparameters for loss function. SFPN also uses

FPN. However, SFPN does not use STN and has simpler loss function that

consists of only cross-entropy loss.

There are also data augmentation methods for WSOL. Cutmix [57] and

HaS [44] modify the input image. HaS first splits the input image into multiple

cells and then removes these cells at random. More precisely, we denote the

input image by I. Here, we assume I has a height H and width W . Also, let s

be the size of the cell. Then a set {Ij}HW/s
2

j=1 consists of a partition of I, where

20

Ij ∈ Rs×s for each j. Next, HaS generates a binary mask M := [Mj]
HW/s2

j=1 by

Mj ∈ Rs×s, Mj ∼ Bernoulli(p) (3.13)

for each j, where p is a probability of not removing a cell. Finally, HaS outputs

the modified input image I ′ := M ⊙ I, where the jth cell I ′j of I
′ is

I ′j = Mj ⊙ Ij (3.14)

for each 1 ≤ j ≤ HW
s2

. Then I ′ is the new input image, and this helps the

network see the less discriminative region.

Although HaS is useful to see the less discriminative region, HaS can

cause the loss of information by setting the values to zero. To overcome this

limitation, Cutmix [57] outputs a new input image by dealing with multiple

images. Let I1 and I2 be two images of a height H and width W . Also, let

y1 ∈ RT and y2 ∈ RT be targets corresponding to I1 and I2, where T is the

number of classes, respectively. Then Cutmix computes

Ĩ = M ⊙ I1 + (1−M)⊙ I2, (3.15)

ỹ = λy1 + (1− λ)y2,

where

B := {(i, j) : x1 ≤ i ≤ x2, y1 ≤ j ≤ y2}, (3.16)

M [i, j] =

{
1 (i, j) /∈ B,

0 (i, j) ∈ B,
(3.17)

λ = 1− (x2 − x1)(y2 − y1)

HW
. (3.18)

Here, (x1, x2) ((y1, y2)) is a pair of randomly generated x-coordinates (y-

coordinates), and λ is the ratio between the area of the truncated region and

that of the whole region. Thus, Ĩ in Equation 3.15 means that the area within

B in I1 is filled with the corresponding area of I2. This process reduces the

loss of information because the ‘hole’ of the image is filled with another image.

In addition to the above augmentations, erasing is also useful for WSOL.

21

ACoL [60] and MEIL [33] use ‘additional classifier’ to deal with information

from the less discriminative region. Let I ∈ R3×H×W be the input image with

a height H and W and let fθ be a CNN with a parameter θ. Then both ACoL

and MEIL have two outputs o1 and o2 such that

o1 = cθ1(fθ(I)), o2 = cθ2(M ⊙ fθ(I)), (3.19)

where M is a binary mask which removes the most discriminative region, ⊙
is the elementwise product, and cθ1 and cθ2 are classifiers with parameter θ1
and θ2, respectively. Here, θ1 ̸= θ2 for ACoL and θ1 = θ2 for MEIL. Finally,

they compute the loss L by

L = L1(o1, y) + λL2(o2, y), (3.20)

where y is a target, L1 and L2 are the classification loss functions, and λ is a

hyperparameter for L. Note that for MEIL, the number of loss terms of L can

be increased when MEIL uses 3 classifiers. Thus, as seen in Equation 3.20,

these approaches need the finding of hyperparameters for the loss function.

ADL [5] introduces another way to exploit erasing, not adding a new

classifier. Namely, ADL picks one architecture between attention and erasing

at random. More precisely, for the input feature map X, ADL outputs o such

that

o = w1f1(X) + w2f2(X), (3.21)

where f1 uses attention mechanism, f2 removes the pixels greater than fore-

ground threshold, and w1 is a binary random variable with w1 + w2 = 1.

We can observe that many of the above models use additional hyperpa-

rameters of loss functions. This means that these models need the finding of

such hyperparameters and, thus, can cause the burden of learning, such as

the increased time of learning.

22

3.3 Proposed Method

ResNet-101 [15] is used as the backbone network of SFPN. First, we split the

backbone into four stages (see Table 3.1). For each stage, we assume the ith

stage gives the feature map Si. Next, FPN provides the tensor Ti correspond-

ing to Si. Then we apply refinement blocks, which will be introduced later in

Definition 3. The resulting feature maps of such blocks will be called U1, U2,

U3, and U4. These feature maps are concatenated and passes through GAP

and a fully connected layer.

Stage Output Shape

Stage 1
[7× 7, 64]

(256, 56, 56)3× 3 maxpool 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Stage 2

1× 1, 128
3× 3, 128
1× 1, 512

× 4 (512, 28, 28)

Stage 3

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23 (1024, 14, 14)

Stage 4

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3 (2048, 14, 14)

Table 3.1: Stages for ResNet-101 [15]. Here, the input shape is (3, 224, 224)
and the notation for convolution is [kernel× kernel, channels].

FPN requires feature maps of the same shape because it adds two feature

maps. Thus, bilinear interpolation plays a role in making the same height and

width, and 1× 1 convolution helps two feature maps have the same number

of channels. In particular, we make 1 × 1 convolution output 256 channels.

Also, we assume the shape of the input image is (3, 224, 224).

We now explain the proposed method in more detail. To help understand-

23

Figure 3.5: Detail of SFPN. Here, RB with s means the refinement block with
stride s, GAP is global average pooling, and ⊕ denotes elementwise sum.

ing, see Figure 3.5. We start with S4. To make S4 have a larger resolution,

we change the stride of the last layer for ResNet-101 from 2 to 1. As a result,

S4 has a height of 14 and a width of 14. On the other hand, S4 has 2048 as

the number of channels, while S3 has 1024 as that of channels. So, 1× 1 con-

volution produces two feature maps that have the same number of channels

from S3 and S4, respectively. Also, batch normalization (BN) [18] is applied to

Conv1×1(S3), where Conv1×1(S3) denotes the output of 1× 1 convolution us-

ing S3 its input. Then we have T4 ∈ R256×14×14 and T3 ∈ R256×14×14 following

the below equation:

T4 = Conv1×1(S4) ∈ R256×14×14, (3.22)

T3 = T4 + (BN ◦ Conv1×1)(S3) ∈ R256×14×14, (3.23)

24

where Conv1×1 means 1× 1 convolution.

Next, we combine S2 ∈ R512×28×28 and T3 ∈ R256×14×14. Since S2 has the

shape of (512, 28, 28), we use bilinear interpolation for T3. Also, similar to

S3, a layer that consists of 1 × 1 convolution and BN receives S2. With this

process, T2 is defined by the following equation:

T2 = (BN ◦ Conv1×1)(S2) + Interpolation(T3) ∈ R256×28×28, (3.24)

where Interpolation means bilinear interpolation.

Finally, we convert T2 into a tensor of shape (256, 56, 56) using bilinear

interpolation and add this tensor to S1. Since S1 has 256 channels, we do not

use 1 × 1 convolution. The resulting tensor is denoted by T1, and the above

process is described in the following equation:

T1 = S1 + Interpolation(T2) ∈ R256×56×56. (3.25)

Now, we have 4 tensors: T1, T2, T3, and T4. However, we can observe that

these tensors have different shapes. For simplicity, we aim to use tensors of

the same shape. Thus, we introduce refinement block. Refinement block is a

stacked block, where 3 × 3 convolution, BN, and ReLU are its ingredients.

We define refinement block as the following.

Definition 3 (Refinement block).

1. Let

fθ,s,p = ReLU ◦BN ◦Conv3×3,s,p, (3.26)

where BN is batch normalization, θ is a collection of learnable parame-

ters, and Conv3×3,s,p a 3× 3 convolution having s as its stride and p as

its padding. Then we call fθ,s,p as unit layer.

2. We define refinement block as

Refineθ,n,s,p = fθ1,s1,p1 ◦ · · · ◦ fθn,sn,pn , (3.27)

where n denotes the number of unit layers, θ = ∪ni=1θi, s = ∪ni=1si, and

p = ∪ni=1pi.

25

Note that Refineθ,1,s,p = fθ,s,p. With Definition 3, we apply refinement

blocks. Here, the final shape we expect is (256,14,14). Thus, we have the

output tensors Ui (i ∈ {1, 2, 3, 4}) by

U1 = RefineΘ1,2,s={2,2},p={1,1}(T1) ∈ R256×14×14, (3.28)

U2 = RefineΘ2,1,s={2},p={1}(T2) ∈ R256×14×14, (3.29)

U3 = RefineΘ3,1,s={1,1},p={1,1}(T3) ∈ R256×14×14, (3.30)

U4 = Conv1×1(S4) ∈ R256×14×14. (3.31)

After attaining U1, U2, U3, and U4, we concatenate these tensors and utilize

global average pooling layer. With this output feature map of concatenation,

the estimated class comes from 1× 1 convolution. This process can be shown

in the following equation:

f = Concat[U1, U2, U3, U4] ∈ R1024×14×14, (3.32)

wclassifier ◦GAP(f) ∈ RT , (3.33)

where ‘Concat’ is concatenation, wclassifier is a 1 × 1 convolution layer that

predicts the class, and T is the number of classes. Lastly, f in Equation 3.32

and wclassifier in Equation 3.33 give CAM.

3.4 Experiment

3.4.1 Datasets

To validate the great performance of SFPN, both CUB-200-2011 [50] and

ILSVRC [41] are used. CUB-200-2011 is constructed by gathering images

of 200 kinds of birds. It divides the images into 5,994 images for training

data and 5,794 images for test data. Also, ILSVRC collects images of 1,000

kinds of the object. It has roughly 1.2–1.3 million training images and 50,000

validation images.

26

(a) Intersection between B1 and B2 (b) Union of B1 and B2

Figure 3.6: An example of intersection and union of two bounding boxes. For
given bounding boxes B1 and B2, (a) shows the intersection between these
bounding boxes, and (b) shows the union of these bounding boxes.

3.4.2 Evaluation Metrics

In evaluation, we check two factors: the class and the bounding box. First,

the predicted class is regarded as right if it is equal to the ground truth

class. Next, Intersection over Union (IoU) is used for the bounding box. For

a more detailed discussion, we let Bx1,x2,y1,y2 = [x1, x2] × [y1, y2] ⊆ R2 for

x1, x2, y1, y2 ∈ R and B = {Bx1,x2,y1,y2 : x1, x2, y1, y2 ∈ R, x1 ≤ x2, y1 ≤ y2}.
Then we define IoU : B × B → [0, 1] is defined by

IoU(B1, B2) =
area(B1 ∩B2)

area(B1 ∪B2)
, (3.34)

where B1 ∈ B and B2 ∈ B are bounding boxes and area : B → R≥0 outputs

the area of given bounding box. For a visual example, refer to Figure 3.6.

Thus, the larger IoU between two bounding boxes, the closer these bound-

ing boxes are. Hence, the estimated bounding box B is regarded as right if

IoU(B,G) ≥ 0.5, where G is the corresponding ground truth bounding box.

With the above argument, we define Top1-cls and Top1-loc as follows. Let

D = {(xi, yi, Gi) : 1 ≤ i ≤ n} be a dataset, where xi is an image, yi is the

ground truth class, and Gi is the ground truth bounding box. Also, let y′i be

27

the predicted class and Bi be the estimated bounding box from the model for

each i. Then Top1-cls and Top1-loc are defined by

Top1-cls =

n∑
i=1

1y′i=yi

n
× 100, (3.35)

Top1-loc =

n∑
i=1

[
1y′i=yi ∧ 1IoU(Bi,Gi)≥0.5

]
n

× 100, (3.36)

where 1{·} is the indicator function, and ∧ is the logical AND operator. In

other words, Top1-cls shows the proportion of images with rightly estimated

class in the whole dataset, and Top1-loc shows the proportion of images with

rightly estimated class and bounding box in the whole dataset. Thus, these

two metrics will give quantitative values for SFPN.

3.4.3 Implementation Details

The initial weight of SFPN is pretrained on ILSVRC. Also, we optimize SFPN

with SGD optimizer of 0.9 momentum, 5e−4 weight decay, and 5e−3 initial

learning rate. Here, 1× 1 convolution layer in the final predictor uses 5e− 2

learning rate, while other layers have a tenfold less learning rate. Also, we

utilize only cross-entropy loss. When we train SFPN on CUB-200-2011, we

use 32 as batch size. Also, when we train SFPN on ILSVRC, we use 128

as batch size and freeze layers in stage 1–4 and optimize other layers. Also,

SFPN is implemented using PyTorch [37].

3.4.4 Result

In this subsection, we draw a comparison between the proposed method and

existing WSOL methods. For this comparison, the highest Top1-loc perfor-

mances reported in their paper are used. Table 3.2–3.3 show the result for

this comparison.

In CUB-200-2011, the proposed method shows higher Top1-cls and Top1-

loc than methods that use complex loss functions [31,33,34,55,60,61]. More-

over, the proposed method shows an increase of 1.12 percentage points in

28

Method Top1-loc (%) Top1-cls (%)

CAM [63] 41.00 63.00
ACoL [60] 45.92 71.90
SPG [61] 46.64 -
CSTN [34] 49.03 78.46

PECA-Net [31] 51.68 -
Cutmix [57] 54.81 -
MEIL [33] 57.46 74.77
DANet [55] 61.10 81.60
ADL [5] 62.29 80.34

SFPN [22] 63.41 81.74

Table 3.2: Comparison of WSOL performances for CUB-200-2011. The best
performance is denoted by bold letters. Also, - means the corresponding paper
does not report the result.

Top1-loc and 1.40 percentage points in Top1-cls compared to ADL [5], which

is the best method except for the proposed method.

Comparison in ILSVRC also follows this tendency. The proposed method

still gains higher performance than methods that use complex loss func-

tions [31, 33, 34, 55, 60, 61]. Furthermore, the proposed method reports the

improved performance with 0.10 percentage points increase in Top1-loc and

0.57 percentage points increase in Top1-cls, compared to MEIL [33]. Quanti-

tative comparisons in two datasets validate that the proposed method attains

great performance using only cross-entropy loss.

Figure 3.7–3.8 show a qualitative comparison between CAM and the pro-

posed method. The ground truth bounding box is represented by the green

bounding box, and the estimated bounding box is described as the red bound-

ing box. The proposed method recognizes a region closer to the whole region of

the object compared to CAM. Thus, it estimates the more accurate bounding

box.

29

Method Top1-loc (%) Top1-cls (%)

CSTN [34] 42.38 69.48
CAM [63] 43.60 65.00
HaS [44] 45.21 70.70
ACoL [60] 45.83 71.00
Cutmix [57] 47.25 -
DANet [55] 47.53 72.50

PECA-Net [31] 47.93 -
SPG [61] 48.60 -
ADL [5] 48.71 72.83
MEIL [33] 49.48 73.88
SFPN [22] 49.58 74.45

Table 3.3: Comparison of WSOL performances for ILSVRC. The best perfor-
mance is denoted by bold letters. Also, - means the corresponding paper does
not report the result.

3.4.5 Ablation Study

SFPN aims to help the last feature map have more plentiful information. To

see this effect, we examine the feature maps U1, U2, U3, and U4, which are

components of the last feature map. In this study, we use CUB-200-2011.

Table 3.4 shows the result of this study. When we use U4 as the last feature

map, the worst Top1-loc is shown. This may come from losing the information

because U4 has 256 as the number of channels and S4 has 2048 as that of

channels. Also, as adding U3, U2, and U1 gradually, we have more improved

performance in Top1-loc.

More precisely, adding U3 (the third row of Table 3.4) gives 4.23 increased

percentage points in Top1-loc compared to using only U4 (the second row of

Table 3.4). Also, adding U2 (the 4th row of Table 3.4) gains 0.3 increased

percentage points in Top1-loc compared to using U3 and U4 (the third row of

Table 3.4). Finally, SFPN (the last row of Table 3.4) gets the best Top1-loc

performance with an increase of 1.29 percentage points compared to using U2,

U3, and U4 (the 4th row of Table 3.4). This means that enhanced information

of the last feature map helps improve WSOL performance.

30

Figure 3.7: Comparison with CAM on CUB-200-2011. The ground truth
bounding box is represented by the green bounding box, and the estimated
bounding box is described as the red bounding box.

Used feature maps Top1-loc (%) Top1-cls (%)

S4 58.89 82.24
U4 57.59 82.02

U3, U4 61.82 81.17
U2, U3, U4 62.12 81.29

U1, U2, U3, U4 (SFPN [22]) 63.41 81.74

Table 3.4: Ablation study.

31

Figure 3.8: Comparison with CAM on ILSVRC. The ground truth bounding
box is represented by the green bounding box, and the estimated bounding
box is described as the red bounding box.

32

Chapter 4

A2E Net: Aggregation of

Attention and Erasing for

Weakly Supervised Object

Localization

4.1 Introduction

Although SFPN improves the localization, it needs a nonnegligible number of

additional learnable parameters. Indeed, it uses ∼3.8M weights additionally.

Since a small number of learnable weights can decrease the burden of learning,

we focus on reducing the number of learnable weights in this chapter. Also, we

need to prevent the model from having a highly dropped performance caused

by the reduction of such parameters.

For this goal, attention mechanism and erasing can be the keys. First, at-

tention mechanism emphasizes the important information, which is inspired

from the human visual system [6, 19]. This has demonstrated its effective-

ness for many computer vision tasks, including object detection. SE [17] and

CBAM [54] are examples for this.

Next, as we discussed in Section 3.2, erasing is one of the most com-

monly used techniques in WSOL. Thus, one can consider the use of attention

mechanism and erasing for WSOL. Indeed, ADL [5], which was introduced in

33

Figure 4.1: The overall architecture of the proposed method. Here, SAB de-
notes spatial attention branch and GAP is global average pooling. Also, ⊕
denotes elementwise sum.

Section 3.2, is an example of realizing this idea and has no trainable weights.

More explicitly, ADL picks one architecture from attention mechanism and

erasing at random for each iteration. However, such a choice sometimes does

not exploit the virtues of attention mechanism and erasing fully, due to the

randomness.

Considering the above points, we propose a new model named A2E Net

[23] that is lightweight and employs attention mechanism and erasing to main-

tain the performance. This model is made up of two branches; spatial at-

tention branch and refinement branch. First, spatial attention branch helps

the feature map heighten its information. Next, this heightened feature map

become the input of refinement branch. Refinement branch makes the in-

formation of the input feature map more elaborate and considers the less

discriminative region by erasing. The overall flow of A2E Net is described in

Figure 4.1.

The rest of this chapter is organized as follows. First, to explain the back-

ground for A2E Net, we show some attention mechanisms, some erasing meth-

ods, and existing WSOL models in Section 4.2. Then we show the detail and

the results of A2E Net in the remaining parts.

34

Figure 4.2: An example of NL-network [53]. In this figure, an operation that
computes connection between pixels is softmax.

4.2 Related Works

4.2.1 Attention Mechanism

Non-local Neural Network

Non-local algorithm [4] was introduced for image denoising. This algorithm

considers similarities between neighborhoods. More precisely, this approach

aims to remove noise from a noisy image u by Wu, where I is an index set

for pixels, W = [wij] ∈ R|I|×|I|, and 0 ≤ wij ≤ 1,
∑
j∈I

wij = 1. In practical, wij

was defined by

wij =
1

C(i)
exp

(
−
∥N (ui)−N (uj)∥22

h2

)
, (4.1)

where ui is the ith pixel of u, N(ui) is a neighborhood of ui, h is a parameter,

and C(i) is a normalization factor.

Non-local neural network (NL-network) [53] reformulates this algorithm.

Namely, NL-network parametrizes Non-local algorithm by neural networks.

An application of NL-network to 2D images gives a more detailed description.

Let X ∈ RC×H×W be the input feature map of NL-network. Here, reshap-

ing sometimes makes it possible to identify X ∈ RC×H×W as X ∈ RC×HW ,

35

where reshaping means rearranging values of a given tensor. Under this iden-

tification, let xi ∈ RC be the ith column (pixel) of X for 1 ≤ i ≤ HW .

Also, let Wϕ,Wψ : RC×H×W → RC1×H×W , Wτ : RC×H×W → RC2×H×W , and

Wρ : RC2×H×W → RC×H×W be 1×1 convolution layers with learnable param-

eters. ThenWϕX,WψX ∈ RC1×H×W andWτX ∈ RC2×H×W . Under reshaping,

we get WϕX,WψX ∈ RC1×HW and WτX ∈ RC2×HW .

Next, NL-network uses an operation to (WϕX)T (WψX) ∈ RHW×HW to

get the weight for the connection between pixels. Examples of such oper-

ations contain softmax and a dot product. Such an operation is applied to

(WϕX)T (WψX), called act((WϕX)T (WψX)). Here, when the operation is soft-

max, we have

[softmax((WϕX)T (WψX))]ij =
exp
(
(Wϕxi)

TWψxj
)

HW∑
r=1

exp((Wϕxr)TWψxj)

. (4.2)

Note that with C(j) :=
HW∑
r=1

exp
(
(Wϕxr)

TWψxj
)
, we have

[softmax((WϕX)T (WψX))]ij =
1

C(j)
exp
(
(Wϕxi)

TWψxj
)
, (4.3)

which corresponds to Equation 4.1. Other operations can also be calculated

as similar to softmax.

Then we use matrix multiplication of act((WϕX)T (WψX)) and WτX. Fi-

nally, Wρ changes the number of channels of (WτX)act((WϕX)T (WψX)) from

C2 to C, and the output feature map is X +Wρ(WτX)act((WϕX)T (WψX)),

after we regard Wρ(WτX)act((WϕX)T (WψX)) as a tensor of shape (C,H,W)

using reshaping. This process when act = softmax is described in Figure 4.2.

The above process can be also used for video data by modifying architectures,

e.g., converting 1× 1 convolution into 1× 1× 1 convolution.

NL-network shows its great performance for video classification, object

detection, instance segmentation, and keypoint detection. Moreover, this net-

work gives inspiration to other studies. For example, SAGAN [59] exploits

NL-network for image generation. In SAGAN, NL-network helps GAN [13]

36

not depend only on the local information. With a similar virtue, NL-network

is also applied to image restoration [62] and scene segmentation [8].

Other Networks

As CNN is improving, attention mechanism has provided a way to further

boost the performance for various computer vision tasks with CNN. Many

attention networks are plugged into CNN and use the combination of trans-

formation and the input feature map. For the convenience of discussion, we

let X ∈ RC×H×W be the input feature map, ⊙ be the elementwise product,

and σ be a sigmoid.

RAN [51] obtains a mask from the network, which is called “soft mask

branch”. The encoder part of this network includes max pooling and residual

network to extract global information. Then the decoder makes a feature map

with a resolution higher than that of the output feature map of the encoder

by interpolation. Finally, sigmoid makes the range of [0, 1] for the output of

the decoder. With “trunk branch” in RAN, RAN has the form of

X 7→ (I +M(X))⊙ T (X), (4.4)

where I is the tensor filled with 1, and soft mask branch and trunk branch

give M(X) and T (X), respectively. Through this, RAN improves image clas-

sification performance and shows its flexibility for various CNNs.

SE [17] constructs a network that formulates the connection between chan-

nels. The connection between channels is complex because 2D convolution

outputs the feature map by using spatial operation. So, to be more discrim-

inative to the usefulness of information, SE first gets information for each

channel and then catches a connection between channels. For the first step,

SE uses GAP, namely,

1

HW

∑
i,j

Xc,i,j (4.5)

for each channel c. Then the neural network composed of fully connected layer,

ReLU, and sigmoid is used to construct a network that catches a connection

37

between channels. Finally, SE has the form of

X 7→ X ⊙ (σ ◦W2 ◦ ReLU ◦W1 ◦GAP)(X)︸ ︷︷ ︸
transformation

, (4.6)

where r is a reduction factor which controls the number of parameters and

W1 : RC → RC/r and W2 : RC/r → RC are fully connected layers. Also, a

range of values of tensors is changed into [0, 1] by σ.

BAM [35] consists of two branches, which are named “channel attention

branch” and “spatial attention branch”, respectively. Like SE, channel atten-

tion branch also catches a connection between channels. So, this branch uses

a similar network to SE with a reduction factor r.

Spatial attention branch uses 1× 1 convolution layers to control the num-

ber of channels and 3×3 dilated convolution layers to allow the larger receptive

field. Namely,

X 7→ (Conv
C/r→C
1×1 ◦ ConvC/r→C/r

3×3,d ◦ ConvC/r→C/r
3×3,d ◦ ConvC→C/r

1×1)(X), (4.7)

where ConvA→B
1×1 is a 1 × 1 convolution layer which changes the number of

channels from A to B and ConvA→B
3×3,d is a 3×3 convolution layer with dilation

rate d which changes the number of channels from A to B. Finally, BAM has

the form of

X 7→ X ⊙ (I + σ ◦ (Channel + Spatial)(X))︸ ︷︷ ︸
transformation

, (4.8)

where I denotes the tensor filled with 1 of the same shape as X, and ‘Channel’

and ‘Spatial’ denote channel attention branch and spatial attention branch,

respectively.

CBAM [54] also uses two modules, similar to BAM. In other words, two

modules, which are named “channel attention module” and “spatial attention

module”, respectively, are components of CBAM. Channel attention module

in CBAM not only uses GAP but also uses global maximum pooling, while SE

and BAM only use GAP for channel attention. It first generates two tensors

by such pooling layers. Then a neural network similar to SE outputs two

tensors corresponding to these tensors, and the summation of these output

38

tensors gives the output tensor of channel attention module. Namely,

X 7→ σ ◦ (W2 ◦ ReLU ◦W1 ◦GAP +W2 ◦ ReLU ◦W1 ◦GMP)(X), (4.9)

where GMP is global maximum pooling, r is a reduction factor, and W1 :

RC → RC/r and W2 : RC/r → RC are fully connected layers.

Spatial attention module also has two pooling operations: CAP and chan-

nel maximum pooling. It first makes two tensors by these pooling layers. Then

these two tensors are concatenated and passed through a 7 × 7 convolution

layer. Namely,

X 7→ σ ◦ Conv2→1
7×7 ◦ Concat[CAP(X),CMP(X)], (4.10)

where CMP is channel maximum pooling, ‘Concat’ is concatenation, and

Conv2→1
7×7 is a 7 × 7 convolution layer which changes the number of channels

from 2 to 1. Finally, CBAM outputs

X 7→ X ⊙ (Spatial(Channel(X)⊙X)⊙ Channel(X))︸ ︷︷ ︸
transformation

, (4.11)

where ‘Spatial’ and ‘Channel’ are spatial attention module and channel at-

tention module, respectively.

ECA-Net [52] introduces a more efficient algorithm by paying attention to

channel attention. It first observes that immediate connection between chan-

nels and weights helps the network boost performance. Thus, a reduction

factor r is not used for ECA-Net. Also, ECA-Net finds that the relationship

between channels is one of the factors that improve performance. From these

observations, ECA-Net describes the relationship between channels in the

neighborhood by a 1D convolution. Namely,

X 7→ X ⊙ (σ ◦ Conv1D,k ◦GAP(X))︸ ︷︷ ︸
transformation

, (4.12)

where ‘Conv1D,k’ is a 1D convolution having k as its kernel size. Here, k is

selected by the number of channels of X.

In the above models, we can observe that many attention mechanisms

39

have the form of

X 7→ X ⊙ transformation(X), (4.13)

where ‘transformation’ usually consists of neural networks. This structure

inspires spatial attention branch in A2E Net.

4.2.2 Erasing Methods

Similar to the previous section, we still use the same notations. In other words,

let X ∈ RC×H×W be the input feature map, where C indicates the number of

channels, and H and W are the height and the width, respectively. Also, let

⊙ be the elementwise product.

Dropout [45] is one of the methods that avoid overfitting. This method

randomly annihilates neurons in a fully connected layer and pixels in a con-

volutional feature map. Namely, Dropout outputs Mp⊙X, where p is a prob-

ability that neuron or pixel will not be removed, Mp is a binary mask with

the same shape as X, and

Mp ∼ Bernoulli(p). (4.14)

Here, Bernoulli distribution for Mp is independently distributed for each neu-

ron or pixel.

Dropout gains the increased performance when applied to a fully con-

nected layer because it generates and learns many networks. However, when

applied to a convolutional feature map, its use does not help the improvement

of performance. The connection between pixels is one of the main reasons that

cause this. More explicitly, pixels in the neighborhood usually have similar

information [9, 48].

To increase the effect of erasing for a convolutional feature map, Spa-

tialDropout [48] removes the whole pixels in the randomly chosen channels.

Namely, SpatialDropout returns Mp ⊙X, where p is a probability that pixel

will not be removed, and Mp is a binary mask with the same shape as X and

Mp[c] ∼ Bernouill(p) (4.15)

40

for each channel c. Here, for each channel c, either Mp[c] = 1 ∈ RH×W or

Mp[c] = 0 ∈ RH×W , where 0 and 1 are the tensor filled with zeros and the

tensor filled with ones, respectively.

On the other hand, MaxDrop [36] introduces two approaches. One is to

handle the probability of Dropout. It is called stochastic dropout. To give

various simulations, stochastic dropout samples the probability of Dropout

from the uniform distribution or Gaussian distribution. The other is to focus

on the pixel that obtains the maximum value in the channel axis or the

position axis. When MaxDrop uses erasing in the channel axis, it first picks

the pixels at random and removes the location at which the maximum value

is obtained corresponding to these chosen pixels. Namely, MaxDrop with the

channel axis gets

ic := argmax
1≤c≤C

X[c, h, w] =⇒ X[ic, h, w] = 0, (4.16)

where (h,w) is the randomly chosen pixel. Similarly, when MaxDrop uses

erasing in the position axis, it chooses the channels randomly and erases the

pixel that obtains the maximum value. Namely, in this case,

ih, iw := argmax
h,w

X[c, h, w] =⇒ X[c, ih, iw] = 0, (4.17)

where c is the randomly chosen channel. This method is similar to erasing

module in A2E Net in the perspective of erasing the pixels around the point

at which the maximum value is given. However, the erasing module does not

choose the channels randomly.

Dropblock [9] provides a different way. From the above discussed prop-

erty of pixels in the neighborhood [9, 48], Dropblock tries to avoid removing

some pixels, leaving other pixels in the neighborhood because this can leave

information. Thus, it generates rectangles and removes all pixels in these rect-

angles. For this, it needs the probability p of not removing the pixel and the

size b of these rectangles. Also, it picks the pixels at random to get the centers

of these rectangles. More explicitly, it generates a binary mask M ∈ RC×H×W

41

(a) Dropout (b) SpatialDropout (c) Dropblock

Figure 4.3: Description of Dropout, SpatialDropout, and Dropblock when the
number of channels is 1. The blue denotes the pixel that is not removed, and
the gray denotes the erased pixel. Also, in (c), the yellow is the center of the
rectangle.

with

M ∼ Bernoulli(γ), (4.18)

and

γ =
1− p

b2
HW

(H − b+ 1)(W − b+ 1)
. (4.19)

Then Dropblock regards the zero positions ofM as the centers of the rect-

angles. Next, all pixels in the rectangles with these centers and the size of b

have zero values. With this update forM , Dropblock outputsX⊙M⊙CHW∑
i,j

Mij

.

In this process, the distribution of ‘keeping’ pixels is not determined inde-

pendently, in contrast to Dropout. Indeed, the distribution corresponding to

Dropblock is more regionally defined. Thus, Dropblock becomes a more suit-

able approach to increase the effect of erasing for a convolutional feature map.

To give an easier understanding, the above erasing methods except for Max-

Drop are described in Figure 4.3.

Erasing module in A2E Net also removes all pixels in the rectangles, sim-

ilar to Dropblock. However, we regard only the pixels at which the maximum

value is given as the centers of the rectangles. It is because our erasing mod-

ule aims to remove the most discriminative region. In other words, since the

42

most discriminative region often contains the pixel of the maximum value,

we do not have to regard other pixels as the center of the rectangle. Also, we

pick the size of the rectangles in a range of sizes at random to further boost

performance, which is also different from Dropblock.

4.2.3 Existing Methods for Weakly Supervised Object

Localization

InCA [21] and DGDM [56] use the similar idea to ADL. InCA also picks

one architecture between attention and erasing at random. However, InCA

removes pixels greater than the foreground threshold and pixels lower than

the background threshold to reduce a prediction of a larger region than the

region of the object. Also, InCA introduces “contrastive attention loss” and

“consistency loss” to help the extension of the attention map and make layers

have similar coherence, respectively.

DGDM proposes two architectures with erasing, which have channel di-

rection and spatial direction, respectively. Channel direction in DGDM first

applies GAP and leaves channels with high values. Also, some channels with

low values are sometimes left randomly. This channel direction aims to con-

struct the connection between channels.

On the other hand, spatial direction in DGDM picks one architecture

between attention and erasing at random. Here, erasing in spatial direction

removes not only the most discriminative region but also the background,

making the rectangles to remove the pixels in the neighborhood. A2E Net

also uses rectangles for erasing. However, A2E Net removes the pixels in the

rectangles with a randomly selected size, while DGDM uses rectangles with

a fixed size.

HCLNet [3] addresses the less discriminative region by an approach in-

spired from ACoL. It inverts the feature map, instead of using a fixed thresh-

old for erasing. More explicitly, HCLNet uses two classifiers, similar to ACoL.

Then for the output feature map f of CNN, one classifier makes CAM as

usual, and another classifier takes the feature map (1− CAM)⊙ f as input.

This process produces two feature maps, called f1 and f2, which are combined

to get the final localization. Also, HCLNet introduces two methods for this

43

combination: addition strategy and l1-norm strategy. The addition strategy

makes the output feature map F by F = f1 + f2. The l1-norm strategy is a

more complex method. First, this method gets the feature mapMi (i ∈ {1, 2})
by

Mi(x, y) = ∥fi(x, y)∥1 (4.20)

for each (x, y). Then for each (x, y), the average operation on its neighborhood

is used by

M̂i(x, y) =

r∑
a=−r

r∑
b=−r

Mi(x+ a, y + b)

(2r + 1)2
. (4.21)

Finally, the normalizing factors wi come from

wi(x, y) =
M̂i(x, y)

M̂1(x, y) + M̂2(x, y)
, (4.22)

and the resulting feature map is

F (x, y) = w1(x, y)f1(x, y) + w2(x, y)f2(x, y). (4.23)

Also, HCLNet has two cross-entropy loss functions corresponding to the two

classifiers, similar to ACoL.

Aside from the above models, there are interesting approaches to WSOL.

For instance, CSoA [24] uses a “confidence segmentation (ConfSeg) module”

to make mask and “co-supervised augmentation (CoAug) module” for regu-

larization. First, in ConfSeg, CSoA provides two CAMs, called SF and SL,

by adding a new classifier. Here, let HL and WL be the height and the width

of SL, respectively. Then a mask is made M from SL by

Mi,j = |(ScL)i,j − µ1|, (4.24)

44

where ScL is the cth feature map of SL and µ1 =

∑
i,j

(ScL)i,j

HL ×WL

. If (ScL)i,j is

similar to µ1, it is difficult to classify this into foreground or background. On

the other hand, if (ScL)i,j has a large distance from µ1, then it is potentially in

the foreground or background. Thus, M shows the confidence for each pixel.

Based on M , to apply a threshold per batch, M is converted into

M̂i,j =

{
1, Mi,j > µ2,

0, otherwise,
(4.25)

where µ2 =

∑
i,j

Mi,j

HL ×WL

. In this equation, M̂ leaves the pixels with high con-

fidence. On these pixels, ConfSeg module makes the high similarity between

ScF and ScL by minimizing

Linner :=
∑
i,j

|(ScF)ci,j − (ScL)
c
i,j| ⊙ M̂i,j. (4.26)

Therefore, the loss function LC for ConfSeg module is

LC := Lcls + αLinner, (4.27)

where Lcls is the classification loss function for two CAMs and α ∈ [0, 1] is

controlled in training phase.

To further boost performance, CSoA uses CoAug. CoAug first makes a

large difference between foreground and background. To this end, when Im is

the mth image or feature map with the class cm and fθ is the network such

as CNN, CoAug produces two feature maps Fm and Bm by

Fm = fθ(S
cm
L ⊙ Im), Bm = fθ((1− ScmL)⊙ Im). (4.28)

In other words, Fm and Bm correspond to the foreground feature map and

background feature map, respectively. Then CoAug maximizes

Dcam
m = ∥Fm −Bm∥2, (4.29)

45

and minimizes

Dback
m = ∥Bm −Mm

B ∥2 (4.30)

to reduce the wrong classification for the foreground, where Mm
B = fθ((1 −

ScmL)⊙ M̂ ⊙ Im).

Moreover, CoAug aims to make the high similarity between Fm and Fn
when these feature maps have the same class, and wants a large gap between

Fm and Fn when these feature maps have different classes. To this end, CoAug

defines the following distance

Dm,n = ∥Fm − Fn∥2 (4.31)

and the final loss LD by

Lsame
D =

∑
{m,n | cm ̸=cn}

γ(Dback
m +Dback

n)

δDm,n +
1
2
(Dcam

m +Dcam
n)

, (4.32)

Ldiff
D =

∑
{m,n | cm=cn}

Dm,n + γ(Dback
m +Dback

n)
1
2
(Dcam

m +Dcam
n)

, (4.33)

LD = Lsame
D + Ldiff

D . (4.34)

Finally, CSoA is trained with LC and LD.
Another interesting approach is EGA [2]. EGA uses adversarial images

to get better representation for localization. So, it makes adversarial images

corresponding to given input images. To do this, EGA uses the similar method

to Madry et al. [32]. Namely, EGA gets adversarial image x by

x← P [x+ α · sign(∇xL(θ, x, y))], (4.35)

46

where P is a projection operator such as clipping, θ is the weights for the

network, L is the loss function, y is the class, and

sign(x) =


1, x ≥ 0,

0, x = 0,

−1, x < 0

(4.36)

Also, EGA considers the values of entropy. While the most discriminative

region and the background usually have low entropy values, there are also

pixels with high entropy values, which means that these pixels are ambiguous.

Thus, EGA has the goal of removing this ambiguity by using

Lentropy(CAM) = −
∑
(h,w)

PCAM(h,w) logPCAM(h,w), (4.37)

where the probability at the pixel (h,w) is PCAM(h,w). Finally, the total loss

for EGA is

Lclean,adv + λCAMclean
Lentropy(CAMclean) + λCAMadv

Lentropy(CAMadv), (4.38)

where Lclean,adv is the loss function for clean images and adversarial images

similar to [32], and CAMclean and CAMadv are CAMs from clean image and

adversarial image, respectively.

47

Figure 4.4: Spatial attention branch. CAP means channel average pooling
and ⊗ is elementwise multiplication.

4.3 Proposed Method

4.3.1 Spatial Attention Branch

As we discussed in Section 4.2, many attention mechanisms make an attention

map via a transformation that is composed of neural networks. Then they

combine this attention map with the input feature map. This process can be

described as follows:

Definition 4 (Attention mechanism). Let X ∈ RC×H×W be a tensor. At-

tention mechanism T : RC×H×W → RC×H×W is defined by

X 7→ T (X) = Tθ(X)⊙X, (4.39)

where Tθ : RC×H×W → RC×H×W is a transformation that is composed of

neural networks with parameter θ and ⊙ is an operation that combines the

input tensor with Tθ(X).

Inspired by these mechanisms, we construct spatial attention branch (SAB)

with a transformation that consists of CAP, 3×3 convolution, batch normal-

ization, and sigmoid. We use our transformation as follows.

Let X ∈ RC×H×W be the input feature map. Then CAP reduces the num-

ber of channels of X to 1 and extracts the representative values for each

pixel. Next, we make an attention map by applying 3 × 3 convolution and

batch normalization. After that, sigmoid converts a range of values of this

48

Figure 4.5: Attention module. CAP means channel average pooling and ⊗ is
the matrix multiplication.

attention map into a range of [0, 1]. Note that the output feature map reflects

the importance of each pixel. Finally, we multiply X and the output feature

map of the transformation. We make C copies of values of this feature map

when multiplication since the output feature map of the transformation has

the number of channels as 1. The process for spatial attention branch is sum-

marized in Figure 4.4.

Indeed, learnable weight in the transformation of SAB consists of convolu-

tion kernel in 3× 3 convolution and parameters in batch normalization; thus,

SAB has totally 3× 3+2 = 11 as its number of learnable parameters. Hence,

SAB requires a small number of learnable parameters.

4.3.2 Refinement Branch

We construct refinement branch to make the information of the feature map

more elaborate and explore the less discriminative region. This branch is made

up of attention module and erasing module.

Attention Module

As we discussed in Section 4.2, NL-network [53] uses the connection between

pixels. This approach provides more elaborate information, so it is also ap-

plied to WSOL (e.g., InCA [21]). Inspired by this, we construct attention

module. Unlike NL-network, attention module uses no additional learnable

49

parameters, so this module is very lightweight.

Attention module proceeds with the following details. Let X ∈ RC×H×W

be the input feature map. Then we get X̃ ∈ R1×H×W by using CAP from X.

This can be written CAP(X) = X̃ = [x̃1, · · · , x̃HW] ∈ R1×HW after reshaping.

Then we have a matrix B := (X̃)T X̃ ∈ RHW×HW . Note that

B = (X̃)T X̃ =

 x̃1

...

x̃HW

 [x̃1 · · · x̃HW
]
=

 x̃1x̃1 · · · x̃1x̃HW
...

. . .
...

x̃HW x̃1 · · · x̃HW x̃HW

 (4.40)

and we can know that B represents the connection between pixels from this

equation. Next, we use softmax for each column of B, denoted by softmax(B).

Namely, we have

softmax(B) =

 | |
softmax(B:,1) · · · softmax(B:,HW)

| |

 (4.41)

=



exp(x̃1x̃1)
HW∑
j=1

exp(x̃jx̃1)

· · · exp(x̃1x̃HW)
HW∑
j=1

exp(x̃jx̃HW)

...
. . .

...
exp(x̃HW x̃1)
HW∑
j=1

exp(x̃jx̃1)

· · · exp(x̃HW x̃HW)
HW∑
j=1

exp(x̃jx̃HW)


= [bij], (4.42)

where B:,c means the cth column of B and bij =
exp(x̃ix̃j)

HW∑
r=1

exp(x̃rx̃j)

. Also, we

reshape X into a tensor of shape (C,HW) and write

X =

x1,1 · · · x1,HW

...
. . .

...

xC,1 · · · xC,HW

 ∈ RC×HW . (4.43)

50

Finally, we have X · softmax(B) ∈ RC×HW , and it can be viewed as a

tensor of (C,H,W) by reshaping. Here, for each channel c and each pixel j

(1 ≤ c ≤ C, 1 ≤ j ≤ HW), we have

[X · softmax(B)]cj =
HW∑
r=1

xc,rbrj. (4.44)

In Equation (4.44), when j is fixed, brj represents the connection to the

rth pixel. Thus, [X · softmax(B)]cj is the weighted sum of the pixel values

xc,r and the weight brj. Hence, attention module produces more elaborate

information. The process for attention module is described in Figure 4.5. We

summarize the above discussion and represent attention module as follows:

Definition 5 (Attention module). Let X ∈ RC×H×W . Attention module

is defined by

X ∈ RC×N 7→ X · softmax((CAP(X))TCAP(X)) ∈ RC×N , (4.45)

where N = HW , we identify X as a tensor of shape (C,N) by reshaping,

and softmax(A) is a matrix that uses softmax operation for each column of a

matrix A ∈ RN×N .

Erasing Module

As seen in Section 4.2, erasing is a useful tool to make the network recognize

the less discriminative regions. To increase the effect of erasing, we focus on

the observation that pixels in the neighborhood usually have similar informa-

tion [9, 48]. Thus, removing pixels without considering this observation may

leave pixels that have the information we want to erase.

To avoid this issue, we set a rectangle and remove all pixels in this rectan-

gle. The flow of erasing module is as follows. Let X ∈ RC×H×W be the input

feature map. Then erasing module outputs M ⊙X, where M ∈ RC×H×W is a

binary mask. When inference, we define a binary mask M ∈ RC×H×W as the

tensor filled with 1. Thus, we do not remove the pixels when inference.

When training, we set a rectangle for each channel. More explicitly, for

51

Figure 4.6: Comparison of sizes of rectangles. The ground truth bounding box
is represented by the green bounding box, and the estimated bounding box
is described as the red bounding box.

fixed channel c, we select the pixel of the maximum value in the cth feature

map of X. The center of the rectangle for this channel will be this pixel be-

cause this pixel is often in the most discriminative region. For the size of the

rectangle, one may use only one size. However, we observe that this use may

restrict the increase in performance. For a visual example, see Figure 4.6.

Note that the first column of Figure 4.6 shows the input image, and the

predictions of localization are displayed in other columns. For the predictions,

we represent the ground truth bounding box and the estimated bounding box

by the green bounding box and the red bounding box, respectively. Also, the

numbers above the second to the 4th column mean that the used sizes for

learning. So, for instance, the second column shows the results from the model

using 3 as its size of erasing. With these settings, we first look at the first row

52

Figure 4.7: The procedure of erasing module for training. SAB denotes spatial
attention branch, and S1, S2, and S3 are the candidate sizes.

of Figure 4.6. In the first row, we observe that the size that gives the highest

similarity to the ground truth bounding box is 3. However, the other images

do not show the same results. In other words, 5 shows the highest similarity

to the ground truth bounding box for the second row, and the best-estimated

bounding box is obtained when we use 7 for the third row. Thus, we pick

one size in a range of sizes at random to give the network a chance to access

diverse sizes.

With the motivation above, the remainder flow of erasing module for train-

ing is as follows. We let {Si : 1 ≤ i ≤ m} be a set of sizes of erasing with

S1 < S2 < · · · < Sm. Also, for each Si and channel c, we let Area(Si)c be a

square with the height Si. We assume the squares Area(S1)c, · · · ,Area(Sm)c
have the same center that is in X[c] ∈ RH×W and the probability of choosing

Si is
1
m
. In particular, we select the center of these squares as the pixel that

attains the maximum value of X[c]. Then we have Area(S1)c ⊆ Area(S2)c ⊆
· · · ⊆ Area(Sm)c. Also, due to this relation, we have the following Lemma:

53

Proposition 1. For each pixel (i, j), the ‘keep’ probability p(S1, · · · , Sm)c,i,j
is

p(S1, · · · , Sm)c,i,j =



0, if (i, j) ∈ Area(S1)c,
1

m
, if (i, j) ∈ Area(S2)c − Area(S1)c,

...
...

m− 1

m
, if (i, j) ∈ Area(Sm)c − Area(Sm−1)c,

1, otherwise,

(4.46)

Here, the ‘keep’ probability means the probability that the corresponding pixel

will not be removed. Then we define a binary mask M ∈ RC×H×W , where

Mc,i,j ∼ Bernoulli(p(S1, · · · , Sm)c,i,j). (4.47)

Proof. Since Area(S1)c is a subset of all the squares

Area(S2)c, · · · ,Area(Sm)c, (4.48)

p(S1, · · · , Sm)c,i,j = 0 if (i, j) is in Area(S1)c. Also, if (i, j) does not in any

squares, then there are no squares that can remove (i, j). Thus, p(S1, · · · , Sm)c,i,j =
1 for this case. Fix 2 ≤ k ≤ m. Suppose (i, j) ∈ Area(Sk)c−Area(Sk−1)c. Since

Area(Sk)c ⊆ Area(Sk+1)c ⊆ · · · ⊆ Area(Sm)c, we can remove (i, j) by choos-

ing one of Sk, · · · , Sm. Finally, the uniform distribution over {S1, · · · , Sm}
gives us

1− p(S1, · · · , Sm)c,i,j =
m− k + 1

m
, p(S1, · · · , Sm)c,i,j =

k − 1

m
. (4.49)

Finally, with the above binary mask M , the output feature map is X⊙M ,

where ⊙ is the elementwise multiplication. The flow of erasing module is

described in Figure 4.7. Also, from the above discussion, we have the following

definition:

54

Figure 4.8: Some ADL results correspond to input images. The ground truth
bounding box is represented by the green bounding box, and the estimated
bounding box is described as the red bounding box.

Definition 6 (Erasing module). Let X ∈ RC×H×W be the input feature map.

Erasing module is a function that X maps to M ⊙ X, where ⊙ is the

elementwise multiplication and

M =

{
1, inference

[Mc,i,j], training
∈ RC×H×W , (4.50)

where p(S1, · · · , Sm)c,i,j follows Equation 4.46, Mc,i,j ∼ Bernoulli(p(S1, · · · , Sm)c,i,j),
and 1 denotes the tensor filled with 1.

Note that if m = 1, then it is equivalent to the situation that we use only

one size of the rectangle.

Final Step

As we discussed in Section 4.2, models such as ADL [5] have shown that using

attention and erasing improves performance. However, since these models

pick either attention or erasing at random, they use one piece of information

for each iteration. This can limit boosting performance. For instance, if the

55

influence of erasing increases, it is likely to induce the network to recognize the

background as the region of the object. Indeed, for example, ADL sometimes

predicts a larger region than the region of the object. For a visual example,

see Figure 4.8. Thus, we add two output feature maps from attention module

and erasing module to use all information for each iteration. More explicitly,

we use

X 7→ w1f1(X) + w2f2(X), (4.51)

where w1, w2 > 0, and f1 and f2 are the attention module and the erasing

module, respectively. Here, when training, we set w1+w2 = 1 and w1 = w2 = 1

when inference. These wi’s play the role in determining the ratio between

attention module and erasing module.

4.4 Experiment

The same datasets and evaluation metrics as in Section 3 are used for our

experiment.

4.4.1 Implementation Details

ResNet-50 [15], MobileNet V1 [16], and Inception V3 [47] are used as our

backbone networks. The proposed method is inserted between the last layer of

the backbone and GAP layer. Also, we switch the stride of the last layer from

2 to 1 when either ResNet-50 or MobileNet V1 is used the backbone network,

which results in a feature map with a height of 14. The pretrained weight on

ILSVRC [41] is used to train all models. SGD having 0.9 as its momentum

and 5e− 4 as its weight decay optimizes all models using cross-entropy loss.

Also, similar to SFPN, the tenfold learning rate of other layers is applied to

the last fully connected layer. Batch size is 32 for CUB-200-2011 [50] and

128 for ILSVRC [41]. The weights wi in Equation 4.5 are w1 = w2 = 0.5 for

ResNet-50 and MobileNet V1, and w1 = 0.35, w2 = 0.65 for Inception V3.

Also, A2E Net is implemented using PyTorch [37].

56

Backbone Method Top1-loc (%) Top1-cls (%)

Inception V3 [47]

CAM [63] 43.67 -
EGA [2] 45.74 72.11
SPG [61] 46.64 -

DANet [55] 49.45 71.20
DGDM [56] 52.62 72.23
ADL [5] 53.04 74.55
CSoA [24] 53.94 76.10
InCA [21] 56.10 64.00

A2E Net [23] 61.34 79.98

ResNet-50 [15]

CAM [63] 47.81 80.55
HCLNet [3] 54.07 81.77
Cutmix [57] 54.81 -
InCA [21] 56.10 80.40
DGDM [56] 59.40 76.20
DANet [55] 61.10 81.60
ADL∗ [5] 62.29 80.34

A2E Net [23] 67.36 76.80

MobileNet V1 [16]

CAM [63] 43.70 71.94
HaS-32 [44] 44.67 66.64
ADL [5] 47.74 70.43

A2E Net [23] 59.58 75.03

Table 4.1: Comparison of WSOL performances for CUB-200-2011. The best
performance is denoted by bold letters. Also, * is the result when the corre-
sponding method is applied to ResNet50-SE [17] and - means the correspond-
ing paper does not report the result.

4.4.2 Result

We compare the proposed method with existing WSOL models. Table 4.1–4.2

show the comparisons on CUB-200-2011 and ILSVRC, respectively.

In Table 4.1–4.2, the proposed method gains the best Top1-loc perfor-

mance for MobileNet V1, ResNet-50, and Inception V3. First, when we use

Inception V3, A2E Net shows an increase of 5.24 percentage points in Top1-loc

when we compare it with InCA [21] in CUB-200-2011, and gets a higher Top1-

57

Backbone Method Top1-loc (%) Top1-cls (%)

Inception V3 [47]

CAM [63] 46.29 -
DANet [55] 47.53 72.50
SPG [61] 48.60 -
ADL [5] 48.71 72.83
InCA [21] 49.30 76.54
MEIL [33] 49.48 73.31
EGA [2] 49.83 72.58
CSoA [24] 51.19 71.90

A2E Net [23] 51.27 74.01

ResNet-50 [15]

CAM [63] 46.03 74.57
Cutmix [57] 47.25 -
InCA [21] 48.40 71.31
ADL∗ [5] 48.53 75.85

DGDM∗ [56] 48.81 73.50
A2E Net [23] 49.48 74.29

MobileNet V1 [16]

CAM [63] 41.66 68.38
HaS-32 [44] 41.87 67.48
ADL [5] 43.01 67.77

A2E Net [23] 45.02 70.58

Table 4.2: Comparison of WSOL performances for ILSVRC. The best perfor-
mance is denoted by bold letters. Also, * is the result when the corresponding
method is applied to ResNet50-SE [17] and - means the corresponding paper
does not report the result.

loc result than CSoA [24] by 0.08 percentage points when we use ILSVRC.

Moreover, comparisons in MobileNet V1 and ResNet-50 show that A2E Net

enjoys a negligible number of learnable weights.

When MobileNet V1 is our backbone network, A2E Net gains a higher

Top1-loc result than ADL by 11.84 and 2.01 percentage points in CUB-200-

2011 and ILSVRC, respectively. Here, since MobilieNet V1 is the lightweight

backbone network, it is not suitable for this network to add a large number

of learnable weights. Thus, CAM, HaS, and ADL, which have no additional

trainable weights, are compared with A2E Net in MobilieNet V1. Because

58

Figure 4.9: Comparison with CAM on CUB-200-2011. The ground truth
bounding box is represented by the green bounding box, and the estimated
bounding box is described as the red bounding box.

the number of learnable weights of A2E Net is negligible, this comparison

shows that A2E Net gains better improvement than CAM, HaS, and ADL,

not making MobilieNet V1 overweight.

The comparison in ResNet-50 also shows a similar result. A2E Net gains

a higher Top1-loc result than ADL by 5.07 percentage points in CUB-200-

2011 and a higher Top1-loc result than DGDM [56] by 0.67 percentage points

in ILSVRC. Note that in this comparison, ADL and DGDM use ResNet50-

SE [17] as their backbone network. Because ResNet50-SE uses more learnable

parameters than ResNet-50, this comparison shows that A2E Net gets bet-

ter improvement than ADL and DGDM with a smaller number of learnable

parameters. In summary, A2E Net shows great performance with a negligible

number of learnable weights via comparisons on two datasets.

The qualitative comparison also supports the great performance of the

proposed method. Figure 4.9–4.10 show this comparison between CAM and

A2E Net. The ground truth bounding box is represented by the green bound-

59

Figure 4.10: Comparison with CAM on ILSVRC. The ground truth bounding
box is represented by the green bounding box, and the estimated bounding
box is described as the red bounding box.

ing box, and the estimated bounding box is described as the red bounding

box. In these figures, A2E Net recognizes a region closer to the whole region

of the object compared to CAM. For example, in Figure 4.9, CAM focuses

on the face of the bird. Figure 4.10 also shows the similar visualization. This

recognition of A2E Net also helps a more precise estimation of the bounding

box. Hence, the qualitative comparison shows that A2E Net produces a better

prediction of the bounding box.

Based on the above qualitative and quantitative comparison, the proposed

method shows its efficiency and great performance.

4.4.3 Ablation Study

We show the validity of the construction of A2E Net by various ablation

studies. For this, ResNet-50 is used as the backbone, and CUB-200-2011 is

used as the dataset.

60

Each component

SAB
Refinement Branch

Top1-loc (%) Top1-cls (%)
Attention module Erasing module

✗

✗ ✗ 47.81 80.55
✓ ✗ 51.64 79.39
✓ ✓ 64.64 76.08

✓

✗ ✗ 51.07 79.88
✓ ✗ 52.30 77.46
✓ ✓ 67.36 76.80

Table 4.3: Ablation study for spatial attention branch and refinement branch.
Here, SAB means spatial attention branch.

We examine SAB, attention module, and erasing module. For this study, the

result is shown in Table 4.3. First, the networks with SAB show higher Top1-

loc results than those without SAB. The model with SAB (see the 4th row)

increases Top1-loc by 3.26 percentage points compared to the model without

any components (see the 1st row). Also, the model with SAB and attention

model (see the 5th row) shows a larger Top1-loc performance than the model

with attention module (see the 2nd row) by 0.66 percentage points. Finally,

A2E Net (see the last row) has the improved Top1-loc performance compared

to the model with refinement branch (see the 3rd row) by 2.72 percentage

points. In these comparisons, we can know that SAB produces the feature

map with preferable information.

Next, we check attention module. When we don’t use SAB, the network

with attention module gains a higher Top1-loc than the network without this

module by 3.83 percentage points. (see the first to the second row) Also, when

we use SAB, the network with attention module achieves an increase of 1.23

percentage points in Top1-loc. (see the 4th to the 5th row) These comparisons

demonstrate that attention module helps better localization.

Finally, we examine erasing module. Without SAB, the model with erasing

module (see the third row) shows higher Top1-loc by 13.00 percentage points

compared to the model using only attention module (see the second row).

61

Also, with SAB, the model with erasing module (see the last row) increases

Top1-loc by 15.06 percentage points compared to the model using only atten-

tion module (see the 5th row). These margins of increase in Top1-loc are quite

higher than the aforementioned results for attention module. Thus, erasing

module encourages the pretty improvement in performance.

The range of sizes

The range of size Top1-loc (%) Top1-cls (%)

{3} 57.02 78.39
{5} 59.15 78.15
{7} 62.01 77.96

{3, 5} 61.70 79.46
{3, 7} 63.53 78.51
{5, 7} 65.55 77.87

{3, 5, 7} 67.36 76.80

Table 4.4: Ablation study for the range of sizes.

We examine the size of erasing. Table 4.4 displays the result for this study.

First, the models with two sizes (the 4th to the 6th row) show higher Top1-

loc performance than the models with only one size (see the first three rows).

For example, for the model using {3} as only one size (see the first row), the

models using {3, 5} and {3, 7} as the range of sizes increase Top1-loc by 4.68

percentage points and 6.51 percentage points, respectively.

Further, the model with three sizes (see the last row) achieves a higher

Top1-loc than the models with two sizes (see the 4th to the 6th row) by

5.66, 3.83, and 1.81 percentage points, respectively. These results support our

hypothesis that using only one size limits the improvement of performance.

However, the model using {3, 5, 7, 9} as the range of sizes results in 60.77%

for Top1-loc and 78.81% for Top1-cls, which is lower Top1-loc than the model

with three sizes (see the last row). This says that too many sizes can hurt the

performance. Therefore, we need to use a suitable number of sizes and use

{3, 5, 7} as a range of the sizes.

62

Combination attention module with erasing module

SAB Drop rate Top1-loc (%) Top1-cls (%)

✗

0.75 43.25 78.37
0.5 46.17 79.34
0.25 53.73 80.32
- 64.64 76.08

✓

0.75 54.47 78.01
0.5 57.35 79.05
0.25 62.20 79.44
- 67.36 76.80

Table 4.5: Ablation study for combination attention module with erasing
module. SAB denotes spatial attention branch.

We examine the validity of our combination of attention module and erasing

module. The goal of combining these modules is to use information from at-

tention module and erasing module. For this, one can use the choice of either

attention module or erasing module randomly, which is similar to the previ-

ous works [5, 21, 56]. To explore a better approach, we compare this random

choice with A2E Net. The results for these comparisons are shown in Table

4.5. Drop rate in Table 4.5 is the probability of choosing erasing module.

When we do not use SAB, the first to the third row of Table 4.5 show that

as the drop rate decreases, Top1-loc performance increases. Moreover, A2E

Net without SAB (see the 4th row) shows the best performance in the case

of not using SAB. Indeed, it gets a higher Top1-loc performance by 21.39,

18.47, and 10.91 percentage points, compared to the first to the third row of

Table 4.5, respectively.

Otherwise, the 5th to the 7th row of Table 4.5 also display the decreased

drop rate increases Top1-loc performance. Also, A2E Net (the last row of

Table 4.5) gives the best performance in the case of using SAB, similar to the

above case. Furthermore, it has a higher Top1-loc by 12.89, 10.01, and 5.16

percentage points, compared to the 5th to the 7th row of Table 4.5.

The above comparisons for all cases imply two things. First, when we

63

L1 L2 Top1-loc (%) Top1-cls (%)

-
- 47.81 80.55

NL-network [53] 47.88 80.51
Attention module 51.97 79.03

SE [17]
- 47.60 79.00

NL-network [53] 48.08 79.03
Attention module 51.69 79.44

CBAM [54]
- 50.71 80.08

NL-network [53] 50.02 80.17
Attention module 51.45 79.65

SAB
- 51.07 79.88

NL-network [53] 49.53 80.70
Attention module 53.30 77.56

Table 4.6: Comparison with various attention mechanisms. ‘-’ means that we
do not use any attention mechanisms.

choose attention module and erasing module at random, Top1-loc perfor-

mance is in inverse proportion to the drop rate. This shows that the large

influence of erasing can limit boosting performance. Next, the networks with

our combination show the best Top1-loc performance in each case. Thus, it

is demonstrated that our combination is a better choice.

Comparison with other attention mechanisms

To validate the efficiency of SAB and attention module, we replace these with

other attention mechanisms. SE [17] and CBAM [54], and NL-network [53]

are used for this replacement. More precisely, either SE or CBAM is used

instead of SAB, and NL-network is used instead of attention module. Also,

erasing module is not included to focus only on attention mechanisms. With

this change, Table 4.6 shows the result. L1 and L2 in Table 4.6 represent the

locations where SAB and attention module are used, respectively. First, in

the case of using NL-network, SAB records the comparable performance in

64

Model # of learnable parameters

SAB 11
SE [17] 526,464

CBAM [54] 526,564

Attention module 0
NL-network [53] 8,397,824

Table 4.7: The number of learnable parameters of the attention mechanisms
in our ablation study.

Top1-loc compared with SE and CBAM. Moreover, SAB achieves the highest

performance in Top1-loc for other cases. Next, attention module represents

the highest performance in Top1-loc for all cases. Thus, referring to Table

4.7, these comparisons show the efficiency of SAB and attention module.

Comparison with other erasing techniques

The style of erasing Top1-loc (%) Top1-cls (%)

HaS [44] 58.32 74.28

ACoL [60] 57.42 79.55
MEIL [33] 60.61 77.63

ADL [5] 41.91 80.08
InCA [21] 48.33 80.27
DGDM [56] 62.75 74.42

A2E Net [23] 67.36 76.80

Table 4.8: Comparison with the previous erasing methods.

We also compare our erasing technique with other methods to show the suit-

ability of our erasing method. We divide the previous erasing methods in

WSOL into 3 categories. First, we can apply the erasing method to the im-

age directly like HaS [44]. Also, one or more classifiers can be used such as

65

ACoL [60] and MEIL [33]. Finally, we can pick either attention mechanism or

erasing at random like ADL [5], InCA [21], and DGDM [56]. For the compar-

ison with our erasing module, we adjust such methods to A2E Net. Namely,

each of such methods replaces our erasing module, and SAB and attention

module remain the same. For instance, if we use HaS [44] instead of erasing

module, then the input image is erased by HaS, and refinement branch uses

the skip connection without erasing module. Table 4.8 gives the correspond-

ing results.

The first row in Table 4.8 says that the direct application of the erasing

to the image can be less effective. Next, the use of one or more classifiers

also has a lower performance in Top1-loc from the comparison with ACoL

and MEIL. Lastly, A2E Net still gives the best performance in Top1-loc com-

pared to the erasing methods in ADL [5], InCA [21], and DGDM [56]. Hence,

these comparisons mean that our approach to erasing is more suitable than

the previous erasing methods.

66

Chapter 5

Conclusion

In this thesis, we propose two WSOL models to alleviate the burden of learn-

ing. One is SFPN [22]. SFPN aims to remove the need for finding the hyperpa-

rameters of loss functions, improving performance. It first generates feature

maps with enhanced information by the addition of low-resolution feature

maps and high-resolution feature maps. These generated feature maps are in-

volved in the last feature map of CAM and, thus, make the information of the

last feature map more plentiful. Due to this, we use only cross-entropy loss

for learning. In particular, this point is quite an advantage when we deal with

a large dataset such as ILSVRC [41]. Moreover, SFPN demonstrates its great

performance through experiments on CUB-200-2011 [50] and ILSVRC [41].

Next, we propose A2E Net [23]. Although SFPN shows great performance,

SFPN requires additional learnable parameters to attain feature maps with

better information. Because a number of learnable parameters are also a bur-

den of learning, A2E Net aims to reduce the number of such parameters. To

satisfy this goal, we construct SAB and refinement branch as ingredients of

A2E Net.

Input feature map first passes through SAB. SAB introduces a transforma-

tion that informs the importance of each pixel. This transformation extracts

the values by using layers, including CAP. Due to CAP, SAB has 11 learnable

parameters and computes the representative values for each pixel. Thus, SAB

gains better spatial information and is lightweight.

Then refinement branch uses the output feature map of SAB as its input.

67

This branch is operated by attention module and erasing module. Attention

module generates an attention map with more elaborate information by us-

ing the connection between pixels. Further, this module does not exploit any

trainable neural networks, unlike NL-network. Thus, this module also con-

tributes to making A2E Net lightweight.

Erasing module removes the most discriminative region. Due to the prop-

erty of pixels in the neighborhood [9, 48], we need to remove all pixels in

the neighborhood. To this end, we set the rectangles and remove all pixels

in these rectangles. Since the most discriminative region often contains the

pixels of the maximum value, these pixels are the center of these rectangles.

Also, we pick a size of these rectangles in a range of sizes at random to boost

performance.

Finally, we get the final output of refinement branch using the output

feature maps from attention module and erasing module. Choosing either

attention module or erasing module, which is similar to the previous works

[5,21,56], uses one piece of information for each iteration. Thus, it sometimes

limits boosting performance. Because of this, we introduce a new method to

use both two modules. Hence, we add the output feature maps of attention

module and erasing module to use information from these two modules.

Using SAB and refinement branch, A2E Net shows great performance

via experiments on CUB-200-2011 [50] and ILSVRC [41]. Moreover, it has

lightweight branches, where the number of trainable parameters in each branch

is negligible.

From SFPN to A2E Net, we aim to alleviate the burden of learning. An

increased burden of learning is usually an obstacle to improving architecture

or future research. In particular, this can be a crucial problem when dealing

with a large dataset. So, research for reducing the burden of learning will be

one of the important directions in the future.

Erasing technique can be the key to this. It is because erasing tech-

nique often requires no additional trainable parameters. One can consider

the Rademacher Complexity [1] to obtain a better erasing technique. For ex-

ample, LocalDrop [30] shows a novel regularization method by observing the

Rademacher complexities of Dropout [45] and Dropblock [9]. Because Propo-

sition 1 provides a mathematical view of erasing module of A2E Net, we

68

believe that it will give inspiration for improving the regularization and the

localization performance in the future, by combining with mathematical tools

such as the Rademacher Complexity.

69

Bibliography

[1] P. L. Bartlett and S. Mendelson, Rademacher and gaussian com-

plexities: Risk bounds and structural results, Journal of Machine Learning

Research, 3 (2002), pp. 463–482.

[2] S. N. Benassou, W. Shi, and F. Jiang, Entropy guided adversar-

ial model for weakly supervised object localization, Neurocomputing, 429

(2021), pp. 60–68.

[3] S. N. Benassou, W. Shi, F. Jiang, and A. Benzine, Hierarchical

complementary learning for weakly supervised object localization, Signal

Processing: Image Communication, 100 (2022), p. 116520.

[4] A. Buades, B. Coll, and J.-M. Morel, A non-local algorithm for

image denoising, in 2005 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’05), vol. 2, IEEE, 2005,

pp. 60–65.

[5] J. Choe and H. Shim, Attention-based dropout layer for weakly super-

vised object localization, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 2219–2228.

[6] M. Corbetta and G. L. Shulman, Control of goal-directed and

stimulus-driven attention in the brain, Nature reviews neuroscience, 3

(2002), pp. 201–215.

[7] P. Dabkowski and Y. Gal, Real time image saliency for black box

classifiers, Advances in neural information processing systems, 30 (2017).

70

[8] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu,

Dual attention network for scene segmentation, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 3146–3154.

[9] G. Ghiasi, T.-Y. Lin, and Q. V. Le, Dropblock: a regularization

method for convolutional networks, in Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems, 2018,

pp. 10750–10760.

[10] R. Girshick, Fast r-cnn, in Proceedings of the IEEE international con-

ference on computer vision, 2015, pp. 1440–1448.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature

hierarchies for accurate object detection and semantic segmentation, in

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2014.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,

MIT Press, 2016. http://www.deeplearningbook.org.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

Generative adversarial nets, Advances in neural information processing

systems, 27 (2014).

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask r-cnn,

in Proceedings of the IEEE international conference on computer vision,

2017, pp. 2961–2969.

[15] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for

image recognition, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 770–778.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications, arXiv

preprint arXiv:1704.04861, (2017).

71

http://www.deeplearningbook.org

[17] J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in

Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018, pp. 7132–7141.

[18] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep

network training by reducing internal covariate shift, in International

conference on machine learning, PMLR, 2015, pp. 448–456.

[19] L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual

attention for rapid scene analysis, IEEE Transactions on pattern analysis

and machine intelligence, 20 (1998), pp. 1254–1259.

[20] M. Jaderberg, K. Simonyan, A. Zisserman, et al., Spatial trans-

former networks, Advances in neural information processing systems, 28

(2015).

[21] M. Ki, Y. Uh, W. Lee, and H. Byun, In-sample contrastive learn-

ing and consistent attention for weakly supervised object localization, in

Proceedings of the Asian Conference on Computer Vision, 2020.

[22] B. Koo, H.-S. Choi, and M. Kang, Simple feature pyramid network

for weakly supervised object localization using multi-scale information,

Multidimensional Systems and Signal Processing, 32 (2021), pp. 1185–

1197.

[23] , Aggregation of attention and erasing for weakly supervised object

localization, Image and Vision Computing, 129 (2023), p. 104598.

[24] Z. Kou, G. Cui, S. Wang, W. Zhao, and C. Xu, Improve cam with

auto-adapted segmentation and co-supervised augmentation, in Proceed-

ings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, 2021, pp. 3598–3606.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet clas-

sification with deep convolutional neural networks, Advances in neural

information processing systems, 25 (2012).

72

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-

based learning applied to document recognition, Proceedings of the IEEE,

86 (1998), pp. 2278–2324.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie, Feature pyramid networks for object detection, in Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 2117–2125.

[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, Focal

loss for dense object detection, in Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Oct 2017.

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg, Ssd: Single shot multibox detector, in European

conference on computer vision, Springer, 2016, pp. 21–37.

[30] Z. Lu, C. Xu, B. Du, T. Ishida, L. Zhang, and M. Sugiyama,

Localdrop: a hybrid regularization for deep neural networks, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, (2021).

[31] L. Luo, C. Yuan, K. Zhang, Y. Jiang, Y. Zhang, and H. Zhang,

Double shot: Preserve and erase based class attention networks for weakly

supervised localization (peca-net), in 2020 IEEE international conference

on multimedia and expo (ICME), IEEE, 2020, pp. 1–6.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,

Towards deep learning models resistant to adversarial attacks, in Inter-

national Conference on Learning Representations, 2018.

[33] J. Mai, M. Yang, and W. Luo, Erasing integrated learning: A simple

yet effective approach for weakly supervised object localization, in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 8766–8775.

[34] A. Meethal, M. Pedersoli, S. Belharbi, and E. Granger,

Convolutional stn for weakly supervised object localization, in 2020 25th

73

International Conference on Pattern Recognition (ICPR), IEEE, 2021,

pp. 10157–10164.

[35] J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, Bam: Bottleneck

attention module, arXiv preprint arXiv:1807.06514, (2018).

[36] S. Park and N. Kwak, Analysis on the dropout effect in convolutional

neural networks, in Asian conference on computer vision, Springer, 2016,

pp. 189–204.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala, Pytorch: An imperative style, high-performance deep

learning library, in Advances in Neural Information Processing Systems

32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, eds., Curran Associates, Inc., 2019, pp. 8024–8035.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only

look once: Unified, real-time object detection, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 779–

788.

[39] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-

time object detection with region proposal networks, Advances in neural

information processing systems, 28 (2015).

[40] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional

networks for biomedical image segmentation, in International Confer-

ence on Medical image computing and computer-assisted intervention,

Springer, 2015, pp. 234–241.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al., Imagenet large scale visual recognition challenge, International

journal of computer vision, 115 (2015), pp. 211–252.

74

[42] L. Sifre and S. Mallat, Rigid-motion scattering for image classifi-

cation [phd thesis], Ecole Polytechnique, (2014).

[43] K. Simonyan and A. Zisserman, Very deep convolutional networks

for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).

[44] K. K. Singh and Y. J. Lee, Hide-and-seek: Forcing a network to be

meticulous for weakly-supervised object and action localization, in 2017

IEEE international conference on computer vision (ICCV), IEEE, 2017,

pp. 3544–3553.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, Dropout: a simple way to prevent neural networks

from overfitting, The journal of machine learning research, 15 (2014),

pp. 1929–1958.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,

Going deeper with convolutions, in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 1–9.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

Rethinking the inception architecture for computer vision, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 2818–2826.

[48] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler,

Efficient object localization using convolutional networks, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2015,

pp. 648–656.

[49] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.

Smeulders, Selective search for object recognition, International journal

of computer vision, 104 (2013), pp. 154–171.

[50] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-

longie, The Caltech-UCSD Birds-200-2011 Dataset, Tech. Rep. CNS-

TR-2011-001, California Institute of Technology, 2011.

75

[51] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang,

X. Wang, and X. Tang, Residual attention network for image classi-

fication, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 3156–3164.

[52] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, Eca-net: Ef-

ficient channel attention for deep convolutional neural networks, in Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020.

[53] X. Wang, R. Girshick, A. Gupta, and K. He, Non-local neural

networks, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 7794–7803.

[54] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, Cbam: Convolutional

block attention module, in Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 3–19.

[55] H. Xue, C. Liu, F. Wan, J. Jiao, X. Ji, and Q. Ye, Danet: Diver-

gent activation for weakly supervised object localization, in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019,

pp. 6589–6598.

[56] J. Yin, S. Zhang, D. Chang, Z. Ma, and J. Guo, Dual-attention

guided dropblock module for weakly supervised object localization, in 2020

25th International Conference on Pattern Recognition (ICPR), IEEE,

2021, pp. 4229–4236.

[57] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, Cutmix:

Regularization strategy to train strong classifiers with localizable features,

in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 6023–6032.

[58] M. D. Zeiler and R. Fergus, Visualizing and understanding convo-

lutional networks, in European conference on computer vision, Springer,

2014, pp. 818–833.

76

[59] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, Self-

attention generative adversarial networks, in International conference on

machine learning, PMLR, 2019, pp. 7354–7363.

[60] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. S. Huang, Adver-

sarial complementary learning for weakly supervised object localization,

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 1325–1334.

[61] X. Zhang, Y. Wei, G. Kang, Y. Yang, and T. Huang, Self-

produced guidance for weakly-supervised object localization, in Proceed-

ings of the European conference on computer vision (ECCV), 2018,

pp. 597–613.

[62] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, Residual non-local at-

tention networks for image restoration, arXiv preprint arXiv:1903.10082,

(2019).

[63] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,

Learning deep features for discriminative localization, in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016,

pp. 2921–2929.

77

국문초록

본 학위논문에서 우리는 약한 지도 기반의 물체탐지를 위한 두 가지 모델을

제안한다. 기존의 많은 약한 지도 기반의 물체탐지를 위한 모델들은 손실함수

의 하이퍼파라미터 찾기에 들어가는 비용이 무시하기 어렵다는 등의 한계점이

있다. 그래서 우리는 먼저 이 손실함수의 하이퍼파라미터 찾기에 들어가는 비

용을 줄이기 위해서 SFPN이라는 이름을 가진 모델을 제안한다. SFPN은 특징

피라미드네트워크의구조를활용하여특징맵들의정보를강화시켰다.이후에

이 특징 맵들은 경계 상자의 예측에 참여한다. 이 과정은 성능 향상뿐만 아니

라 오직 교차 엔트로피 함수만을 사용할 수 있게 하는 효과를 가져왔다. 뿐만

아니라 우리는 좀 더 적은 개수의 파라미터를 활용하기 위하여 두 번째 모델인

A2E Net을 제안한다. 이 모델은 공간 집중 분기, 정제 분기로 구성된다. 우선,

공간 집중 분기는 적은 개수의 파라미터를 사용하여 공간 정보를 강화시킨다.

그리고정제분기는집중모듈과지우기모듈로구성되고,이모듈들은모두학

습가능한파라미터가없다.공간집중분기의결과를입력으로사용하여,집중

모듈은 픽셀 간의 관계를 고려하여 특징 맵의 정보를 좀 더 정교하게 만든다.

또한, 지우기 모듈은 공간 집중 분기의 출력 특징 맵의 가장 구별되는 영역을

지워서 네트워크가 덜 구별되는 영역도 고려할 수 있도록 한다. 더욱이 지우는

영역의 크기를 다양하게 사용할 수 있게 하여 성능을 더 향상시켰다. 마지막

으로, 집중과 지우기에서 나오는 정보를 모두 활용하기 위하여 이 두 모듈의

출력 특징 맵들을 더한다. 이렇게 제안된 SFPN과 A2E Net은 CUB-200-2011

과 ILSVRC 에서의 실험을 통해 기존의 약지도 물체 탐지 기법들보다 좋은

성능을 가짐을 보였다.

주요어휘: 딥러닝, 약한 지도 학습, 물체 지역화

학번: 2017-21110

	1 Introduction
	2 Preliminaries
	2.1 Convolutional Neural Networks
	2.1.1 Convolution Operation
	2.1.2 Some Convolutional Neural Networks
	3 SFPN: Simple Feature Pyramid Network for Weakly Supervised Object Localization
	3.1 Introduction
	3.2 Related works
	3.2.1 Some Object Detection Methods
	3.2.2 Existing Methods for Weakly Supervised Object Localization
	3.3 Proposed Method
	3.4 Experiment
	3.4.1 Datasets
	3.4.2 Evaluation Metrics
	3.4.3 Implementation Details
	3.4.4 Result
	3.4.5 Ablation Study
	4 A2E Net: Aggregation of Attention and Erasing for Weakly Supervised Object Localization
	4.1 Introduction
	4.2 Related Works
	4.2.1 Attention Mechanism
	4.2.2 Erasing Methods
	4.2.3 Existing Methods for Weakly Supervised Object Localization
	4.3 Proposed Method
	4.3.1 Spatial Attention Branch
	4.3.2 Refinement Branch
	4.4 Experiment
	4.4.1 Implementation Details
	4.4.2 Result
	4.4.3 Ablation Study
	5 Conclusion
	The bibliography
	Abstract (in Korean)

<startpage>14
1 Introduction 1
2 Preliminaries 5
2.1 Convolutional Neural Networks 5
2.1.1 Convolution Operation 5
2.1.2 Some Convolutional Neural Networks 7
3 SFPN: Simple Feature Pyramid Network for Weakly Supervised Object Localization 12
3.1 Introduction 12
3.2 Related works 14
3.2.1 Some Object Detection Methods 14
3.2.2 Existing Methods for Weakly Supervised Object Localization 18
3.3 Proposed Method 23
3.4 Experiment 26
3.4.1 Datasets 26
3.4.2 Evaluation Metrics 27
3.4.3 Implementation Details 28
3.4.4 Result 28
3.4.5 Ablation Study 30
4 A2E Net: Aggregation of Attention and Erasing for Weakly Supervised Object Localization 33
4.1 Introduction 33
4.2 Related Works 35
4.2.1 Attention Mechanism 35
4.2.2 Erasing Methods 40
4.2.3 Existing Methods for Weakly Supervised Object Localization 43
4.3 Proposed Method 48
4.3.1 Spatial Attention Branch 48
4.3.2 Refinement Branch 49
4.4 Experiment 56
4.4.1 Implementation Details 56
4.4.2 Result 57
4.4.3 Ablation Study 60
5 Conclusion 67
The bibliography 70
Abstract (in Korean) 78
</body>

